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Abstract

Forecasting with accuracy the evolution of COVID-19 daily incidence curves is

one of the most important exercises in the field of epidemic modeling. We examine

the forecastability of daily COVID-19 cases in the Italian region of Lombardy using

Dynamic Model Averaging and Dynamic Model Selection methods. To investigate

the predictive accuracy of this approach, we compute forecast performance metrics

of sequential out-of-sample real-time forecasts in a back-testing exercise ranging

from March 1 to December 10 of 2020. We find that (i) Dynamic Model Averag-

ing leads to a consistent and substantial predictive improvements over alternative

epidemiological models and machine learning approaches when producing short-run

forecasts. Using estimated posterior inclusion probabilities we also provide evidence

on which set of predictors are relevant for forecasting in each period. Our findings

also suggest that (ii) future incidences can be forecasted by exploiting information

on the epidemic dynamics of neighboring regions, human mobility patterns, pollu-

tion and temperatures levels.
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1 Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic produced by the Severe Acute

Respiratory Syndrome Corona Virus (SARS-CoV-2) pathogen is likely to have been the

most disruptive shock to our societal organization since the World War II, threatening

both, the health systems and the functioning of the economy (WHO, 2020; IMF, 2020).

In this regard, during the health-crisis posed by the COVID-19, one of the most relevant

and pervasive problems from a policy-making point of view has been the inability to

anticipate with accuracy the evolution of the epidemic and its pressure exerted on health-

systems (Ioannidis et al., 2020). The negative consequence of these failed forecasts

(either over-pessimistic or over optimistic) has been a reduced government’s ability to

implement the required policies in time.

By the end of 2020, most of the world population lacks of immunity and remains

susceptible to the disease, making public health officials to be concerned with the threat

of future COVID-19 outbreaks and about the severity of future waves. In this context,

forecasting with accuracy the evolution of incidence curves is one of the most important

exercises in the field of epidemic modeling and forecasting. This is because of long-term

regional epidemic forecasts (i.e, months to years) of the COVID-19 pandemic can be use-

ful to make strategic decisions regarding the location and number of testing, treatment

facilities, or the distribution of the vaccines. On the other hand, short-term forecasts

(i.e, days to weeks) can be helpful to anticipate resources such as protective equipment,

medical ventilators, hospital beds or take the decisions an aid on the implementation

timing of lock-downs and restrictions (Chowell et al., 2020).

Epidemiologists have commonly used compartmental models to forecast the expected

epidemic disease trajectories being the most widely used one the Susceptible-Infected-

Recovered (SIR) (Kermack and McKrendrick, 1927). In the context of the COVID-

19, early SIR applications (and its variants such as the Susceptible-Exposed-Infected-

Recovered (SEIR) and Susceptible-Infected-Recovered-Death (SIRD)) to forecast the

evolution of contagion and deaths can be found in Roda et al. (2020), Anastassopoulou

et al. (2020) and Fanelli and Piazza (2020) among others. These models are based

on systems of ordinary differential equations and focus on the dynamic progression of a

population through different epidemiological states. However, an important drawback of

compartmental models is that as their complexity increases (i.e, new states are modeled),

the stronger the problem of parameter identification becomes, which can deteriorate

their forecasting performance (Korolev, 2020). In fact, as shown by (Roda et al., 2020),

in the context of the COVID-19 outbreak, predictions from complex models might not
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be so reliable when compared to those of simpler ones. For this reason, other strand

of mathematical epidemic modelers have employed to more parsimonious and simpler

phenomenological models of epidemic growth (Roosa et al., 2020a,b) to forecast the

evolution of incidence curves.1

In either case, there are critical issues that these workhorse epidemiological models

fail to account for.

First, these modeling frameworks are silent on the role played by exogenous factors

and usually neglect the effect of model uncertainty in their predictions. However, the

implementation of lock-downs (Born et al., 2020; Deb et al., 2020), the changing climate

(?; Paez et al., 2020; Rios and Gianmoena, 2020) and pollution patterns (Sciomer et al.,

2020; Yongjian et al., 2020; Wu et al., 2020), the restrictions on social mobility within

and across regions (Carteńı et al., 2020; Kraemer et al., 2020; Zhou et al., 2020) or the

laws on the use of protective equipment such as face masks or distancing measures (Mitze

et al., 2020; Wang, Y. et al., 2020a), are likely to have affected the spread dynamics of

the COVID-19. Given that it is not clear which set of factors could be part of the

data generating process, a naive approach that ignores model uncertainty may result in

biased estimates, overconfident (too narrow) standard errors and misleading inference

and predictions.2 In fact, when considering a set of K potential predictors of incidence,

researchers face a large model space formed by k = 1, . . . ,K forecasting models Mk.

This contrasts with the common practice in the field of epidemic modeling of exploiting

information on the links between few population variables and their past values within

a single model framework.

Second, the forecasting models of incidences might be subject to structural breaks

and other sources of parameter instability. Hence, the influence that different variables

or predictors could exert on contagions might be time-varying. This feature of epidemic

processes may be addressed by means of time-varying parameter models (TVPs), but

these techniques are not commonly employed in epidemic analysis.3 Kraemer et al.

(2020) shows the relevance of this point by using real-time mobility data from Wuhan

finding that mobility played a large role in the spread of the virus initially but after the

1The key advantage of phenomenological models over compartmental ones, relies on the fact that
they provide an empirical approach to the analysis of the expected trajectory of the disease, without
a specific basis on the physical laws or mechanism that give rise to the observed patterns in the data
(Chowell , 2017).

2Although restricted to the context of phenomenological models, to the best of our knowledge, only
Chowell et al. (2020) have developed an empirical approach to ensemble epidemic model forecasts within
the context of various phenomenological models.

