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Figure 3. Segmentations and tissue saliency. In (a), sample L3 slices (first column) are shown 
for four individuals with at least 5-years follow-up after their image was acquired, with their 
corresponding segmentations generated from the segmentation model (second column). Their 
calculated risk from the traditional PCE is contrasted with the more accurate Imaging + Clinical 
fusion risk. The saliency from the imaging model is shown overlayed on the segmentation (third 
column). In (b) the distributions of observed (aggregated saliency values for each tissue type 
relative to the saliency for the image) versus expected saliency are shown for each tissue, for 1-
year (top) and 5-year (bottom) risk prediction, where expected saliency is calculated as the 
proportion of pixels corresponding to a class in the image. 
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Figure 4. Clinical only model feature importance as quantified by SHAP (SHapley Additive 
exPlanations) values for the top 10 features in the training set of the 5-year risk prediction 
cohort (a). Higher SHAP values indicate higher than expected probability of IHD as assigned by 
the model. Individual SHAP values for features with highest values for 4 individuals from the 5-
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year risk prediction cohort (b), along with the risk assigned by the clinical only model. Their PCE 
and Imaging + Clinical Fusion model risk are also shown, along with the outcome. 
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Code availability 
In order to facilitate replication of these results and further research, we will make our code and 
trained segmentation model publicly available at http://github.com/ChaudhariLab/AbCT_IHD.  

Data availability 
Our model predictions and outcome labels will be made publicly available alongside our code. 
The raw data are not publicly available due to privacy information embedded directly within the 
data. Data are available on request due to privacy or other restrictions. The data that support 
the findings of this study are available on request from the corresponding author (B.P.).  
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