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ABSTRACT 

Background: Alzheimer’s disease (AD) and depression are debilitating 

brain disorders that are often comorbid. Shared brain mechanisms have been 

implicated, yet findings are inconsistent, reflecting the complexity of the 

underlying pathophysiology. As both disorders are (partly) heritable, 

characterizing their genetic overlap may provide etiological clues. While 

previous studies have indicated negligible genetic correlations, this study 

aims to expose the genetic overlap that may remain hidden due to mixed 

directions of effects. Methods: We applied Gaussian mixture modelling, 

through MiXeR, and conjunctional false discovery rate (cFDR) analysis, 

through pleioFDR, to genome-wide association study (GWAS) summary 

statistics of AD (n=79,145) and depression (n=450,619). The effects of 

identified overlapping loci on AD and depression were tested in 403,029 

participants of the UK Biobank (mean age 57.21 52.0% female), and 

mapped onto brain morphology in 30,699 individuals with brain MRI data. 

Results: MiXer estimated 98 causal genetic variants overlapping between 

the two disorders, with 0.44 concordant directions of effects. Through 

pleioFDR, we identified a SNP in the TMEM106B gene, which was 

significantly associated with AD (B=-0.002, p=9.1x10-4) and depression 

(B=0.007, p=3.2x10-9) in the UK Biobank. This SNP was also associated 

with several regions of the corpus callosum volume anterior (B>0.024, 

p<8.6x10-4), third ventricle volume ventricle (B=-0.025, p=5.0x10-6), and 

inferior temporal gyrus surface area (B=0.017, p=5.3x10-4). Discussion: 

Our results indicate there is substantial genetic overlap, with mixed 

directions of effects, between AD and depression. These findings illustrate 

the value of biostatistical tools that capture such overlap, providing insight 

into the genetic architectures of these disorders. 
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Introduction  

Alzheimer’s disease (AD) is a highly disabling 

neurodegenerative disease characterized by memory 

loss and a gradual cognitive, functional and 

behavioral decline (1). Its prevalence increases 

rapidly with age, affecting 13% of population at age 

80, and 37% of the population at age 90 (2). 

Individuals with AD often have comorbid major 

depressive disorder (MDD), present in 22 up to 59% 

of cases (3,4), while MDD has an estimated lifetime 

prevalence of 11 to 15% in the general population 

(5). MDD is a heterogeneous disorder; in addition to 

the core symptoms of low mood, anhedonia and loss 

of energy, it comprises behavioral, physiological and 

psychological signs and symptoms that include 

changes in appetite, sleeping and psychomotor 

patterns, fatigue, lack of concentration, feelings of 

worthlessness or guilt, and suicidal ideation (6).  

It has been long discussed whether a history of 

depressive symptoms is a risk factor for later 

development of AD, or rather an early prodromal 

manifestation of AD (7,8). While bidirectional 

effects between the two disorders is likely, there is 

more evidence that midlife onset depressive 

symptoms and/or MDD are a risk factor for AD than 

vice versa (9–14). Furthermore, AD patients with 

depressive symptoms show accelerated cognitive 

decline and neurodegeneration, with significantly 

more plaques and tangles in the hippocampus than 

non-depressed individuals with AD (15), while AD 

symptom count (16) or tau pathology (17) does not 

appear to contribute to the incidence or severity of 

depressive disorders. 

Neuroimaging studies have provided scattered 

evidence that AD and depressive disorders share 

neurobiological pathways. Early stage AD is 

associated with atrophy of the hippocampus, para-

hippocampal regions (18), and temporo-parietal 

cortex (19), with atrophy becoming generalized in 

later stages of the disease, including cortical thinning 

in primary motor and sensory regions (20,21). 

Similarly, MDD and recurrent major depression 

(MD) are related to smaller hippocampal volumes 

(22–24), amygdala and parahipocampal areas (25) as 

well as lower cortical thickness in medial 

orbitofrontal cortex, fusiform gyrus, insula, rostral 

and caudal anterior and posterior cingulate cortex, 

temporal lobe in MDD (26), many of these changes 

correlating positively with the duration of the disease 

(25). In AD patients with comorbid symptoms of 

depression, MRI studies have shown specifically 

thinner cortex in temporal and parietal areas when 

comparing to non-depressed AD patients (27). 