3Rare exceptions using time-varying parameter compartmental models in the field of epidemics are
Cakmakli and Simsek (2020) or Ferrari et al. (2020).
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implementation of control measures, the correlation between infection growth rates and

mobility dropped significantly.

Finally, a problematic issue that needs to be accounted for when forecasting COVID-

19 is that the best forecasting model at time t, M∗k,t, can quickly become obsolete due

to rapid changes in the factors driving transmission rates (i.e, environmental factors,

behavioral changes in the population and/or by government interventions). For example,

it is possible that the best predictors and models to explain accelerations are different

to those that perform well during phases of slowdown. Likewise, it may also be optimal

to use many predictors at some points in time but only a few of them at others.

Thus, to account for both, (i) the uncertainty regarding the inclusion of the many

potential drivers of infections forming model specifications at each date and (ii) the

variation over time of the parameters when forecasting the spread of COVID-19, we

employ Dynamic Model Averaging (DMA) and Dynamic Model Selection (DMS) meth-

ods developed by Raftery et al. (2010) and popularized by Koop and Korobilis (2012)

in the field of macro-econometrics. DMA/DMS approaches have some advantages with

respect current epidemic modeling and forecasting frameworks. In DMA, the weight of

a model in a particular period is directly connected with the model predictive likelihood

based on past information, while DMS selects the model with the highest probability

at each time. Thus, the DMA or DMS approaches seem ideally suited for the problem

of COVID-19 forecasting, since they allow for the forecasting model and the coefficients

to evolve over time, thereby capturing rapid changes in the effects of the potential

determinants COVID-19. Moreover, this data-driven approach involve only standard

econometric methods for state space models such as the Kalman filter, while achieving

important gains in computational efficiency.

We contribute to the growing literature of epidemic modeling and forecasting by

adopting the DMA and DMS frameworks to forecast COVID-19 outcomes. To the

best of our knowledge, this is the first study applying DMA and DMS approaches to the

context of regional COVID-19 forecasts, and the only one covering the full history of the

COVID-19 pandemic and not specific sub-samples. Specifically, we perform an exercise

of sequential out-of-sample real-time short-term forecasts using daily incidence data from

March 1 to December 10 of 2020. We take the Italian region of Lombardy as our testing

ground for two reasons. Lombardy was not only the epicenter of the COVID-19 pandemic

in the western world during the first wave, but it has also been one of the European

regions that has been hard hit the most by the COVID-19 pandemic during the second

wave. This time pattern has been caused by explosive paths and abrupt changes in the

transmission of the disease. Hence, the historical epidemic path in Lombardy makes

3
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the task of forecasting with accuracy the figures of this region specially challenging. A

second reason is that the Italian Civil Protection Ministry provides longer time-series

and more reliable and homogeneous data in the key regional magnitudes of the epidemic

than other countries (Morettini et al., 2020).4

Using epidemic data for Lombardy, we show that DMA/DMS methods combining

time-varying parameters with the information contained in a large set of models have

the potential to improve the forecast accuracy of the new cases series when compared

to other competing models used in the fields of epidemiology and machine learning.

2 Data

2.1 The evolution of COVID-19 incidences in Lombardy

The indicator to capture the dynamics of COVID-19 under scrutiny in this analysis

is the time series of new cases or the daily incidence, which was collected between

February 24, 2020 to December 10, 2020 from the Italian Ministry of Civil Protection

(MCP) website. Hence, the considered time series consisted of 291 observations.

Panel (a) of Figure (1), plots the daily incidence curve of Lombardy from Feb 24 to

December 10, whereas panel (b) plots the relative share of new cases and cumulative

incidences with respect the country’s aggregate. Panel (a) reveals the spread of the

COVID-19 in Lombardy has two distinct phases. The first wave covers the period

ranging from February 24 to the end of July of 2020. This period is characterized by an

explosive growth path until the 21 of March, where it reached a peak with 3,252 cases.

After peaking, new incidences experienced a strong and sustained reduction. The second

wave spans from August 2020 to December 2020, peaking on November 7 with 11,490

cases. An issue is that the raw data curve plotted in Panel (a) of Figure (1) is quite noisy

given that government statistics on incidences have been affected by changes in testing

intensity and weekend reporting delays. These recording delays and corrections in the

logging of cases introduce administrative noise. Therefore, to minimize noisy signals,

we work with the 7-days moving average of the number of new cases depicted in Panel

(a) of Figure (1).

4An example of issues when registering and compiling data in a similarly affected, developed and
decentralized country is that of Spain. As explained by the New York Times (2020), Spain has been
implementing a number of methodological changes for logging deaths and cases, leading to fluctuations
in its statistics and frequent revisions of data.
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Figure 1: The dynamics of COVID-19 in Lombardy

(a) Incidences

(b) Relative share with respect the country
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Panel (b) of Figure (1) shows that Lombardy, with only a 16% of the total Italian

population, was the epicenter of the pandemic in Italy during the first month of the out-

break, accounting approximately the 50% of the new and cumulative contagions. From

May 2020 to the end of September 2020, the cumulative share of incidences with respect

the country’s total, remained close to the 40% threshold. However, from September

2020 onwards, even if the incidence of Lombardy increased at a high path due to the

unfolding of the second epidemic wave, other Italian regions where also highly affected,

which explains the decrease in the Lombardy’s share.

2.2 The predictors of the COVID-19 spread

There is no established forecasting model for the evolution of COVID-19 incidence.

