
A Hybrid Machine Learning Framework for Enhancing the
Prediction Power in Large Scale Population Studies: The

ATHLOS Project

Petros Barmpasa, Sotiris Tasoulisa, Aristidis G. Vrahatisa, Matthew Prinab,c, José Luis
Ayuso-Mateosd,e,f, Jerome Bickenbachg,h, Ivet Bayesm,d, Martin Bobaki, Francisco Félix
Caballeroj,k, Somnath Chatterjil, Laia Egea-Cortésm, Esther García-Esquinasj,k, Matilde
Leonardin, Seppo Koskineno, Ilona Koupilp,q, Andrzej Pająkr, Martin Princec,s, Warren

Sandersont,u, Sergei Scherbovt,v,w, Abdonas Tamosiunasx, Aleksander Galasy, Josep Maria
Harom,d, Albert Sanchez-Niubom,d, Vassilis Plagianakosa, Demosthenes Panagiotakosz

aDepartment of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece.
bSocial Epidemiology Research Group. Health Service and Population Research Department, Institute of

Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
cGlobal Health Institute, King’s College London, London, UK

dCentro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
eDepartment of Psychiatry, Universidad Autónoma de Madrid, Madrid, Spain

fHospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS Princesa),
Madrid, Spain

gSwiss Paraplegic Research, Guido A. Zäch Institute (GZI), Nottwil, Switzerland
hDepartment of Health Sciences & Health Policy, University of Lucerne, Lucerne, Switzerland

iDepartment of Epidemiology and Public Health, University College London, London, UK
jDepartment Preventive Medicine and Public Health, Universidad Autónoma de Madrid/Idipaz, Madrid,

Spain
kCentro de Investigación Biomédica en Red de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain

lInformation, Evidence and Research, World Health Organization, Geneva, Switzerland
mResearch, Innovation and Teaching Unit. Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain

nFondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
oNational Institute for Health and Welfare (THL), Helsinki, Finland

pCentre for Health Equity Studies, Department of Public Health Sciences, Stockholm University,
Stockholm, Sweden

qDepartment of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
rDepartment of Epidemiology and Population Studies, Jagienllonian University, Krakow, Poland

sCentre for Global Mental Health. Health Service and Population Research Department, Institute of
Psychiatry, Psychology & Neuroscience, King’s College London, London, UK

tInternational Institute for Applied Systems Analysis, World Population Program, Wittgenstein Centre for
Demography and Global Human Capital, Laxenburg, Austria

uDepartment of Economics, Stony Brook University, Stony Brook, NY, United States of America
vAustrian Academy of Science, Vienna Institute of Demography, Vienna, Austria

wRussian Presidential Academy of National Economy and Public Administration (RANEPA), Moscow,
Russian Federation

xLithuanian University of Health Sciences, Kaunas, Lithuania
yDepartment of Epidemiology and Preventive Medicine, Jagiellonian University, Krakow, Poland.

zDepartment of Nutrition and Dietetics, School of Health Science and Education, Harokopio University,
Athens, Greece.

Preprint submitted to Journal of Biomedical Informatics January 27, 2021



Abstract

The ATHLOS cohort is composed of several harmonized datasets of international cohorts
related to health and aging. The healthy aging scale has been constructed based on a selec-
tion of particular variables from 16 individual studies. In this paper, we consider a selection
of additional variables found in ATHLOS and investigate their utilization for predicting the
healthy aging. For this purpose motivated by the dataset’s volume and diversity we focus
our attention upon the clustering for prediction scheme, where unsupervised learning is uti-
lized to enhance prediction power, showing the predictive utility of exploiting structure in
the data by clustering. We show that imposed computation bottlenecks can be surpassed
when using appropriate hierarchical clustering within a clustering for ensemble classification
scheme while retaining prediction benefits. We propose a complete methodology which is
evaluated against baseline methods and the original concept. The results are very encourag-
ing suggesting further developments in this direction along with applications in tasks with
similar characteristics. A strait-forward open source implementation is provided for the R
project.

Keywords: Clustering, Prediction Enhancement, ATHLOS cohort, Ensemble Methods

1. Introduction

Health informatics has received much attention in the past few years since it permits big
data collection and analytics and extracts patterns that are free of the strict methodolog-
ical assumptions of statistical modeling [1, 2]. Recent advances in the biomedical domain
generate data at an increasing rate in which approaches under the perspective of health
informatics, contribute in the accurate early disease detection, patient care, and community
services. These complex data belong to the "Big data" category containing various variable
types with different scales or experimental setups, in many cases incomplete [3]. The large
data volume on each biomedical research field offers the opportunity to open new avenues
for exploring the various biomedical phenomena. Machine learning methods are considered
as the first choice for the analysis of this data as they can manage their volume and com-
plexity. In recent years both unsupervised and supervised machine learning methods have
been applied to biomedical challenges offering reliable results.