Conjunction analysis on the brain morphological 

changes overlap between AD and late-life onset 

depression has shown that, in addition to the 

previously mentioned structures, both conditions are 

associated with hippocampal atrophy (28). Yet, the 

risk of developing AD in MDD does not seem to be 

mediated by hippocampal or amygdala volumes 

(29). 

Both AD and depressive disorders are heritable, with 

twin studies indicating 37% broad heritability for 

MDD (30) and 74% for AD (31). Molecular genetics 

studies show that both disorders have complex 

genetic architectures. AD has recently been 

characterized as oligogenic, with estimates 

indicating the involvement of relatively few genetic 

variants, in addition to the well-known, strong 

APOE-e4 risk variant (32,33). MDD on the other 

hand has been estimated to be the most polygenic of 

all major brain disorders (33), involving many 

genetic variants with small effects that explain a 

small amount of its heritability (34). Regardless, 

given the high comorbidity and indications of shared 

neurobiological pathways, substantial genetic 

overlap is to be expected, which may be leveraged to 

better understand these disorders (35). Indeed, 

several candidate gene studies have identified shared 

genetic risk factors  (36) that implicate hypothesized 

shared mechanisms, such as chronic 

neuroinflammatory changes in the brain (37). While 

negligible genetic overlap between AD and MDD 

has been reported (38,39), substantial genetic 

overlap may remain hidden from measures of global 

genetic correlation due to mixed directions of 

effects. Here, we assess the genetic overlap between 

AD and depression across the genome through tools 

that capture the extent of overlap or specific loci, 

regardless of directions of effect. This was followed-

up by analyses of the associations between shared 

loci and regional brain morphology in the UK 

Biobank (UKB) population study, providing 

valuable insights into their shared neurobiology. 

 

Materials and Methods  

 

Participants 

We made use of data from participants of the UKB 

population cohort, under accession number 27412. 

The composition, set-up, and data gathering 

protocols of UKB have been extensively described 

elsewhere (40). We selected all individuals with 

White European ancestry, as determined by a 

combination of self-identification as 'White British' 

and similar genetic ancestry based on genetic 
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principal components (UKB field code 22006), with 

good quality genetic data.  

We constructed a proxy measure of AD case-control 

status, combining information on ICD-10 diagnoses 

of dementia of the participants together with parental 

age and parental AD status, as described previously 

(41). Participants with an ICD-10 diagnosis of AD 

(F00 and/or G30) received a score of two (n=782). 

All other participants received a one-unit increase 

for each biological parent reported to have (had) AD. 

Further, the contribution for each unaffected parent 

to the score was inversely weighted by the parent’s 

age/age at death, namely (100-age)/100, giving us an 

approximate score between 0 and 2. This approach 

was taken in order to account for possible late-life 

onset AD, i.e. to minimize the labeling of individuals 

that will develop AD as controls. This proxy measure 

has been shown to be highly genetically correlated to 

AD status (rg=0.81) (41). Participants with missing 

data on any of the relevant questions were excluded 

from these analyses (n=19,332). The final sample 

size was n=390,284, with a mean age of 57.33 years 

(SD=7.49), and 52.02% was female.  

The depression phenotype utilized in this study was 

constructed by assigning case status to any UKB 

participant with an ICD10 diagnosis of depression 

(F32-34, F38-39), n=15,238, as well as any 

additional participants that answered affirmative to 

the question whether they had ever seen a general 

practitioner or psychiatrist for nerves, anxiety, 

tension or depression (UKB field codes 2090 and 

2010), during any UKB testing visit (n=159,063). 

Control status was assigned to anyone who had 

answered “no” to these questions at all testing visits. 

This definition of depression is identical to the 

“broad depression phenotype” described by Howard 

in 2018 (42) , based on a GWAS of depression in the 

UK Biobank, which reported that this definition led 

to the largest number of genome-wide significant 

hits, while still being highly genetically correlated 

with a GWAS using a strict clinical definition of 

MDD, rg=0.85 (42). We excluded anyone with any 

missing data on these questions (n=6,587). The final 

sample size was n=403,029, with a mean age of 

57.21 years (SD=7.49), and 52.02% was female.  