Thus, we now briefly review the literature analyzing the potential drivers of COVID-19

dynamics, and provide a brief justification for their consideration as driving forces be-

hind the accelerations and slowdowns in the observed incidences. These factors capture

variations in broader groups of determinants, namely: (i) epidemic dynamics, (ii) human

mobility (iii) climatic conditions, (iv) environmental pollution and (v) health policy and

containment measures. Table 1 presents the detailed definitions and sources of all the

predictors used in the paper while additional information on the data set construction

is included in the Appendix A.

2.2.1 Epidemic Dynamics

The first metric used to investigate the evolution of the COVID-19 incidence in

Lombardy is the (1) effective instantaneous reproductive number (Rt), which measures

the average number of secondary cases per infectious case in a population made up of

both susceptible and non-susceptible hosts (assuming that conditions remain identical

after that time). In addition to the reproductive number, and in order to account for

the possibility of importing cases from neighboring regions (Charaudeau et al., 2014;

Andersen et al., 2020; Krisztin et al., 2020), we introduce (2) the average incidence in

neighboring regions. This allows us to capture spillover/neighboring effects given that

the mobility of infected individuals between regions may have contributed to the spread

of the disease across borders.
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2.2.2 Human Mobility

In the context of SARS-CoV2, which is propagated among people via small airborne

micro-droplets (also commonly referred to as “aerosols”), larger respiratory droplets

(which fall close to where they are expired) and direct contact with contaminated sur-

faces (fomites), a higher level human mobility reflects increased social interactions and

possibilities of transmission (WHO, 2020). For this reason, higher citizen mobility has

been shown to accelerate the diffusion of the virus among the population in a num-

ber of studies (see Ayyoubzadeh et al., 2020; Carteńı et al., 2020;Kraemer et al., 2020;

Chernozhukov et al., 2020; Zhou et al., 2020 among others). To exploit the link between

individual mobility/ and the subsequent spread of the COVID-19 virus in our forecasting

exercise, we rely on regional-level mobility data of Lombardy provided by the Google

Mobility Reports. Specifically we employ mobility measurements on (3) Workplaces,

(4) Transit stations, (5) Residential areas and (6) Parks.

2.2.3 Climate

Disease agents and their vectors have specific environments that are optimal for

growth, survival, transport, and dissemination, and climatic conditions define such en-

vironment (WHO, 2005; Makinen et al., 2009). The reason is that climate factors may

affect not only the susceptibility conditions of the host by decreasing metabolic func-

tions and defense barriers (Lowen and Steel, 2014), the physical properties of the virion

envelope and its stability, but also the efficiency of the different routes of viral transmis-

sion (Duan et al., 2003; Van Doremalen et al., 2020). In the context of the COVID-19

epidemic, a large body of literature already exists suggesting epidemic curves are influ-

enced by climate (see, Qi et al., 2020; Paez et al., 2020; Rios and Gianmoena, 2020).

Using data from the NASA POWER v8 database we model climate effects by means of

(7) the mean temperature 2 meters above the surface, the (8) relative humidity and the

(9) level of ultra-violet (UV) solar radiation.

2.2.4 Pollution

Air pollution may exacerbate the vulnerability of populations to respiratory virus

infections (Sciomer et al., 2020). As regards the evolution of the COVID-19 epidemic,

different authors have hypothesized that another channel for a positive link between

COVID-19 incidence and pollution is that airborne pollution particles may have been
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able to serve as carrier for the pathogen (Yongjian et al., 2020; Wu et al., 2020; Zoran

et al., 2020). In fact, in the Italian context, there is evidence that suspended particulate

matter pollution correlates positively with contagions and subsequent health damages

(Fattorini and Regoli, 2020; Conticini et al., 2020). To use this potential source of pre-

dictability, we use daily air quality data taken from the European Environment Agency

EEA. To measure the level of regional pollution, we employ a (10) Pollution Matter

(PM) composite index aggregating PM10 and PM2.5 data. The other metric capturing

the evolution of pollution is a (11) NO2 pollution indicator.

2.2.5 Health Policy and Epidemic Monitoring

Health policy and containment measures, together with the ability to monitor its

evolution are relevant to explain the evolution of COVID-19 (Deb et al., 2020; Cher-

nozhukov et al., 2020). To model policy response effects we use a national level (12)

health policy containment composite index developed by Hale et al. (2020) which contains

information on a variety of closures, bans and restrictions. We also take into account

the (13) share of detected cases with respect the total epidemic size in the region since

the consensus of the literature is that the ability of regional authorities’ to perform tests

and detect infections in real time is central in the strategy to curve the spread of the

disease (Romer, 2020; Wang et al., 2020b).5 Finally, we employ Google Trends search

data to target keywords related to the use of (14) “face masks” as previous studies of

Lin et al. (2020) and Effenberger et al. (2020) find that online search data has predictive

potential on the evolution of the epidemic and recent meta-analysis by Chu et al. (2020)

and Liang et al. (2020) find the use of face-masks results in a large reduction in the risk

of infection.

3 Econometric Methodology

3.1 Dynamic Model Averaging

Raftery et al. (2010) develop a method known as Dynamic Model Averaging (DMA).

Later on, DMA and Dynamic Model Selection (DMS) approaches have been success-

fully employed in the field of macroeconomics (Koop and Korobilis, 2012), empirical

5For details on the estimation of the true epidemic size and the % of detected cases see the Appendix
A.
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finance (Naser, 2016, Drachal, 2016; Dong and Yoon, 2019), but also in the context of

regional house price forecasting (Bork and Møller , 2015; Wei and Cao, 2017) by showing

markedly improvements in forecasting accuracy with respect alternative modeling tools.

To see how DMA works, suppose that we have a set of K predictors. This implies a

model space of size 2K models, made by different combinations of these K predictors.

