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Abstract 

Background: Pacing artifacts must be excluded from the analysis of paced ECG waveform. 

This study aimed to develop and validate an algorithm to identify and remove the pacing artifacts 

on ECG.  

Methods: We developed a semi-automatic algorithm that identifies the onset and offset of a 

pacing artifact based on the ECG signal’ slope steepness and designed a graphical user interface 

that permits quality control and fine-tuning the constraining threshold values. We used 1,054 

ECGs from the retrospective, multicenter cohort study “Global Electrical Heterogeneity and 

Clinical Outcomes,” including 3,825 atrial and 10,031 ventricular pacing artifacts for the 

algorithm development and 22 ECGs including 108 atrial and 241 ventricular pacing artifacts for 

validation. Validation was performed per digital sample. We used the kappa-statistic of interrater 

agreement between manually labeled sample (ground-truth) and automated detection. 

Results: The constraining parameter values were for onset threshold 13.06±6.21 μV/ms, 

offset threshold 34.77±17.80 μV/ms, and maximum window size 27.23 ± 3.53 ms.  The 

automated algorithm detected a digital sample belonging to pacing artifact with a sensitivity of 

74.5% and specificity of 99.6% and classified correctly 98.8% of digital samples (ROC AUC 

0.871; 95%CI 0.853-0.878). The kappa-statistic was 0.785, indicating substantial agreement. The 

agreement was on 98.81% digital samples, significantly (P<0.00001) larger than the random 

agreement on 94.43% of digital samples. 

Conclusions: The semi-automated algorithm can detect and remove ECG pacing artifacts 

with high accuracy and provide a user-friendly interface for quality control. 

Keywords: pacemaker, pacing artifact, ECG, signal processing 
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Highlights 

• We developed and validated a semi-automated algorithm to detect and remove pacing 

spike artifacts from a digital ECG signal. 

• The semi-automated algorithm can detect and remove pacing spike artifacts with high 

accuracy and provide a user-friendly interface for quality control. 
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Introduction 

Since the 1950s, cardiac pacing became a vital treatment modality for a growing number of 

cardiovascular patients. Innovations in cardiac pacing expanded indications for implantable 

devices capable of delivering cardiac pacing.[1] Pacemaker implantation rates increased from 

467 per million in 1993 to 616 per million in 2009.[2] In 2014, an estimated 351,000 pacemaker 

inpatient procedures were performed in the US.[2] The number of patients living with an 

implanted cardiac pacemaker is steadily growing. 

An electrocardiogram (ECG) is widely used to determine the heart rhythm and to evaluate 

the performance of pacemaker functioning, especially in emergency settings.[3] Atrial-paced and 

ventricular-paced rhythm and atrioventricular (AV) dual-paced rhythm are included in the list of 

core primary ECG diagnostic statements, endorsed by the American Heart Association (AHA), 

the American College of Cardiology (ACC), the Heart Rhythm Society (HRS), and the 

International Society for Computerized Electrocardiography (ISCE).[4]  

Notably, the ECG diagnostic standards enforced the rule that no secondary statements can 

accompany the primary diagnostic statement of paced rhythm or paced complexes.[4] The 

rule[4] stemmed from the dogma about secondary repolarization abnormalities, stating that paced 

ventricular complexes are examples of secondary repolarization abnormalities.[5] Therefore, the 

consensus is that paced ECG could only be used to diagnose paced rhythm, but, otherwise, it 

cannot be clinically useful.[5]   

Nevertheless, we,[6] and others, showed that cardiac memory could be detected during 

continued altered activation.[7] Cardiac memory is neither pure primary nor pure secondary 

repolarization abnormality.[8, 9] Spatial ventricular gradient (SVG) is independent of the 

activation sequence.[6, 10, 11] Measurement of SVG on paced ECG furnished clinically useful 
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information.[12, 13] Thus, paced ECG carries important data for meaningful analysis, which 

needs to be further studied. 

The first step in the automated analysis of paced ECG is the removal of pacing artifacts. No 

such algorithm has been previously developed that can both detect and remove a pacing spike 

artifact from the 12-lead and orthogonal XYZ ECG. This paper presents the development and 

validation of a novel semi-automated algorithm to detect and remove pacing artifacts. We tested 

the hypothesis that the newly developed semi-automated algorithm can accurately detect and 

remove pacing artifacts from a vectorcardiogram (VCG) obtained from 12-lead ECG.   