Our sample size for the neuroimaging analyses, 

following pre-processing as described below and 

excluding individuals with brain disorders, was 

n=30,699. As the neuroimaging data collection took 

place several years after the initial data collection, 

this subsample had a mean age of 64.32 years 

(SD=7.48), and 52.06% was female.  

Genetic data pre-processing 

We made use of the UKB v3 imputed data, which 

has undergone extensive quality control procedures 

as described by the UKB genetics team (43). After 

converting the BGEN format to PLINK binary 

format, we additionally carried out standard quality 

check procedures, including filtering out individuals 

with more than 10% missingness, SNPs with more 

than 5% missingness, SNPs with an INFO score 

below 0.8, and SNPs failing the Hardy-Weinberg 

equilibrium test at p=1*10-9. We further set a minor 

allele frequency threshold of 0.001, leaving 

12,245,112 SNPs. 

 

Image acquisition 

For the analyses involving neuroimaging data, we 

made use of MRI data from UKB released up to 

March 2020. T1-weighted scans were collected from 

four scanning sites throughout the United Kingdom, 

all on identically configured Siemens Skyra 3T 

scanners, with 32-channel receive head coils. The 

UKB core neuroimaging team has published 

extensive information on the applied scanning 

protocols and procedures, which we refer to for more 

details (44).  

The T1-weighted scans were stored locally at the 

secure computing cluster of the University of Oslo. 

We applied the standard “recon-all -all” processing 

pipeline of Freesurfer v5.3, performing automated 

surface-based morphometry and subcortical 

segmentation (45,46). From the output, we extracted 

all commonly studied global, subcortical and cortical 

morphology measures, as listed in Supplementary 

Table 1. For each of these, we summed the left and 

right hemisphere measure, if applicable, leaving a 

total of 97 brain measures.  

We excluded individuals with bad structural scan 

quality as indicated by an age and sex-adjusted Euler 

number (a measure of segmentation quality based on 

surface reconstruction complexity (47)) more than 

three standard deviations lower than the scanner site 

mean, or with a global brain measure more than five 

standard deviations from the sample mean, n=717. 

 

GWAS summary statistics 

To investigate the genetics of AD, we made use of 

the phase 1 summary statistics from a recent GWAS 

that combined samples from the Psychiatric 

Genomics Consortium (PGC), the International 

Genomics of Alzheimer’s Project (IGAP), and the 

Alzheimer’s Disease Sequencing Project (ADSP) 

(41). The phase 1 sample of this GWAS was chosen 

as it did not include any UKB participants, thereby 

preventing sample overlap with our follow-up 
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analyses in the UKB. The summary statistics 

contained 9,862,739 SNPs and was based on 24,087 

late-onset AD cases and 55,058 controls with 

European ancestry.  

For the depression phenotype of the GWAS data, we 

obtained the summary statistics from the Psychiatric 

Genomics Consortium (PGC) MDD GWAS from 

2019, including the 23andMe cohort (34). The 

construct of depression here is based on data from 

cohorts with MDD as well as self-reported 

depression, thereby closely aligning to the measure 

of depression that we constructed from the UKB 

data. We used a version of the meta-analyzed 

summary statistics where the UKB sample was left 

out, to prevent sample overlap in downstream 

analyses. This version contained 15,507,882 SNPs 

for 121,198 individuals with depression and 329,421 

controls. 

For the post-GWAS analyses, we excluded the major 

histocompatibility complex (MHC) region (chr6:26-

34MB) from both summary statistics, as well as the 

APOE locus (chr19:45 -45.8MB) from the AD 

GWAS, in accordance with recommendations (35). 

For the estimate of rg, we applied cross-trait linkage 

disequilibrium score regression (LDSR) (48). We 

further applied Gaussian mixture modelling, as 

implemented in the MiXeR tool, to the GWAS 

summary statistics, to estimate distributions of 

causal genetic variants, i.e. unobserved functional 

genetic variants that influence the phenotypes under 

investigation (49). Through MiXer, we estimated the 

polygenicity (the number of causal genetic variants 

involved) and discoverability (average effect size of 

the causal variants, as h2) of AD and depression. We 

further estimated the genetic overlap between AD 

and depression, as the number of causal variants 

shared regardless of direction of effects, through 

bivariate MiXeR. 