Denoting these models Mk for k = 1, . . . , 2K by the specific subset/combination of

regressors X(k) , our set of models can be written as:

yt = X
(k)′

t θ
(k)
t + ε

(k)
t

ε
(k)
t ∼ N

(
0, V

(k)
t

) (1)

θ
(k)
t+1 = θ

(k)
t + η

(k)
t

η
(k)
t ∼ N

(
0,W

(k)
t

) (2)

where yt is the dependent variable to be forecasted. As explained before, in the context of

this study, yt are smoothed data on the daily new cases. Xt is a 1×K vector of predictors

for our dependent variables, θt is a K × 1 vector of coefficients (states), εt ∼ N (0, Vt)

and ηt ∼ N (0,Wt). The errors εt and ηt are assumed to be mutually independent at

all leads and lags. Therefore, no systematic movement in the time-varying parameters

is assumed and the changes in θt are unpredictable a priori.

In the DMA framework, Equation (1) is labeled the measurement equation,

whereas Equation (2) receives the name of transition or state equation. The mea-

surement equation allows the parameters to be time-dependent while the transition

equation determines the movement of the parameters. The conditional variances Vt and

Wt are unknown quantities associated with the measurement equation and the states

equation.6

Let Lt ∈
(
1, 2, . . . , 2K

)
denote which model Mk applies at each time period, Θt =(

θ1
′
t , . . . , θ

K′
t

)
and Y t = (y1, . . . , yt)

′. Thus, if Lt = k, the process is governed by model

Mk at time t. The fact that different models hold at each time, and we will do model

averaging, justifies the terminology “dynamic model averaging”. When forecasting time

t variables using information through time t−1, DMA involves calculating the probability

6As explained by Raftery et al. (2010), if Wt = 0 for t = 1, . . . , T then θt will be constant, so that
this model nests fixed parameter linear regressions parameters. It should be noted that ultimately, the
variation in the regression coefficients captured by θt depends on the data.
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Pr
(
Lt = k|Y t−1) for k = 1, . . . , 2K and averaging forecasts across the 2K potential

models formed by combinations of predictors using these probabilities.

In this setting, the evolution of models over time can be determined by a 2K ×
2K transition probability matrix, P , determining how predictors enter/leave the model

with elements pk,l = Pr (Lt = k|Lt−1 = l) for k, l = 1, . . . , 2K . Nevertheless, unless

the number of predictors K is very small the transition probability matrix P will have

so many entries that inference will be imprecise and computation slow, rendering a

full Bayesian approach to DMA quite difficult (Koop and Korobilis, 2012). Thus, the

fundamental challenge of the modeling approach given by Equations (1) and (2) is how

to compute the evolution of models over time. To achieve a feasible computation, we

follow Raftery et al. (2010) and Koop and Korobilis (2012), who propose an approach

that involve two forgetting factors α and λ, which are fixed to numbers slightly below

one and help to produce an evolution of parameter estimates and model probabilities

based on age-weighted data.

In our model setup the underlying state is characterized by the pair (Θt, Lt) and the

probability distribution of (Θt, Lt) is given by:

p (Θt, Lt) =

2K∑
k=1

p
(
θ
(k)
t |Lt = k

)
p (Lt = k) (3)

which will be updated each time as new data becomes available. The estimation of our

state space multi-model framework uses an adaptive strategy based on the Kalman filter

and consists of a prediction and an updating step for both, parameters and models. We

begin by describing (i) the prediction and updating steps of the parameters and then

we move to the one of (ii) the models.

Specifically, the Kalman filtering estimation begins with the result that:

p
(
Θt−1, Lt−1|Y t−1) =

2K∑
k=1

p
(
θ
(k)
t−1|Lt−1 = k, Y t−1

)
p
(
Lt−1 = k|Y t−1) (4)

where θ
(k)
t−1|Lt−1 = k, Y t−1 ∼ N

(
θ̂
(k)
t−1,Σ

(k)
t−1|t−1

)
Then, the filter proceeds by predicting θ

(k)
t|t−1 using all information available up to
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time t− 1,
(
Y t−1 = y1, . . . , yt−1

)
as:

p
(
θ
(k)
t|t−1|Lt−1 = k, Y t−1

)
∼ N

(
θ̂
(k)
t−1|t−1,Σ

(k)
t|t−1

)
(5)

where the variace-covariance matrix of the states at period t conditional on the infor-

mation at t− 1 is:

Σ
(k)
t|t−1 = Σ

(k)
t−1|t−1 +Wt (6)

Raftery et al. (2010) propose to avoid the estimation or simulation of Wt and simplify

Equation (6) by using:

Σ
(k)
t|t−1 =

1

λ
Σ
(k)
t−1|t−1 (7)

where Σ
(k)
t|t−1 denotes the covariance matrix of θ

(k)
t and 0 ≤ λ ≤ 1. 7 The value of

the forgetting factor λ determines how rapidly the parameters of the model evolve (i.e,

a high value of λ implies a higher stability, whereas a low value of λ produces rapid

changes in the parameters).8

In a second step, the parameters are updated as follows:

θ̂
(k)
t|t = θ̂

(k)
t|t−1 + Σ

(k)
t|t−1X

(k)′

t

(
V

(k)
t +X

(k)
t Σ

(k)
t|t−1X

(k)′

t

)−1
e
(k)
t (8)

where ê
(k)
t = yt −X(k)

t θ̂
(k)
t|t−1 is the 1-period step ahead forecast error and the variance-

covariance matrix of θ
(k)
t|t |Y

t evolves as :

Σ
(k)
t|t = Σ

(k)
t|t−1 − Σ

(k)
t|t−1X

(k)′

t

(
V

(k)
t +X

(k)′

t Σ
(k)
t|t−1X

(k)
t

)−1
X

(k)
t Σ

(k)
t|t−1 (9)