A large category on this perspective is the population studies for aging and health analysis
where they offer a plurality of large scale data with high diversity and complexity. Aging and
health indicators are an important part of such research as the population aging observed
in most developed countries leads to an increasing interest in studying health and aging,
since the elderly are nowadays the fastest-growing segment in large regions, such as Europe,
Asia and the USA [4, 5, 6, 7, 8]. As such, discovering health-related factors in an attempt
to understand how to maintain a healthy life is of crucial importance. Meanwhile, it has
long been reported that Sociodemographic factors are significant determinants of various
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health outcomes such as healthy aging [9, 10], while evidently aging involves interactions
between biological and molecular mechanisms with the environment, and as a result, it is a
multifactorial phenomenon that everyone experiences differently [11].

The EU-funded ATHLOS (Ageing Trajectories of Health: Longitudinal Opportunities
and Synergies (EU HORIZON2020–PHC-635316, http://athlosproject.eu/)) Project pro-
duces a large scale dataset in an attempt to achieve a better understanding of ageing. The
produced harmonized dataset includes European and international longitudinal studies of
aging, in order to identify health trajectories and determinants in aging populations. Under
the context of ATHLOS, a metric of health has been created using an Item Response Theory
(IRT) approach [12] delivering a common metric of health across several longitudinal studies
considered in ATHLOS. Interestingly, there is a plethora of available variables within the
harmonized dataset that have not been considered when generating the aforementioned met-
ric of health, encouraging the further exploration of associated factors through the utilization
of Pattern Recognition and Machine Learning (ML) approaches. Nevertheless, the imposed
data volume and complexity generate challenges for ML related to big data management
and analytics.

There is a plethora of recently published studies based on the ATHLOS dataset with
promising results in several fields. Such fields include cardiovascular disease evaluation [13,
14, 15, 16, 17], demographic studies about sociodemographic indicators of health status [18]
and the impact of socioeconomic status [19, 20, 21], nutrition science studies such as nutrition
effects on health [22, 23, 24] and alcohol drinking patterns effects on health [25, 26] and
even psychology studies assessing the impact of depression and other psycological disorders
related to aging and health [27, 28, 29]. Nevertheless, the ATHLOS data specifications
require analysis through Machine Learning methods to uncover the data complexity and
better interpreting the characteristics that affect the state of human health. Predicting
the health index can be considered one of the greatest challenges of ATHLOS projects in
the health informatics domain. Previously, members of the ATHLOS consortium published
studies [30, 31] by applying various supervised Machine Learning algorithms on part of
ATHLOS data (ATTICA and ELSA study respectively). While these studies have shown
remarkable results, a study of the health status prediction in the unified and harmonized
ATHLOS data utilizing all additional information has not yet been done.

In this study, we proposed a hybrid machine learning framework which includes the
integration of Unsupervised and Supervised Machine Learning Algorithms to enhance pre-
diction performance on large-scale complex data. More precisely, we developed a divisive
hierarchical clustering for ensemble learning framework to enhance the prediction power on
ATHLOS large-scale data regarding its Health Status score. We focus our attention upon
the clustering for prediction scheme, where unsupervised learning is utilized to enhance pre-
diction power, showing the predictive utility of exploiting structure in the data by clustering.
We show that imposed computation bottlenecks can be surpassed when using appropriate
hierarchical clustering within a clustering for ensemble classification scheme while retaining
prediction benefits. We propose a complete methodology which is evaluated against base-
line methods and the concept’s basis. The results are very encouraging suggesting further
developments in this direction along with applications in tasks with similar characteristics.
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2. Related Work

In the last decade, several studies have been published regarding the integration of un-
supervised and supervised learning strategies, most of which concern the incorporation of
clustering models to classification algorithms for the improvement of the prediction perfor-
mance. Although there has been a remarkable progress in this area, there is a need for
more robust and reliable frameworks under this perspective given the ever-increasing data
generation in various domains. Clustering can be considered as a pre-processed step in a
classification task since in complex data with non-separable classes the direct application of
a classifier can be ineffective. In [32] the authors provided evidence that the training step in
separated data clusters can enhance the predictability of a given classifier. In their approach
the k-means and a hierarchical clustering algorithm were utilized to separate the data while
neural networks were applied for the classification process.