We conducted conjunctional false discovery rate 

(cFDR) analysis through the pleioFDR tool using 

default settings (35). We set an FDR threshold of 

0.05 as whole-genome significance, in accordance 

with recommendations 

(https://github.com/precimed/pleiofdr). 

 

Statistical analyses 

All downstream analyses were carried out in R 

v3.6.1. In all follow-up analyses, involving UKB 

data, we adjusted for age, sex and the first twenty 

genetic principal components to control for 

population stratification. For the neuroimaging 

analyses, we additionally adjusted for scanner site, 

Euler number (47), and a measure-specific global 

estimate for the regional measures (total surface 

area, mean cortical thickness or intracranial volume). 

The latter was done to ensure that we are studying 

associations with regional brain morphology rather 

than global effects. We estimated the effective 

number of independent traits in our neuroimaging 

analyses to be 51, through spectral decomposition of 

the Pearson’s correlation matrix (50). We therefore 

set an alpha of .001 for these analyses.  

Graphs were created through ggplot2 (51), and brain 

maps through ggseg (52). The code for running 

pleioFDR and MiXeR is available via GitHub, 

https://github.com/precimed/. 

 

Results  

 

Global genetic overlap 

Eighteen loci were genome-wide significant in the 

AD GWAS, which had an estimated SNP-based 

heritability, h2, of 0.05 (SE=0.01). The depression 

GWAS summary statistics contained 33 significant 

loci, with an h2 of 0.05 (SE=0.002), see Figure 1a. 

These numbers are in line with the results from the 

original GWAS studies (34,41). Using LDSC, the 

two disorders showed a negligible genetic 

correlation of -0.03 (SE=0.06, p=0.60). 

Through univariate mixture modeling, we found that 

AD has an estimated 261 causal genetic variants, 

with a discoverability of 2.1x10-4. Depression was 

estimated to involve 15,228 variants, with a 

discoverability of 6.8x10-6. In other words, 

depression was estimated to be over fifty times more 

polygenic and its genetic determinants were 

estimated to be approximately thirty times less 

discoverable than AD. Expected sample sizes 

needed to explain half of the genetic variance for AD 

was 0.5 million, for depression 10 million, see 

Figure 1b. 

Bivariate mixture modeling indicated that there were 

98 causal variants overlapping between the two 

traits, i.e. 38% of all variants for AD and 1% of all 

variants for depression, see Figure 1c. The fraction 

of concordant directions of effects for the shared 

variants was 0.44. The bivariate density plot, Figure 

1d, illustrates the presence of mixed directions of 

associations for many SNPs; some SNPs have the 

same direction of association for both traits, while 

others are positively associated with AD and 

negatively associated with depression or vice versa. 

The net result of this is a negligible negative 

correlation, despite a large proportion of AD’s causal 

variants overlapping with depression. 
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Figure 1. Genetic overlap between Alzheimer’s disease (AD) and depression. a) Miami plot, contrasting the 

observed -log10(p-values), shown on the y-axis, of each SNP for AD (top half, blue) with depression (bottom half, 

red). The x-axis shows the relative genomic location, grouped by chromosome, and the red dashed lines indicate 

the whole-genome significance threshold of 5x10-8. b) Venn diagram depicting the estimated number of causal 

variants shared between AD and depression and unique to either of them. Below the diagram, we show the 

estimated genetic correlation. c) Bivariate density plot, illustrating the relationship between the observed GWAS 

Z-values for AD (on the x-axis) and depression (on the y-axis). 
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Locus overlap 

Through conjunctional FDR analysis, we discovered 

a SNP at chromosome 7, rs5011436, located at an 

intron of the TMEM106B gene, that was significantly 

associated with both traits. We replicated this 

association with both traits using UK Biobank data; 

for AD, we found a negative relation with the 

number of copies of the C allele (B=-0.002, 

SE=6.5x10-4, p=9.1x10-4), whereas for depression 

we found a positive relation (B=0.007, SE=0.001, 

p=3.2x10-9), in accordance with the directions of 

effects as reported in the two original GWAS.  