The term Σ
(k)
t|t−1X

(k)′

t

(
V

(k)
t +X

(k)′

t Σ
(k)
t|t−1X

(k)
t

)−1
is usually called the “Kalman gain”,

which minimizes the posterior error covariance and is informative on how much correc-

tion we should take from measurements yt when updating the states, θt|t . High values

7Note that the employment of Equation 7 instead of 6 is equivalent to set Wt =
(
1− λ−1

)
Σ

(k)

t−1|t−1.
8The intuition of this factor is that for the estimation of the parameters in t, the observations that

are i periods old, receive a weight λi and the amount of data used for the estimate (or the window size)
is h = 1/ (1− λ). When λ = 1, θt will be constant over time whereas with λ→ 0 only the most recent
information is used for forecasting, or equivalently we allow for large structural breaks can occur.
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of the Kalman gain make the filter more responsive to recent measurements whereas in

the case of low values of the Kalman gain, the filter follows the state predictions more

closely decreasing the variability of θt over time.

Recall that to achieve a computationally feasible estimation of the time-varying

parameters and avoid the burdensome Markov Chain Monte Carlo (MCMC), we intro-

duced λ to prevent the estimation of W
(k)
t . We now proceed similarly for the model

probabilities by introducing a forgetting factor α. The model prediction equation using

the Kalman filter is illustrated by:

πt|t−1,k ≡ P
[
Lt = k|Y t−1] =

2K∑
l=1

πt−1|t−1,lpk,l (10)

However, as mentioned above, instead of specifying the transition probability matrix P

we use an approximation following Raftery et al. (2010) that replaces Equation (10) by:

πt|t−1,k =
παt−1|t−1,k∑2K

l=1 π
α
t−1|t−1,l

(11)

where α is the model probability forgetting factor, 0 < α ≤ 1, and it is interpreted in a

similar manner to λ. Equation (11) implies that if a specific combination of regressors

forming Mk forecasts well in the recent past, it will received more weight at time t.

However, the lower the value of α the lower the weight is given to models that performed

well forecasting during the past relative to models with good forecast performance last

period.9 As noted by Koop and Korobilis (2012), the main advantage of using α instead

of drawing transitions between models is that it greatly simplifies the computational

burden of the exercise since we only need πt|t−1,k and πt−1|t−1,k to proceed.

Finally, the model updating equation is defined as:

πt|t,k =
πt|t−1,kfk

(
yt|Y t−1)∑K

l=1 πt|t−1,lfl (yt|Y t−1)
(12)

9The interpretation of α becomes clear if we rewrite Equation 11 as follows:

πt|t−1,k ∝
∏t−1
i=1

[
pk
(
yt−i|Y t−i−1, . . . , 1

)]α(i)

where it can be seen that values α→ 1 will imply that πt|t−1,k will be larger at time t if it forecasts well
in the past.
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where fl
(
yt|Y t−1) is the predictive density for model l evaluated at yt given by :

yt|Y t−1 ∼ N
(
X

(k)
t θ̂

(k)
t−1, V

(k)
t +X

(k)
t Σ

(k)
t|t−1X

(k)′

t

)
(13)

Conditional on V k
t the estimation strategy discussed above only involves evaluating

previous formulae given an initializing prior for π0,0,k and θk0 for k = 1, . . . , 2K . While

Raftery et al. (2010) reccommends using a plug in method where V k
t = V k Koop and

Korobilis (2012) recommend to account for the possibility that the error variance is

changing over time. We follow Koop and Korobilis (2012) and assume V
(k)
t can be

modeled by an Exponentially Weighted Moving Average (EWMA):

V̂
(k)
t =

√√√√(1− ρ)
t∑

j=1

ρj−1
(
yj −X(k)

j θ̂
(k)
j

)
(14)

where ρ is a decay factor, and the period t + 1 forecast given data up to time t takes

the form of the following recursion:

Vt+1|t = ρV̂
(k)
t|t−1 + (1− ρ)

(
ê2t
)

(15)

where we set the value of ρ to 0.95.

Finally, note that recursive forecasting of the dependent variable in the DMA can be

done at each point in time by taking the probabilistic weighted average of all possible

models according to the probabilities πt|t−1,k:

ŷDMA
t =

2K∑
k=1

πt|t−1,kX
(k)
t θ̂

(k)
t−1 (16)

The difference of DMS with DMA is that DMS proceeds by selecting the single model

with the highest value for π∗t|t−1,k at each point in time, and simply using it for forecast-

ing. Hence, the forecast implied by the DMS procedure is given by:

ŷDMS
t =

2K∑
k=1

π∗t|t−1,kX
(k)
t θ̂

(k)
t−1 (17)
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3.2 Model Evaluation

There are many metrics for evaluating the forecast performance of a model, but the

majority of research in epidemic forecasting pays attention to producing and evaluating

point forecasts (see Roosa et al., 2020a,b; Roda et al., 2020; Chowell et al., 2020).

Point forecasts receive this high attention in the forecast evaluation process because

they are easy to compute and understand. However, focusing on point forecasts alone

in the context of epidemics has been criticized by Ioannidis et al. (2020) and Taleb et

al. (2020) on different grounds. Because of the evolution of epidemic curves is subject

to a very high uncertainty, we will employ not only point forecasts but also interval

and density forecasts to derive a variety of loss functions as evaluation criteria of the

DMA/DMS approaches.