Methods 

Study population 

We analyzed data from the retrospective, multicenter cohort study “Global Electrical 

Heterogeneity and Clinical Outcomes” (GEHCO).[13, 14] The study was approved by the 

Institutional Review Boards at the Oregon Health & Science University and each participating 

institution. The study collected digital 12-lead ECG signal recorded before implantation of 

implantable cardioverter-defibrillator (ICD) or cardiac resynchronization therapy defibrillator 

(CRT-D). The present study included only patients with atrial-paced (AP), ventricular- 

(including bi-ventricular-) paced (VP), and AV dual- (including atrial and bi-ventricular) paced 

(AVP) rhythm on available digital 12-lead ECG. Only one (pre-implant) ECG per patient was 

included in this study. 

Algorithm description 

The algorithm and open-source software code written in MATLAB (MathWorks, Natick, 

MA, USA) are provided at https://github.com/Tereshchenkolab/Pacing_spike_removal. The 
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algorithm was developed using 10-second digital ECG signal with sampling rate 500Hz. The 

amplitude resolution was either 1 µV or 5 µV.  

Figure 1 shows the flowchart of the developed algorithm. First, baseline wander was 

removed from the 12-lead ECG. Then XYZ orthogonal ECG was obtained from a 12-lead ECG 

signal by using the Kors transformation matrix.[15] Once the XYZ leads were obtained, the 

vector magnitude was calculated from Eq.1. 

‖𝑣⃑𝑣‖ = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2,         Eq.1 

where ‖𝑣⃑𝑣‖ is the vector norm, and x, y, and z are the XYZ orthogonal vectors.  

Step 1. Pacing artifact onset detection 

Slope �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� was calculated for each pair of the consecutive samples on the 10-second ECG 

recording. The algorithm automatically selected the pacing artifact's onset (P1) if the following 

condition was satisfied. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

>∝𝑜𝑜𝑜𝑜,            Eq 2. 

where αon = pacing artifact onset threshold. 

Step 2. Pacing artifact offset detection 

Next, the algorithm searched for the pacing artifact’s offset. Since the vector norm is an 

absolute number, the sum of the slopes measured for each pair of the consecutive samples within 

the pacing artifact tends to zero, assuming that the pacing artifact’s offset approaches the 

baseline, which has a value close to zero. However, in practice, the pacing artifact's offset has a 

non-zero value due to the saturation effect and baseline deviation. Therefore, we assumed that 

the offset was an arbitrary positive value, which we referred to as pacing artifact offset threshold, 

αoff. Thus, the offset point (P2 ) was obtained when the following condition was satisfied. 
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∑ �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑖𝑖

𝑝𝑝
𝑖𝑖=𝑡𝑡𝑛𝑛 < 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜,          Eq. 3. 

where 𝑝𝑝 = 𝑡𝑡𝑛𝑛 + 𝑡𝑡𝑛𝑛+1 … … … … … … . +𝑡𝑡𝑝𝑝 and αoff = pacing artifact’s offset threshold. 

Step 3. Pacing artifact removal  

Once the onset (P1) and offset (P2) time points of a pacing artifact were determined, the spike 

was removed by making the signal values within the detected pacing artifact time window (P1 – 

P2) equal to the value at the adjacent time point just before P1. This was given by, 

𝑣𝑣(𝑡𝑡𝑝𝑝1, 𝑡𝑡𝑝𝑝1+1, 𝑡𝑡𝑝𝑝1+2 … , 𝑡𝑡𝑝𝑝2) = 𝑣𝑣(𝑡𝑡𝑝𝑝1−1),       Eq. 4. 

where v = signal amplitude. 

Graphic user interface  

A graphic user interface was developed that allows users to choose the threshold values from 

a given range (Figure 2). Additional user-defined parameters were included. Maximum 

amplitude defines the range of the upper limit value of the signal. Maximum window size defines 

the range of the sample points considered as the time window of the pacing spike. Re-run allows 

re-run of the algorithm recursively if a satisfactory result cannot be obtained by altering the 

thresholds several times. As shown in Figure 2, the dv/dt curve (orange) is superimposed on the 

vector magnitude plot, which helps the user check whether the maximum dv/dt falls within the 

QRS complex window.  