The utility of clustering in gaining more information about the data and subsequently
reducing errors in various prediction tasks has been previously explored, with promising
outcomes in various domains. The clustering outcome can be considered as a dataset’s
compressed representation which has the potential to exploit information about the data
and its structure, further employed to improve the predictive power. In [33] the authors
examine the extent to which analysis of clustered samples can match predictions made by
analyzing the entire dataset at once. For this purpose, they compare prediction results using
regression analysis on original and clustered data. It turned out that, clustering improved
regression prediction accuracy for all examined tasks. Additionally, the authors in [34] also
investigated whether clustering can improve prediction accuracy by providing the appro-
priate explanations. The proposed a process which concerns the coordination of multiple
predictors through a unified ensemble scheme. Furthermore, in [35], the authors integrated
the semi-supervised fuzzy c-means (SSFCM) algorithm into the support vector machines
(SVM) classifier offering promising results regarding the improvement of SVM prediction
power. Their hypothesis lies on the fact that unlabeled data include an inner structure
which can be efficiently uncovered by data clustering tools, a crucial step to enhance the
training phase of a given classifier. Following a similar perspective, the SuperRLSC algo-
rithm utilizes a supervised clustering method to improve classification performance of the
Laplacian Regularized Least Squares Classification (LapRLSC) algorithm [36]. Their moti-
vation is based on the intuition that the clustering process contributes to the identification of
the actual data structure by constructing graphs which can reflect more refined data struc-
ture. A step further is to incorporate ensemble clustering before the classification stage since
an ensemble approach can elucidate the data structure in a more realistic manner [37]. The
authors applied this framework to identify breast cancer profiles providing reliable results
since ensemble clustering algorithms can deal with the biological diversity is extremely im-
portant for clinical experts. Other approaches such as the work in [38] utilize the clustering
process to reduce the number of instances used by the imputation on incomplete datasets.
The unsupervised learning part in this method offered better results not only in the classi-
fication accuracy but also in terms of computational execution time. Given that the most
population-based studies include a plethora of missing values, this framework has a great
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potential to export reliable results in cases. Although several hybrid approaches including
supervised and unsupervised machine learning techniques have been recently proposed, the
rise of Big Data challenges along with the diversity issues on population studies, necessitates
further developments in this direction.

3. Background Material

3.1. Ensemble Learning
Ensemble methods have seen rapid growth in the past decade within the machine learning

community [39]. An ensemble is a group of predictors, each of which gives an estimate of a
response variable. Ensemble learning is a way to combine these predictions with the goal that
the generalization error of the combination is smaller than each of the individual predictors.
The success of ensembles lies in the ability to exploit the diversity in the individual predictors.
That is, if the individual predictors exhibit different patterns of generalization, then the
strengths of each of the predictors can be combined to form a single, more reliable one.

A significant portion of research outcomes in ensemble learning aims towards finding
methods that encourage diversity in the predictors. Mainly, there are three reasons for
which ensembles perform better than the individual predictors [40]. The first reason is
statistical. A learning algorithm can be considered a way to search the hypotheses space
to identify the best one in it. The statistical problem is caused due to insufficient data.
Thus, the learning algorithm would give a set of different hypotheses with similar accuracy
on the training data. With ensembling, the risk of choosing the wrong hypothesis would
be averaged out to an extend. The second reason is of computational nature. Often, while
looking for the best hypothesis, the algorithm might be stuck in local optima, thus giving
the wrong result. By considering multiple such hypotheses, we can obtain a much better
approximation to the true function. The third reason is representational. Sometimes the
true function might not be any hypothesis in the hypotheses space. With the ensemble
method, the representational space might be expanded to give a better approximation of
the true function.

Ensemble learning also coincides with the task of clustering since the performance of most
clustering techniques is highly data-dependent. Generally, there is no clustering algorithm,
or the algorithm with distinct parameter settings, that performs well for every set of data
[41]. To overcome the difficulty of identifying a proper alternative, the methodology of
cluster ensemble has been continuously developed in the past decade.

3.2. Projection Based Hierarchical Divisive Clustering
Hierarchical clustering algorithms construct hierarchies of clusters in a top-down (divi-

sive) or bottom-up (agglomerative) fashion. The former starts from n clusters, where n
stands for the number of data points, each containing a single data point and iteratively
merge the clusters to satisfy certain closeness measures. Divisive algorithms follow a reverse
approach, starting with a single cluster containing all the data points and iteratively split
existing clusters into subsets. Hierarchical clustering algorithms have been shown to result in
high-quality partitions. Nonetheless, their high computational requirements usually prevent
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their usage in big data scenarios. However, more recent advancements in both agglomerative
[42, 43] and divisive strategies [44, 45] have exposed their broad applicability and robustness.
In particular, it has been shown that, when divisive clustering is combined with integrated
dimensionality reduction [46, 47, 48], we can still get methods capable of indexing extensive
data collections. In contrast to agglomerative methodologies, such indexes allow fast new
sample allocation to clusters.

In more detail, several projection-based hierarchical divisive algorithms try to identify
hyper-planes that best separates the clusters. This can be achieved with various strategies,
more notably by calculating the probability distribution of the projected space and avoid
separating regions with high-density [49, 50, 51]. The latter though, oppose computational
challenges in the density calculation of each neighborhood of high density. Motivated by the
work of [52], instead of finding the regions with high density, the authors in [46, 48] try to
identify regions with low density to create the separating hyper-planes.