The standard Bayesian metric for density forecast comparison is the Average of

the sum of Log Predictive Likelihoods (ALPL) (Geweke and Amisano, 2011), which

involves the entire predictive distribution and not simply point forecasts. The predictive

likelihood is the predictive density for yt given data through time t− 1 evaluated at the

actual outcome (i.e, in model Mk, the predictive density is pk
(
yt|Y t−1)).10

In addition to the ALPL we also consider the Mean Absolute Percentage Forecast

Error (MAPFE) which is defined as:

MAPFE =

∑T
τ=τ0+1

|yτ−ŷτ |τ−h|
yτ

T − τ0 + 1
(18)

where ŷτ |τ−h is the point forecast of yτ using the information available at time τ − h
where h is the forecast horizon.11.

We also compute 95% confidence interval coverage rates for each model (i.e.,the

percentage of times in which the actual number of contagions is contained in the forecast

confidence interval) as an accurate assessment of the uncertainty surrounding forecasts

is likely to be of interest for health authorities and policy-makers. A model that delivers

coverage rates which are very low when compared to alternative competing models would

underestimate forecast uncertainty. Therefore, we calculate the (iii) the 95%Prediction

10The log predictive density for the h-step ahead forecast is the logarithm of the h-period extension
of this.

11We use the value of the median forecast trajectory at each h as our point forecast, ŷτ |τ−h

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.18.21250053doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.18.21250053
http://creativecommons.org/licenses/by-nc-nd/4.0/


Interval Coverage (PIC) as:

PIC =
1

T − τ0 + 1

T∑
τ=τ0+1

I
(
yτ > LBŷτ |τ−h

)
∩
(
yτ < UBŷτ |τ−h

)
(19)

where LBŷτ |τ−h and UBŷτ |τ−h are the lower and upper bounds of the 95% prediction

intervals respectively and I is an indicator variable that equals 1 if yτ is in the specified

interval, and 0 otherwise. An issue with the PIC is that in the extreme, coverage rates of

a 100% could imply that the estimated forecast confidence intervals always contain the

actual values, but this could be at the cost of the confidence bands being so wide that

are of little practical use. Hence, to complement this metric, we rely on (iv) the Mean

Interval Score (MIS) proposed by Gneiting and Raftery (2007), which in the field of

epidemiology has also been used by Chowell et al. (2020). The MIS considers the width

of the interval as well as the coverage, with a penalty for data points not included within

the prediction intervals. Therefore, the forecaster is rewarded for narrow prediction

intervals, and he or she incurs a penalty, the size of which depends on the significance

level, if the observation misses the interval. For a significance level of the 5%, the MIS

is calculated as:

MIS =

(
1

T − τ0 + 1

) T∑
τ=τ0+1

(
UBŷτ |τ−h − LBŷτ |τ−h

)
+

+

(
2

0.05

)(
LBŷτ |τ−h − yτ

)
I
{
yτ < LBŷτ |τ−h

}
+

+

(
2

0.05

)(
yτ − UBŷτ |τ−h

)
I
{
yτ > UBŷτ |τ−h

}
(20)

4 Results

We now turn our attention to our results, which are divided in two subsections.

The first subsection investigates forecast performance by comparing DMA and DMS

forecasts with those produced by several alternative competing strategies by looking at
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the different aforementioned metrics evaluated at different horizons. As it is common in

the literature we consider short term h = 1, 3, 7 and 14 step-ahead daily forecasts.

The second of these subsections presents evidence on which variables are good for

predicting COVID-19 contagions over the time-sample considered. It presents the results

using DMA, implemented with three different configuration for forgetting factors which

involve setting (i) α = λ = 0.99, (ii) α = λ = 0.95 and (i) α = λ = 0.90, a non-

informative prior over the models (i.e, π0|0,k = 1
K for k = 1, . . . ,K so that initially

all models are equally likely) and a diffuse prior on the initial conditions of the states:

θk0 ∼ N (0, 100Ink) where nk is the number of variables in model k.

4.1 Forecasting Models and Forecast Performance Analysis

We begin to forecast COVID-19 daily incidence by using AR(1)-X type models of

the form:

yt = δt−h + φt−hyt−h + xt−hβt−h + εt (21)

where yt+h denotes the h-steps ahead daily COVID-19 incidence regressed on an inter-

cept, a time lag and exogenous predictors. We implement direct forecasts for h > 1 for

practical reasons given that iterated forecasts would require predictive simulation which

in the context of a model space of the magnitude considered here would be computa-

tionally burdensome. 12

We implement our forecasts recursively that is, using an expanding window so that

all available information at the time of the forecast is used to estimate the models. We

begin forecasting the first of March 2020, and use the periods of the 24 of February to

12However, this is at the cost of not using all available information when producing our real-time
forecasts which decreases the quality of the forecast. To clarify this, note that when forecasting in real
time at date t, h-steps ahead, we use parameter estimates that are h-periods old δ̂t−h, φ̂t−h, β̂t−h to
produce ŷt+h:
ŷt+h = δ̂t−h + φ̂t−hyt + xtβ̂t−h + εt+h

This contrasts with the common practice of previous DMA studies of Bork and Møller (2015); Koop
and Korobilis (2012), Naser (2016) or Drachal (2016) among others, where direct forecast performance
metrics are derived from an estimate of ŷt+h obtained using δ̂t, φ̂t and β̂t:
yt+h = δ̂t + yt + xtβ̂t + εt+h

However, when forecasting in real time the estimates of δ̂t, φ̂t and β̂t to predict future incidences ŷt+h
can only be used when implementing iterated forecasts and not in the context of direct forecasts.