We subsequently calculated the association of 

rs5011436 with cortical and subcortical brain 

morphology, using the neuroimaging subset of the 

UK Biobank. As shown in Figure 2, we found that 

the C allele of this SNP is significantly associated 

with higher volume of the posterior (B=0.035, 

SE=7.6x10-3, p=3.4x10-6), mid posterior (B=0.026, 

SE=7.5x10-3, p=6.6x10-4), and anterior (B=0.024, 

SE=7.3x10-3, p=8.6x10-4) sections of the corpus 

callosum, lower volume of the third ventricle (B=-

0.025, SE=6.1x10-3, p=5.0x10-6), as well as larger 

area of the inferior temporal gyrus (B=0.017, 

SE=4.8x10-3, p=5.3x10-4). 

 

Discussion  

Here we employed state-of-the-art biostatistical 

tools to improve our knowledge of the genetic 

underpinnings of the relation between AD and 

depression. In line with previous reports we have 

identified large differences in the genetic 

architecture of these disorders. We add new 

knowledge by revealing the presence of genetic 

overlap between them. We further illustrated how 

conjunctional analysis may be used to discover 

specific shared genetic loci, and substantially 

expanded on previous efforts by mapping the effects 

onto the brain in order to identify neurobiological 

mechanisms that contribute to the relation between 

these disorders. 

We found that many of the causal variants for AD 

are overlapping with depression. This partly 

contradicts the previously reported negligible 

genetic correlation between AD and MD (38), as 

well as the overall low genetic correlation reported 

between neurologic and psychiatric disorders (53). 

However, whereas genetic correlations rely on 

globally consistent directions of effects between the 

two traits under investigation, bivariate Gaussian 

mixture modelling estimates the number of causal 

variants that have an effect on both, regardless of 

directions of effects. High levels of mixed directions 

of effects is likely to be commonplace for complex 

traits such as brain disorders. This can be seen in, for 

instance, another psychiatric disorder like 

schizophrenia, which has been estimated to share 

virtually all causal variants with educational 

attainment, despite a near-zero genetic correlation 

(49).  

 

 

 

 

 

 

 
Figure 2. rs5011436 C allele relation to brain 

morphology. Brain maps showing the spatial 

distribution of Z scores. Legend color’s intensity 

shows strength in correlation. Positive correlation in 

orange, negative correlations in blue. Stars mark the 

regions that remain significant after multiple 

comparisons correction. Cortical thickness: no 

significant regions; Cortical surface area: inferior 

temporal gyrus; Subcortical volume: anterior, mid 

posterior and posterior corpus callosum, and third 

ventricle.  
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The strong heterogeneity of depressive disorders is 

likely to contribute to the mixed directions of effects 

between the two traits, which appears in 

contradiction to the high levels of reported 

comorbidity with AD. The heterogeneity of the 

depression phenotype is evident from its wide range 

of signs and symptoms and the likely existence of 

several depression subtypes. This may explain how 

the extent of genetic overlap can be large for the less 

polygenic AD, yet very small for depression, which 

fits with numerous reports that depressive disorders 

are an important predictor of AD pathology while the 

opposite is less true (15–17). We speculate that some 

depressive disorder subtypes will be shown as 

genetically more concordant with AD than others, in 

line with indications that depressive disorders 

subtypes have significantly different genetic 

architectures (54,55). The wide range of reported 

levels of comorbidity with AD across studies 

(3,4,14,16,56) may also be due to this heterogeneity, 

as they differ in defining and subtyping of 

depression. A direct investigation of the relation of 

AD comorbidity and depressive disorders subtypes, 

coupled to neurobiological data, would be valuable. 

We postulate that studies using more narrow 

depressive disorder subtypes would find lower 

polygenicity and more concordant directions of 

effects with AD for specific subtypes. 

Our use of cFDR to identify a specific locus shared 

by AD and depression is an example of how we may 

use genetics to improve our understanding of the 

neurobiology underlying the relation between these 

two disorders. The SNP rs5011436 is located in an 

intron of the gene TMEM106B, which encodes the 

transmembrane protein 106B. TMEM106B was the 

first genetic risk factor to be identified for fronto-

temporal lobar degeneration (FTLD, 57). Since then, 

it has also been reported in GWAS of  both AD (58) 

and MD (59). The protein TMEM106b is thought to 

regulate lysosomal function, with a role in the 

clearance of TPD-43 (60). Both lysosomal function 

and specifically TDP-43 are highly related with the 

pathogenesis of AD (61,62) and MD (63). 