The dePDDP [46] algorithm builds upon "principal direction divisive partitioning" [53],
which is a divisive hierarchical clustering algorithm defined by the compilation of three crite-
ria, for the cluster splitting, cluster selection, and termination of the algorithm respectively.
These algorithms incorporate information from the projections pi: pi = u1 (di − b) , i =
1, . . . , n onto the first principal component u1 to produce the two subsequent partitions at
each step. In more detail, dePDDP splits the selected partition Pl by calculating the kernel
density estimation f̂ ′ (x;h′) of the projections pli and the corresponding global minimiser x∗
defined as the best local minimum of the kernel density estimation function. Then constructs
P l
1 =

{
di ∈ D : pli ≤ x∗

}
and P2 =

{
di ∈ D : pli > x∗

}
. Now, let P a partition of the dataset

D into k sets. Let F be the set of the density estimates fi = f̂ (x∗i ;h) of the minimisers
X∗i for each Ci ∈ P . The next set to split is Cj, with j = argmaxi {fi : fi ∈ F}. Finally,
the algorithm allows the automatic determination of clusters by terminating the splitting
procedure as long as there are no minimiser for any of the clusters Ci ∈ P .

By using techniques like the fast Gauss transform, linear running time for the kernel
density estimation is achieved, especially for the one-dimensional case. To find the minimiser,
only the density at n positions needs to be evaluated, in between the projected data points,
since those are the only places with valid splitting points. Thus, the total complexity of the
algorithm remains O(kmax (2 + kSV D) (snzna)).

Minimum Density Hyper-planes (MDH) algorithm [48] follows a similar clustering pro-
cedure, however, instead of using the First Principal Component for the calculation of the
splitting hyper-plane that minimizes the density, follows a projection pursuit formulation of
the associated optimization problem to find minimum density hyper-planes. Projection pur-
suit methods optimise a measure of interest of a linear projection of a data sample, known as
the projection index, in this case the minimum value of the projected density. Although this
is a theoretically justified approach, it is more computationally intensive mainly due to the
optimization procedure as such when either clustering efficiency is not of crucial importance
(data indexing) or computation burden limit applicability, the dePDDP approach can be
consider as a satisfactory approximation of MDH.
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4. The Proposed Ensemble Methodology

The concept proposed in [34] showed that an ensemble learning predictor based on dif-
ferent clustering outcomes can improve the prediction accuracy of regression techniques.
The performance gains are associated with the change in locality features when training
prediction models for individual clusters, rather than the whole dataset. Different clustering
outputs P are retrieved by providing various k values to the k-means clustering algorithm
increasing the diversity of the outcomes. For k = 1 . . . L we retrieve L Pk individual parti-
tionings. Then for each cluster Ci

k ∈ Pk with i = 1 . . . k and k = 1 . . . L, a model is trained.
The final predictions for each data point are calculated by averaging amongst the predicted
values retrieved by the models that correspond to the clusters Ci

k that falls within. Selecting
a cutoff L for k (how many individual partitionings Pk should be calculated) is not clear
but data dependent heuristics can estimated.

There is a crucial trade-off, however, for this methodological framework with respect to
the computational complexity, imposed by the number of predictors that need to be trained.
Even though each model is trained upon a subset of the original dataset, we still need to train
L×(L+1)

2
predictors. As a result, the computational complexity expresses exponential behav-

ior. Large scale prediction tasks similar to the one studied here can prohibit the extensive
utilization of this concept in particular when combined with computationally demanding
predictors such as Neural Networks and Support Vector Machines.

In this work, motivated by recent advantages in projection-based divisive hierarchical
algorithms, we proposed an ensemble algorithmic scheme able to surpass the aforementioned
computational burden while retaining prediction benefits. The key idea is to generate the L
partitionings by iteratively expanding a binary tree structure. Divisive clustering algorithms
allow us to stop the clustering procedure as long as the predefined number of clusters k has
been retrieved. Then to retrieve the partitioning for k = k + 1 we only need to split one of
the leaf nodes. In practice, all partitionings L can be retrieved by a single execution of the
algorithm where k is set to the threshold value L. By monitoring the order of binary splits
we retrieve P constituted by the individual partitionings that correspond to the k = 1 . . . L
values. Arguably, we sacrifice some of the diversity between the individual partitionings Pk

since each two consecutive partitionings only differ with respect the portion of the dataset
that constitutes the selected for splitting leaf node, but simultaneously benefit greatly by
only having to train 2L + 1 models. Again, to provide the final prediction for each data
point we need to average the predicted values retrieved by the models that correspond to
the clusters Ci

k. This means that we need to combine information retrieved by the nodes
(clusters) appearing along the path each sample followed from the root node (containing
the full dataset) the the leaf node that lies within. Note that this divisive structure not
only allow us to interpret the ensemble procedure, but it is also strait forward to efficiently
assign new observations to the tree structure providing the corresponding predictions for
new arriving samples.
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Algorithm 1: Clustering for Ensemble Prediction Framework
Result: Hierarchical Clustering for Ensemble Prediction (HCEP)
Given D and L the maximum number of clusters;
Cluster(D,L); Extract the L partitionings PL;
Given Trainset and Testset;
for k = 1 : L, step = 1 do

foreach "i" cluster in Pk do
Let tri ⊂ Trainset be the collection of training samples ∈ "i";
Train a Prediction Model PMk

i using tri;
end

end
foreach Sample "n" in Testset do

Find i, k for which n ∈ Ck
i ;