We believe the issue of direct/iterated forecasting for h > 1 is an interesting area of research in the
context of the COVID-19, as the evidence and arguments on the superior performance of direct vs
iterated forecast provided by Marcellino et al. (2006) are based on fixed-parameter AR(1)-X models.
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the 29 of February as our first estimation period to forecast h-steps ahead. We then

add one new observation to the estimation sample and forecast h-steps ahead until the

full sample is exhausted. We use a variety of forecasting models. Note that some of

the models employed in this exercise are based on equation (21) but assume constant

coefficients (i.e, αt−h = α, φt−h = φ and so on). We now briefly describe our list of

models (for further details see Appendix B):

Dynamic Model-Averaging and Model-Selection

• DMA: Dynamic Model Averaging. Uses model probabilities as weights to compute the

average forecast as in Raftery et al. (2010) and Koop and Korobilis (2012). We employ

three different configurations, by setting the forgetting factors to (i) α = λ = 0.99, (ii)

α = λ = 0.95 and (iii) α = λ = 0.90. We set κ = 0.95 in the three configurations.

• DMS: Dynamic Model Selection. Puts all the weight on the model with the high-

est probability to compute the forecast as Raftery et al. (2010) and Koop and Korobilis

(2012). We employ three different configurations by setting the forgetting factors to (i)

α = λ = 0.99 (ii) α = λ = 0.95 and (iii) α = λ = 0.90. We set ρ = 0.5 in the three

configurations.

Time-series and Machine Learning

• TVP-AR(1): Time-varying parameter AR(1) model, including only an intercept and

a time lag (without any of the predictors), estimated with the Kalman filter using as

forgetting factors λ = ρ = 0.95.

• TVP-AR(1)X: Time-varying parameter AR(1) model with intercept, a time lag

and the full set of X regressors, estimated with the Kalman filter using as forgetting

factors λ = ρ = 0.95

• TVP-SV-AR(1): Time-varying parameter AR(1) model with stochastic volatility,

including an intercept and a time lag (without any of the predictors) estimated with the

MCMC algorithm of Chan and Jeliazkov (2009).13

13Other than the estimation of the TV-AR-SV which relies on the exact likelihood function to im-
plement the Monte Carlo Markov Chain estimation procedure, the stochastic volatility specification is
different from the TVP-AR with forgetting factor in that it allows the measurement variance Vt to follow
a log stochastic volatility specification and it restricts the state covariance matrix Wt to be constant.
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• TVP-SV-AR(1)X: Time-varying parameter AR(1) model with stochastic volatility,

including an intercept, a time lag and the full set of X regressors estimated with the

MCMC algorithm of Chan and Jeliazkov (2009)

• BMA: Bayesian Model Averaging. DMA with forgetting factors fixed at αt = λt =

ρ = 1)

• BMS: Bayesian Model Selection. DMS with forgetting factors fixed at αt = λt =

ρ = 1)

• BSSVS: Bayesian Stochastic Variable Search Selection. Builds on benchmark

AR(1)X specification, estimated using the SSVS prior with MCMC of George and Mc-

Culloch (1993).

• BAG: Bagging. Same predictors as TVP-AR(1)X, estimated as constant parame-

ter regression using the Bagging algorithm of Breiman (1996).

• PLS: Partial Least Squares. Same predictors as TVP-AR(1)X, estimated as a

constant parameter Partial Least Squares regression using the SIMPLS algorithm of De

Jong (1993) and retaining K factors.

Epidemic mathematical models

In addition to these time-series and machine learning approaches, we also employ modern

modeling approaches widely employed in the field of epidemics. Specifically, we consider

models of epidemic growth, based on phenomenological and compartmental approaches.

Phenomenological considered here models have in common the assumption of a decay

in the growth rate of the epidemic as the total number of contagions increases. A nice

property of these models is that they provide a good model for the exponential growth

phase and include the so called saturation mechanism leading to the equilibrium, with

a cumulative number of contagions stabilization after some point in time. The set of

phenomenological models is estimated with quantified uncertainty following Chowell
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(2017), Burger et al. (2019) and Roosa et al. (2020a,b).14

• GLGM: Generalized Logistic Growth Model. The model is given by:

C ′ (t) = rCp (t)

(
1− C (t)

K

)
(22)

where C (t) is the cumulative cases at time t, C ′(t) is the daily incidence, r is the growth

rate and K is the carrying capacity. The parameter p ∈ [0, 1] is a scaling of growth fac-

tor, that accommodates sub-exponential growth patterns in the spread of the disease

(see )

• GRGM: Generalized Richards Growth Model. The model is given by:

C ′ (t) = rCp (t)

(
1− C (t)

K

)a
(23)

where a is a parameter used to capture the deviation of the symmetric S-shaped dy-

namics of the simple logistic growth model.

• Susceptible-Infected-Removed (SIR) model. The SIR model classifies individuals in

the compartment as one of three classes: susceptible (S), infectious (I), and recovered or

removed (R). Infectious individuals spread the disease to susceptible individuals at rate

β and remain in the infectious class for a given period of time known as the infectious

period before moving into the recovered (or removed) class at rate γ. Individuals in the

recovered class are assumed to be immune for an extended period (or removed from the

population). For the total population N = S + I +R, the dynamical system describing

the SIR equations is given as:

dS

dt
= −

(
βI

N

)
S

dI

dt
= +

(
βI

N

)
S − γI

dR

dt
= γI

(24)

14However, a problematic issue with them is that they cannot fit properly multiple epidemic waves.
For this reason, we estimate them in each wave separately and average their performances by the relative
sample size in each wave.
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Given the initial conditions S(0), I(0) and R(0), we estimate the classical SIR model by

means of Maximum Likelihood techniques assuming a Poisson distribution. To connect

the model with the data, we will use the following measurement equation: yt = C ′ (t) =
It
κ , where 1/κ is a combination of the reporting rate, the asymptomatic rate, and the

total population size.