TMEM106B expression has been shown to be 

downregulated in brains of individuals with AD (64), 

while it has been found to be upregulated in 

individuals with MD (65).  

The evidence for involvement of TMEM106B in 

both disorders is further substantiated by our 

neuroimaging analyses, indicating effects on several 

brain regions that have been tied to both AD and 

depression. In particular the corpus callosum was 

implicated by our analyses, in line with previous 

neuroimaging findings on TMEM106B (66), with 

higher volume of several callosal subregions for 

carriers of the rs5011436 c-allele, the allele that we 

found to convey risk for depression and to be 

protective for AD. MDD is associated with abnormal 

cerebral lateralization, and individuals with familial 

MDD have been found to have significantly larger 

callosal volume than individuals with non-familial 

forms of MDD (67), while AD has been repeatedly 

linked to degeneration of the corpus callosum (68). 

Thus, specific, genetically mediated, forms of 

depression have been found to have opposing 

directions of effects on the corpus callosum than 

other forms of depression and AD.   

Our estimates of heritability, polygenicity and 

discoverability highlight the complexity of the 

genetic architecture of both disorders. While twin 

studies have indicated high broad heritability of AD 

(31) and MD (30), we replicated previous findings of 

low SNP-based heritability, as captured by GWAS 

data (34,41,69). This possibly implicates an 

important role for rare variants, as well as a high 

degree of genetic and environmental interaction 

effects. Contrasting the two disorders, it is clear that 

AD polygenicity is relatively low, with a recent 

study even qualifying late-onset AD as oligogenic 

(32). Depressive symptoms on the other hand are 

highly polygenic, partly reflecting the substantial 

clinical heterogeneity which may capture a broad 

range of conditions, each likely with partly distinct 

genetic determinants (54). Regardless of these 

differences in genetic architectures, our analyses 

made clear that, with current approaches, GWAS 

sample sizes will need to reach millions of 

individuals to uncover a substantial fraction of the 

common genetic variance influencing both 

disorders. 

Our findings once again reiterate the complexity of 

the genetic architectures of brain disorders, 

highlighting the limitations of the GWAS approach. 

Our power analyses suggest that, despite tremendous 

efforts from worldwide consortia to bring together 

large samples, we are only at the very beginning of 

uncovering the genetic determinants of AD and 

depression through the standard GWAS approach. 

Clearly, more powerful biostatistical tools are 

needed, ones that better match this complexity and 

that leverage genetic signal shared across traits of 

interest (35,49,70) in order to lower the required 

sample sizes and provide more meaningful metrics. 

While approaches like Gaussian mixture modeling 

are a step in the right direction, the current 
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implementation does still suffer from oversimplified 

assumptions about the nature of the genetic 

architecture of brain disorders; AD is enriched for 

rare variants, while the MiXeR analysis focuses on 

common variants only. Further, low polygenicity 

implies a handful of large genetic effects - there is a 

bigger chance that the distribution of those effect 

sizes won't follow a Gaussian distribution, violating 

model assumptions. We are developing extensions 

of this method that will handle such characteristics.  

To conclude, in this study we provided further 

insights into the genetic relationship between AD 

and depression, providing evidence of significant 

genetic overlap, and neuropathological effects 

reflected in brain morphological changes, warranting 

further genetic research. However, it seems that the 

complex relation between AD and depression will 

require future research to employ larger sample 

sizes, cleaner phenotype definitions and further 

improvements of biostatistical tools. It will also be 

important to study interaction effects between 

genetic variants and between genetic and 

environmental factors, as well as the dynamic 

interplay between relevant factors over the lifespan. 

These all will influence the underlying biological 

mechanisms that account for the complex 

relationship between these disorders. Ultimately this 

knowledge may provide a path towards more 

effective treatments, thereby reducing the enormous 

burden that AD and depression place on patients and 

their care-givers. 
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