Predict the response variable ŷ based on PMk
i ;

"count" = Number of Ck
i clusters;

end
Average the "count" ŷ predictions;

In Algorithm 1 we present the complete proposed algorithmic procedure entitled "Hier-
archical Clustering for Ensemble Prediction (acronym: HCEP)". In summary, the first step
is to execute the projection based divisive clustering algorithm of choice and retrieve the
complete resulting binary clustering tree. Keep in mind that the response variable is not
talking into account for this step, as such, this is an unsupervised procedure.Then for each
node of the tree we train the selected prediction algorithm based only on samples belong-
ing to the train set. For every sample belonging to the test set we can now provide final
predictions by averaging across the individual predictions of this particular sample retrieved
by the corresponding nodes of the tree that lies within. For each new arriving sample we
initially pass it through the tree structure until reaching the appropriate leaf node. This is
done by projecting the new sample onto the one dimensional vector retrieved for each node
of the tree and deciding whether it should be assigned at the right or the left child further
on. Then the prediction mechanism is applied as before.

4.1. Naive Clustering for Prediction
We are also interested in investigating the effectiveness of clustering in prediction when

used as a single pre-processing step [33]. We expect that the characteristics of the ATHLOS
dataset employed in this work, such as its large scale and the imposed complexity by the
appearance of both continuous and categorical variables, present a unique opportunity to
expose the benefits, if any, in training individual models for sub-populations of samples
belonging to the same cluster.

In practice, this procedure can be achieved utilizing any clustering algorithm. Here we
employ both k-means and projection based divisive clustering as representatives of partition-
ing and hierarchical clustering respectively, that also allow straightforward allocation of new
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arriving samples to retrieved clusters. The algorithmic procedure is presented in Algorithm
2. The clustering takes place initially for a given number of clusters which is subject to fur-
ther investigation, then a prediction model is trained for each cluster utilizing the respective
train samples, while for each sample in the train set, the final prediction is provided by the
model that corresponds to the cluster it lies within. The new arriving sample are initially
allocated to a cluster and then a similar procedure is followed to provide predictions. Notice
that, this procedure should be significantly more computationally efficient than the ensemble
methodology since we only need to train L models. In addition, for particular prediction
algorithms with close to exponential complexity with respect to the number of samples, we
also expect a significant computational boost against their application on the full dataset
D.

Algorithm 2: Clustering for Prediction Framework
Result: Naive Clustering for Prediction
Given D and L the number of clusters;
Cluster(D,L); Retrieve PL;;
Given Trainset and Testset;
foreach "i" cluster in PL do

Let tri ⊂ Trainset be the collection of training samples ∈ "i";
Train a Prediction Model PMi using tri;

end
foreach Sample "n" in Testset do

Find i for which n ∈ Ci;
Predict the response variable ŷ based on PMi;

end

5. Data Description and Pre-processing

The ATHLOS harmonized dataset [54] includes European and international longitudi-
nal studies of aging. It contains more than 355,000 individuals who participated in 17
general population longitudinal studies in 38 countries. We specifically used 15 of these
studies, which are: 10/66 Dementia Research Group Population-Based Cohort Study [55],
the Australian Longitudinal Study of Aging (ALSA) [56], Collaborative Research on Ageing
in Europe (COURAGE) [57], ELSA [58], Study on Cardiovascular Health, Nutrition and
Frailty in Older Adults in Spain (ENRICA), [59], the Health, Alcohol and Psychosocial fac-
tors in Eastern Europe Study (HAPIEE), [60], the Health 2000/2011 Survey [61], HRS [62],
JSTAR [63], KLOSA [64], MHAS ([65]), SAGE [66], SHARE, [67], the Irish Longitudinal
Study of Ageing (TILDA) [68] and the the Longitudinal Aging Study in India (LASI) [69].

The aforementioned studies consist of 990,000 samples with more than 355,000. The
dataset contains 184 variables, two response variables, and 182 independent variables. Re-
sponse variables are the raw and the scaled Healthstatus scores of each patient. Regarding
the independent variables (see supplementary material sheet S1), nine variables were re-
moved including various indexes (sheet S2), 13 variables were removed including obviously
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depended variables that cannot be taken into account (sheet S3), and six variables were re-
moved including information that cannot be considered within the prediction scheme (sheet
S4). Furthermore, the 47 variables (sheet S5), which originally calculate the HS score [12]
are excluded. No only, these features create a statistical bias regarding the HS, which is the
response variable in our analysis, but also, in this work we aim to uncover new insights for
external variables that have previously been considered not significantly relevant. Removing
any samples for which the HS metric is not available, the resulting data matrix is constituted
by 770,764 samples and 107 variables.