Validation of the automated pacing artifacts detection 

Considering the broad differences in pacing artifacts morphology and duration (because of 

differences in ECG recording equipment and implanted device manufacturer), we used 98% of 

the data (1,054 ECGs including 1,399 atrial, 7,605 ventricular, and 2,426 AV pacing artifacts) 
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for the algorithm development and 2% of the data (22 ECGs including 108 atrial and 241 

ventricular pacing artifacts) for validation. 

For validation, to obtain the ground truth, one investigator (NJ) manually labeled each 

sample on digital ECG signal as either belonging to pacing artifact (Yes) or not (No). Another 

investigator (KTH) ran an automated algorithm and similarly reported each data sample results 

as pacing artifact Yes or No. The investigators (NJ and KTH) were blinded to each other results. 

The third investigator (LGT) conducted statistical analysis.  

Statistical analysis 

Statistical analysis was performed using STATA MP 16.1 (StataCorp LLC, College Station, 

TX, USA). Continuous variables were reported as mean ± standard deviation (SD). We used the 

kappa-statistic measure of interrater agreement for two independent raters. Nonparametric 

receiver operating characteristic (ROC) analysis with a rating and discrete classification data was 

performed to calculate the area under the ROC curve (ROC AUC) and measure the automated 

pacing artifact detection's sensitivity and specificity. 

Results 

Study population 

Clinical and demographic characteristics of the study population are reported in Table 1. This 

study included heart failure patients, mostly white men. Approximately half of the patients had 

nonischemic cardiomyopathy, and one-third had diabetes. Most of the patients (70%) had CRT-

D implanted, and 30% had ICD implanted. Implanted devices were manufactured by four 

companies (Table 1), which allowed us to develop the algorithm that considered various features 
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of pacing pulses by different manufacturers. The vast majority of patients (86%) had a VP or 

AVP rhythm on analyzed ECG. An average heart rate was 70 beats per minute. 

Algorithm development and validation 

For the algorithm development, to determine the P1 and P2 thresholds, we detected and 

removed 1,399 atrial, 7,605 ventricular, and 2,426 AV pacing artifacts. Figure 3 shows a 

representative example of pacing artifacts removal from a VP VCG vector magnitude signal. 

Figure 4 shows another example where pacing artifacts were removed from an AVP VCG vector 

magnitude signal.  

From the validation dataset (n= 22 ECGs) the mean of 4 constraining parameter values were 

found as : mean maximum amplitude 146.36±76.36 μV, mean onset threshold (αon) 13.06±6.21 

μV/ms, mean offset threshold (αoff) 34.77±17.80 μV/ms, and mean maximum window size 27.23 

± 3.53 ms. 

For validation of the automated algorithm, we analyzed 110,000 digital signal samples. Each 

ECG had 5000 samples. On average, a pacing artifact occupied 9.2±3.2 samples or 18.4±6.4 ms. 

Notably, the automated algorithm detected the presence of pacing artifact with 100% accuracy, 

100% sensitivity, and 100% specificity.  

Two-by-two table (Table 2) reports an agreement between the ground truth and automated 

detection of pacing artifacts for each sample of the digital ECG data. If the automated algorithm 

had made the determination randomly (but with probabilities equal to the overall proportions), 

we would expect the agreement on 94.43% of digital samples. In fact, they agreed on 98.81%. 

The amount of agreement indicated that we could reject the null hypothesis that they were 

making their determination randomly (P<0.00001). The kappa-statistic was 0.785, indicating 

substantial agreement.  
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The automated algorithm assigned a digital sample to pacing artifact with ROC AUC 0.871 

(95% confidence interval 0.853-0.878), a sensitivity of 74.5%, and specificity of 99.6% and 

classified correctly 98.8% of digital samples.  

Discussion 

In this work, we developed and validated the semi-automated algorithm to detect and remove 

pacing artifacts from a digital ECG signal. The fully automated algorithm was perfectly 100% 

accurate in detection of a pacing artifact’s presence, and demonstrated 75% sensitivity and 100% 

specificity for the per-digital-sample automated detection of pacing artifacts, whereas a user-

friendly interface allowed additional fine-tuning and quality control of the artifact removal. 