To this end, we have to deal with the critical step of missing value imputation. For this
purpose we utilized the Vtreat [70] methodology, a cutting-edge imputation tool with reliable
results. Vtreat is characterized by a unique strategy for the dummy variables creation which
resulted to the construction of 458 dummy variables in total. Next a significance pruning
process step took place where each variable was evaluated based on its correlation with the
HealthStatus score (response variable).

6. Experimental Analysis

In the first part of our experimental analysis, we compare the proposed ensemble scheme
based on Projection Based Hierarchical Clustering (HCEP) against the original one, based
on k-means partitioning clustering. We also examine if there are any benefits when compared
against the naive clustering for prediction scheme presented in Section 4.1, utilizing both
aforementioned clustering approaches. For this set of experiments the divisive algorithm of
choice is dePDDP, while the maximum number of clusters L is set to 40, a value greater
than the average optimal number of clusters retrieved by dePDDP, to effectively examine
the methodology’s behaviour. For every run of k-means and dePDDP the number of clusters
k is given as input. k-means is allowed to choose the most appropriate convergence amongst
10 random initializations [71, 72], while for dePDDP the "bandwidth multiplier parameter"
is set to 0.05, a relative small value to guaranty enough binary splits that will lead to the
required number of leafs (clusters). Finally, to avoid highly unbalanced tree structures we
set a threshold, so that clusters with less than N/k points are not allowed to be split [73],
where N is the total number of points in the dataset. All methodologies are implemented for
"R-project", while specifically for dePDDP we utilize a native efficient implementation and
for k-means we employed the implementation provided by the “biganalytics” package called
BigKmeans [74], which benefit from the lack of memory overhead by not duplicating the
data. This choice for the employed clustering algorithms is based not only on their satisfying
performance but also on their simplicity and the structural ability to create an index that
can be used to allocate future observations. For dePDDP each new instance pushed into the
tree until it reached the respective leaf node. For the Kmeans algorithm, we allocate every
instance of the testing set to the closest cluster by calculating the minimum distance to the
cluster centroids.

For the prediction task, we employ the traditional Linear Regression (LR) and Random
Forests (RF). Again, the default parameter values are those provided by the corresponding
implementations found in [75]. For RF, we used 50 trees to guaranty its low computational
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complexity, due to restrictions imposed by hardware capabilities, and the Mtry variable was
defined as p/3, where p are the number of variables. The regression performance is evaluated
with respect to the Root Mean Square Error and the R-squared (RSQ). The mean squared
error (MSE) is a measure of an estimator’s quality, with values closer to zero indicating better
performance. The MSE is the second moment of the error. Thus, it incorporates both the
variance of the estimator (how widely spread the estimates are from one data sample to
another) and its bias (how far off the average estimated value is from the truth). MSE has
the same units of measurement as the square of the quantity being estimated. In an analogy
to standard deviation, taking the square root of MSE yields the root-mean-square error
RMSE [76]. R-squared (R2) is a statistical measure that represents the proportion of the
variance for a dependent variable that’s explained by an independent variable or variables
in a regression model.

R2 = 1− UnexplainedV ariation

TotalV ariation
(1)

R-squared explains to what extent the variance of one variable explains the variance of the
second variable. So, if the R2 of a model is 0.50, then approximately half of the observed
variation can be explained by the model’s inputs.

The results with respect to the RMSE metric regarding the prediction of Health Status
are reported in Figure 1. To achieve robust validation of the results while maintaining rea-
sonable execution times, we utilize a bootstrapping technique by randomly sampling 50000
samples for training and 1000 samples for testing with replacement [77]. The procedure is
repeated 10 times with different subsets for training and testing respectively. Then, we esti-
mate each model’s performance by computing the the average score and the corresponding
standard deviation. These are reported using line plots for mean values and shaded ares for
standard deviation respectively. The top row of figures corresponds to the naive methodol-
ogy while the bottom row corresponds to the ensemble approaches respectively. For both
cases we report the performance of the catholic models indicated by the straight purple
shaded area, parallel to axes X. Orange and Green shaded areas indicate the performance of
kmeans and dePDDP algorithms respectively, when combined with either Random Forests
(left column) or Linear regression (right column). Notice that performance is reported with
respect to the number of clusters (X axes). For the Naive methodology each number of clus-
ters L correspond to the RMSE value retrieved for this particular value of L, while for the
ensemble models for each L value we observe the RMSE resulting by aggregating predictions
for k ∈ 1 · L.

In Figure 1 we observe a performance boost compared to the catholic regression models
that is more evident and robust for the ensemble methodologies (Algorithm 1). For up to
20 clusters the naive models also appear to improve prediction performance, at least when
utilizing RF, but when k-means is selected for clustering there is no consistency. For the
ensemble models best performance is achieved by k-means when combined with RF, while
the opposite holds for linear regression. Finally, utilizing dePDDP result in a monotonic
behaviour regarding prediction performance in both cases in contrast to k-means. Similarly
to the naive models, we observe a behaviour indicating an empirical threshold regarding the
number of clusters parameter. This is most likely due to over-fitting since for a high enough
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Figure 1: RMSE metric results with respect to the Health Status response variable’s prediction for Random
Forests (first column) and Linear Regression (second column) as base regression models. Circular points
with continuous red lines represent the results (vertical axes) when bigKmeans algorithm is utilized while,
triangular points with blue dashed lines represent the results for dePDDP respectively. Each row of plots
depicts the clustering for prediction different strategies. Naive methodology (first row), and Ensemble on
ascending range of clusters (second row). The horizontal purple shaded area represents the corresponding
values for the catholic models (training a single predictor in the entire dataset). Mean values are reported
according to the utilized bootstrapping, while colored ribbons present the standard deviation between the
experiments.

number of retrieved clusters, we expect to end up with clusters characterized by low sample
size compared to the number of variables.

Having concluded that the HCEP framework is able to enhance prediction performance
compared to the catholic models and the naive approach, we are also interesting to examine
the computational burden. Figure 2 is devoted to the computational time comparisons. As
expected, the naive approach can reduce computational at least for complex method such
as RF that are greatly affected by samples size. More importantly, we observe the computa-
tional complexity comparison between the ensemble approaches, justifying the utilization of
the proposed method. It is evident that consistent prediction power benefits can be achieved
with minimal computational overhead. Notice here, that the aforementioned computational
times for RF have been achieved by implementing a parallel execution strategy accommo-
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Figure 2: Computational cost in seconds utilizing Random Forest (first column) and Linear Regression
(second column) prediction models respectively. Circular points with continuous red lines represent the
results (vertical axes) when bigKmeans algorithm is utilized while, triangular points with blue dashed lines
represent the results for dePDDP respectively. Each row of plots depicts the clustering for prediction different
strategies. Naive methodology (first row), and Ensemble on ascending range of clusters (second row). The
horizontal purple shaded area represents the corresponding values for the catholic models (training a single
predictor in the entire dataset). Mean values are reported according to the utilized bootstrapping, while
colored ribbons present the standard deviation between the experiments.

dated by the "foreach" package [78]. Experiments took place on a PC with Intel i9 processor
and 32 GB of RAM running the Ubuntu Linux operating system.

6.1. Extended Comparisons
In what follows, we evaluate the performance of the proposed HCEP methodology com-

paring it with additional well-established and state-of-the-art regression models in predicting
Health Status using the same bootstrapping technique. In detail, six regression models have
been applied, namely, the Linear Regression (LR) model, the Random Forests (RF) regres-
sion, the k nearest neighbors (kNN) regression, the XGboost [79], and two Deep Neural
Network architectures (DNN1 and DNN2).

Briefly, in in kNN regression, the average of the HS values of the five Nearest Neighbors of
a given test point was calculated. The RF regression performs the RF process by calculating
the average of all trees’ output in the final prediction for each test sample. We applied 100

13



RMSE (std) R^2(std)
LR 0.6753074(0.01462793) 0.5420653(0.02738484)
RF 0.6851586(0.01815245) 0.5551348(0.02472105)
XGboost 0.6937884(0.0138055) 0.5494156(0.02426911)
KNN 0.7858604(0.01970342) 0.4205703(0.02504982)
DNN1 0.8684625(0.1617978) 0.3141839(0.04579206)
DNN2 0.855521(0.1716965) 0.3082769(0.03162947)
ENS-LR-dePDDP 0.6774225(0.04522381) 0.5505334(0.06650373)
ENS-LR-Kmeans 0.6783292(0.02592916) 0.5516001(0.02380914)
ENS-RF-dePDDP 0.6671423(0.01575666) 0.5659424(0.02244701)
ENS-RF-Kmeans 0.6583103(0.01672183) 0.577264(0.02440015)

Table 1: Table presenting the mean RMSE and R2 for different regression models. The models presented
are: Linear Regression (LR), Random Forrests (RF), XGboost, Deep Neural Network with 1 (DNN1) and
2 (DNN2) hidden layers, Hierarchical Ensemble method (HCEP) using Linear Regression or RF based on
dePDDP (ENS-LR-dePDDP and ENS-RF-dPDDP respectively) and ensemble method using Linear Regres-
sion or RF based on k-means (ENS-LR-Kmeans and ENS-RF-Kmeans respectively). In parentheses are the
Standard Deviation of the metrics across their 10 individual executions)

trees and the and the Mtry variable was defined as √p, where p are the number of variables.
Extreme Gradient Boosting (XGBoost) is a cutting-edge classifier based on an ensemble of
classification and regression trees [79]. Given the output of a tree f(x) = wq(xi) where x is
the input vector, and wq is the score of the corresponding leaf q, the output of an ensemble
of K trees will be: yi =

∑K
k=1 fk(xi).

The first DNN (DNN1) is constructed with two hidden layers of 100 neurons and one
output layer of one neuron, and the second (DNN2) with one hidden layer with 100 neurons.
The ReLU activation function is utilized in hidden layers to control the gradient vanishing
problem. The Backpropagation (BP) training algorithm is applied with the learning rate
defined as 0.001. We selected these two DNN architectures to deal with both the under- and
over-fitting challenges of ATHLOS dataset.