Current ECG machines convert the analog ECG signal to digital at the front end.[16] Modern 

pacemaker's stimulus output is frequently ≤ 0.25 ms in duration. Therefore, front-end sampling 

has to be ≥ 10,000 samples per second in order to detect and represent the pacemaker’s stimulus 

output. Furthermore, contemporary bipolar pacemaker's stimulus output is usually small (2-4 

Volt). The AHA/ACC/HRS/ISCE-endorsed recommendations for the standardization and 

interpretation of the ECG[16] emphasized that ECG manufacturers should maintain the required 

front-end sampling rate for reliable and accurate detection of narrow pacemaker pulses but 

should not artificially increase pulses’ amplitude to avoid ECG’s morphology distortion. 

However, in clinical settings, the information about the front-end sampling rate and an approach 

to handling the presentation of pacemaker stimulus outputs by a specific ECG recording machine 

is not readily available. In a nonselective CRT patient population, cardiologists observed visible 

ventricular pacing artifacts in 90% and visible atrial pacing artifacts – in 70% of patients with 

paced rhythm, whereas the automated ECG reading algorithm detected only 20% of patients with 

VP rhythm, and none with AP rhythm.[17]  
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In accordance with the growing population of patients with implanted pacemakers, ICD, and 

CRT devices, the list of meaningful interpretations of paced ECG morphology is expanding. 

Acute myocardial infarction can manifest on ECG in patients with VP rhythm, although the 

sensitivity of acute myocardial infarction diagnosis on paced ECG is low.[18, 19] Left 

ventricular paced QRS width and the difference between biventricular-paced and pre-implant 

QRS width predict CRT response.[20] Our previous study showed that the addition of global 

electrical heterogeneity (GEH) ECG metrics to clinical risk factors of sudden cardiac death 

(SCD) is especially rewarding in the presence of paced rhythms.[12] In a subgroup of 

participants with VP ECG (Supplemental Table 13 in [12]), with the addition of GEH 

parameters, 33% of SCD victims were appropriately reclassified into a higher-risk category 

(from low to high risk). In contrast, only 10% were similarly appropriately reclassified amongst 

participants without a paced rhythm on ECG. Furthermore, in the VP rhythm subgroup, no SCD 

victims were inappropriately reclassified from high to low risk. The addition of GEH also 

improved SCD-specific risk prediction. The proportion of SCD decreased from 12% to 6% in the 

intermediate-risk group and increased from 15% to 18% in the high-risk group. The large 

prospective study of more than 20,000 participants with a median of 14 years of follow-up 

showed clinical usefulness of GEH measurements on VP ECG.[12]  

Therefore, there is a growing need for reliable detection of pacing artifacts and accurate 

analysis of paced ECG morphology. Particularly, while the pacing artifact detection is important 

for the diagnosis of a paced rhythm, the pacing artifact itself should be removed from the 

analysis of the paced ECG waveform. As discussed above, an ideal solution endorsed by the 

AHA/ACC/HRS/ISCE involves the oversampling at the ECG front end at ≥10,000 Hz, saving 

pacing artifacts data on a unique marker-channel, and subsequent downsampling to 500-1000Hz 
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for conventional ECG signal analysis and storage.[16] For example, the algorithm described by 

Polpetta and Banelli[21] follows the recommended approach and reports promising results.  

Unfortunately, in clinical settings, it is usually unknown which front-end algorithm is utilized 

by a given ECG machine manufacturer. If an ECG has been recorded using unknown front-end 

characteristics, signal processing is the only option. A few previous fully automated algorithms 

addressed pacing artifacts detection. Helfenbein et al.[22] developed an algorithm for pacing 

artifacts detection on a commonly used ECG signal (sampling rate 500Hz, bandwidth 0.05-150 

Hz), capitalizing on the fact that low-pass filtering broadens the pacing artifact width. The 

authors reported a sensitivity of 97.2% for detecting a paced rhythm,[22] which is lower than our 

results. Notably, the authors did not report an accuracy and algorithm performance per each 

sample of the digital ECG signal. Furthermore, widely used algorithms[22] are based on filtering 

the ECG signal, which distorts the beginning of the QRS and widens the QRS complex. The 

distortion of the QRS complex challenges the clinical use of paced QRS morphology 

measurements.[20] 

Up-to-date, our semi-automated algorithm is the only available solution for careful and 

accurate pacing artifacts removal, as required for the analysis of QRS morphology. Allowing the 

user to select the dynamic thresholds from a range of values offers the required flexibility, 

considering different pacing pulse characteristics produced by a wide range of pacemakers’ 

manufacturers. Moreover, the user can monitor spike removal's effects on the signal and choose 

an alternative set of thresholds until satisfactory results are achieved. 