The results are summarized in Table 1. For both ensemble methods we chose to present
the values when the maximum number of clusters is set to L = 30, which is the average
estimated value provided by dePDDP algorithm when utilized for cluster number determi-
nation with its default parameters. Notice that, computational limitations do not allow the
extensive use of traditional approaches for this purpose[80, 81], while minor variations to
this number to not alter the comparison outcome. As shown, the ensemble methodologies
outperform any other confirming the prediction enhancement assumption. More precisely,
the k-means based method combined with RF achieve the best score with respect to both
metrics. However, the proposed HCEP performs better when LR is utilized for prediction.
In general, HCEP comes second to the original k-means based scheme, something to be
expected due to the loss of diversity between clusterings as previously discussed in Section
4, however the added value of HCEP arises when considering the minimal computational
overhead.

14



6.2. Tree Visualization and Variable Importance
To visually investigate the clusterability of the dataset at hand through projection based

hierarchical clustering we utilized the implementation provided by the R package PPCI [82]
(see Figure 3). For this experiment, we utilized HCEP where the maximum number of
cluster is conveniently set to L = 4. Through the iterative 2d visualization for each node of
the tree we visually identify clear patters indicating visually separable clusters. Apparently,
the algorithms performs well in identifying clusters, confirming the prediction performance
boost we observed previously even for the naive clustering for prediction approach. Note
that, sample colouring across the tree structure is following the categorization of the 4
clusters retrieved at the leaf nodes. Finally, we may recall the HCEP procedure using this
example. For every train sample that falls in cluster 5 (see Figure 3) the predicted Health
Status score is retrieved by averaging the corresponding predictions of the models fitted for
clusters 1-3-5.

1

2

6 7

3

4 5

Figure 3: Tree structure example of the hierarchical MDH experiment. In this instance, each step of the
algorithm is presented in a top-down order with every level indicating the corresponding cut for a total of
4 clusters. The data points are colored according to the final clustering, and each subset is indicated with
numbering from 1 (original dataset) to 6 and 7 (last split producing two of the final clusters).

The straightforward interpretability of the HCEP approach motivated us to further inves-
tigate the potential of utilizing it in describing an innovating variable importance analysis.
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Notice here, that this is an uncommon task for most ensemble prediction approaches or
even impossible in many cases. For this purpose we utilized the Percentage Increase in MSE
(PiMSE) [75] metric through the Random Forests model for very node of the tree. Then
for every path from the root node to each one of the leaf nodes we investigate the PiMSE
metric of the nodes within the path since, every point in the test set will be eventually
predicted based on one of these paths. For the example at hand (Figure 3) we consider
the 10 most important variables, calculated by averaging PiMSE across all aforementioned
paths. We illustrate how these differentiate for each one of the four paths 1-3-4, 1-3-4, 1-2-7
and 1-2-6 according to the changes in PiMSE from the root to the lead nodes in Figure 4.
In more detail, each subplot depicts one of the four different paths. The PiMSE score is
presented in the vertical axes, with the horizontal axes indicating the corresponding node
in each path. Larger values in a variable indicate a greater PiMSE score, thus expressing
a more significant influence of that variable in that particular node. More specifically, the
most important variables depicted here were the "srh" (Respondent’s self-rated/self-reported
health, with ”catP”,”catN” etc. implying their transformation variables after the statistical
prepossessing), the "h-joint-disorders" (History of arthritis, rheumatism or osteoarthritis),
"depression" (Current depressive status) and "age" (Age at time of measure). One example
observation we can make through this visualization is that for 2 paths "age" significance
drops as tree depth is increasing in contrast to the other two paths for which grows, leading
to conclusions such as identifying sub-populations for which a particular variable is relevant
in predicting the response variable.

7. Concluding Remarks

Population studies for aging and health analysis offer a plurality of large scale data with
high diversity and complexity. Aging and health indicators are an important part of such
research, while predicting the health status index can be considered one of the greatest chal-
lenges. Motivated by the ATHLOS dataset’s volume and diversity we focus our attention
upon the clustering for prediction scheme, where unsupervised learning is utilized to enhance
prediction power. We show that imposed computation bottlenecks can be surpassed when us-
ing appropriate hierarchical clustering within a clustering for ensemble classification scheme
while retaining prediction benefits. In addition, we investigated in depth the interpretability
of the proposed architecture exposing additional advantages such as a variable importance
analysis. The proposed methodology is evaluated against several regression methods and
the original concept with very encouraging results, suggesting further developments in this
direction with particular interest in applications with similar characteristics. Thus a strait-
forward open source implementation is provided for the R project. The direct expansion of
the proposed methodology in classification could suggest a promising future direction, while
the utilization of random space transformations to increase diversity of ensemble schemes
[83, 84] seems also tempting.
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Figure 4: Variable importance propagation of the prediction model’s ten most influencing variables across
each node in the different paths of the tree structure.
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