Limitations 

This paper presented a semi-automated algorithm to detect and remove pacing spikes 

artifacts from ECG. However, the algorithm itself is not fully automatic. Semi-automated 
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approach is time-consuming. However, the pacing spikes from diverse patient populations and 

pacemaker settings always come with a high degree of variability, making automated dynamic 

threshold estimation challenging, though not impossible. We have to emphasize that the ideal 

approach for the analysis of paced ECG waveform morphology has to include ECG front-end 

oversampling[16], recording the presence of pacing artifacts on a separate marker-channel, and 

immediate its removat at the front end. Removal of a pacing artifact at the front end preserves 

paced ECG morphology for its subsequent analysis. Growing number of patients with implanted 

pacemaker devices and clinical needs for a meaningful analysis of paced ECG waveform[12, 13, 

20] calls for ECG manufacturers attention to handling ECG front-end manufacturing.  

Conclusions 

We developed a semi-automated algorithm to detect and remove pacing spike artifacts from 

digital ECG signal. The algorithm demonstrated its ability to detect and remove pacing spike 

artifacts with high sensitivity and specificity. 
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Table 1. Study population characteristics 

 All patients (n=454) 
Age(mean±SD), yrs 67.6±12.3 
Female, % 23.8 
White, % 81.1 
Nonischemic cardiomyopathy, % 42.4 
Hypertension, % 73.1 
Diabetes, % 33.4 
Use class I or III antiarrhythmic drugs, % 16.7 
Use beta-blockers, % 84.5 
Left ventricular ejection fraction(mean±SD), % 29.3±12.2 
New York Heart Association heart failure class I-II, % 49.3 
New York Heart Association heart failure class III-IV, % 50.7 
Single-chamber implantable cardioverter-defibrillator, % 7.5 
Dual-chamber implantable cardioverter-defibrillator, % 22.8 
Cardiac resynchronization therapy defibrillator, % 69.7 
Decice manufacturer Medtronic, % 67.7 
Decice manufacturer Guidant/Boston Scientific, % 17.5 
Decice manufacturer St. Jude/Abbott, % 13.5 
Device manufacturer Biotronic, % 1.3 
Atrial-paced rhythm, n(%) 62(13.7) 
Ventricular-paced rhythm, n(%) 282(62.1) 
Atrio-ventricular paced rhythm, n(%) 110(24.2) 
Heart rate (mean±SD), beats per minute 70.1±12.3 
QRS duration (mean±SD), ms 130.7±35.3 
Bazett-corrected QT interval (mean±SD), ms 484.0±51.3 
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Table 2. Two by two table of a per-sample agreement between the ground trith and automated 

algorithm detection of pacing artifacts 

Ground truth 

digital sample of 

the pacing artifact 

Automated algorithm pacing artifact digital sample 

assessment 

 

NO YES Total 

NO 106,192 462 106,654 

YES 853 2,494 3,346 

Total 107,044 2,956 110,000 
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Figure Legends 

Figure 1. A. Flowchart representation of the algorithm to detect and remove a pacing artifact. B. 

Representative example of a pacing artifact on vector magnitude ECG signal. 

Figure 2. Graphic user interface for pacing artifact removal. The interface allows users to input 

threshold parameters and review the output for each set of chosen parameters. 

Figure 3. Example of pacing artifact removal from a ventricular-paced VCG. A) Original 

ventricular-paced VCG vector magnitude signal. B) Detected pacing artifacts (blue) and VCG 

signal (red). C) VCG vector magnitude signal after removal of pacing artifacts. The pacing spike 

onset (𝛼𝛼𝑜𝑜𝑜𝑜) and offset (𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜) threshold values were 5 and 10 µV/ms, respectively.  

Figure 4. Example of pacing spike removal from AV-paced VCG. A) Original AV-paced VCG 

vector magnitude signal. B) Detected pacing artifacts (blue) and VCG signal (red). C) VCG 

vector magnitude signal after removal of pacing artifacts. The corresponding value of  𝛼𝛼𝑜𝑜𝑜𝑜 and 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 were 7.5 and 15.5 µV/ms, respectively. 

Figure 5. Example of pacing artifacts removal from 12-lead ECG a) 12-lead ECG with pacing 

artifacts. b) 12-lead ECG trace after pacing artifacts removal. 
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Figure 1: 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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