The choice of models is based on their simplicity, replicability and popularity. Fore-

cast accuracy results are measured using the (i) MAPFE, (ii) PIC, (iii) MIS and (iv)

ALPL metrics described in Section (3.2) and presented in Tables (2) to (4). The main

story coming out of these tables is clear: DMA and DMS forecast better than the other

approaches in terms of density and interval forecasts at short horizons, and never much

worse than the best alternative as regards to point forecasts.

Table 2: Forecasting results: Density Forecasts

Average Log Predictive Likelihoods (ALPL)

h = 1 h = 3 h = 7 h = 14

TVP-AR(1) -5.92 -8.64 -13.29 -12.26
TVP-AR(1)X -5.95 -8.73 -13.61 -14.02
TVP-AR(1)-SV (MCMC) -9.25 -16.16 -18.90 -17.14
TVP-AR(1)X-SV (MCMC) -9.09 -8.64 -11.96 -13.66
TVP-DMA (α = λ = 0.99) -5.95 -8.38 -13.13 -14.78
TVP-DMA (α = λ = 0.95) -5.94 -8.89 -12.13 -15.70
TVP-DMA (α = λ = 0.90) -5.63 -8.35 -13.41 -15.40
TVP-DMS (α = λ = 0.99) -8.12 -10.18 -11.03 -11.39
TVP-DMS (α = λ = 0.95) -8.09 -10.62 -11.60 -12.94
TVP-DMS (α = λ = 0.90) -7.79 -10.24 -11.93 -14.41
BMA -12.33 -19.78 -28.14 -31.30
BMS -15.14 -19.94 -24.19 -27.39
SSVS -7.37 -10.54 -15.02 -18.00
PLS -7.88 -11.05 -16.83 -20.38
BAG -8.68 -11.82 -16.71 -21.00
GLGM -16.45 -15.97 -16.74 -16.14
GRGM -17.99 -18.37 -18.68 -18.70
SIR-ML -14.41 -14.75 -14.58 -15.54

Notes: Entries in columns 2-5 of this Table are mean represent the Average Log
Predictive Likelihood. Higher values of the ALPL signify a deterioration of the quality
of the forecast whereas lower values signify an improvement. Entries in boldface
indicate the best performing model for each forecast statistic and for each forecast
horizon.

Considering first log predictive likelihoods shown in Table (2), which is the preferred

method of Bayesian forecast comparison, we find that DMA or DMS forecast best, than

the other forecasting strategies used in our comparison exercise at h = 1 and h = 14.

Note the excellent performance of DMA α = λ = 0.90 for short run horizons h = 1 and

h = 3. This value for the forgetting factors allows for rapid change in both coefficient
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Table 3: Forecasting results: Point Forecasts

Mean Absolute Percentage Forecast Error (MAPFE)

h = 1 h = 3 h = 7 h = 14

TVP-AR(1) 0.063 0.212 0.841 0.725
TVP-AR(1)X 0.071 0.232 0.583 0.866
TVP-AR(1)-SV (MCMC) 0.052 0.100 0.305 0.847
TVP-AR(1)X-SV (MCMC) 0.050 0.097 0.265 0.731
TVP-DMA (α = λ = 0.99) 0.069 0.220 0.571 2.516
TVP-DMA (α = λ = 0.95) 0.057 0.161 0.422 1.169
TVP-DMA (α = λ = 0.90) 0.058 0.133 0.380 0.793
TVP-DMS (α = λ = 0.99) 0.099 0.254 0.520 1.877
TVP-DMS (α = λ = 0.95) 0.082 0.199 0.358 0.628
TVP-DMS (α = λ = 0.90) 0.081 0.170 0.331 0.554
BMA 0.078 0.172 0.511 1.052
BMS 0.105 0.199 0.382 0.659
SSVS 0.094 0.299 0.740 1.353
PLS 0.081 0.263 0.904 1.535
BAG 0.080 0.252 0.836 1.526
GLGM 0.372 0.410 0.448 0.528
GRGM 0.393 0.449 0.499 0.590
SIR-ML 0.269 0.300 0.366 0.510

Notes: Entries in columns 2-5 of this Table are mean represent the Mean Absolute
Percentage Forecast Errors. Higher MAPFE values signify a deterioration of the qual-
ity of the forecast whereas lower values signify an improvement. Entries in boldface
indicate the best performing model for each forecast statistic and for each forecast
horizon.
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Table 4: Forecasting results: Interval Forecasts.

95% PIC MIS

h = 1 h = 3 h = 7 h = 14 h = 1 h = 3 h = 7 h = 14

TVP-AR(1) 0.897 0.773 0.737 0.645 883.3 4.252.7 24,160.7 34,476.5
TVP-AR(1)X 0.915 0.770 0.626 0.676 869.4 5,432.8 22,435.3 46,664.3
TVP-AR(1)-SV (MCMC) 0.688 0.363 0.241 0.309 1,217.7 3,357.6 14,991.9 42,242.9
TVP-AR(1)X-SV(MCMC) 0.589 0.615 0.581 0.449 1,330.3 2,803.7 12,477.3 48,.689.1
TVP-DMA (α = λ = 0.99) 0.911 0.770 0.652 0.469 823.8 2,720.1 15,971.0 71,086.4
TVP-DMA (α = λ = 0.95) 0.911 0.763 0.670 0.508 796.9 3,992.3 14,417.0 58,442.6
TVP-DMA (α = λ = 0.90) 0.935 0.798 0.670 0.559 628.1 3,013.3 20,115.6 55,768.2
TVP-DMS (α = λ = 0.99) 0.752 0.680 0.656 0.598 1,601.3 4,918.5 11,006.6 25,704.3
TVP-DMS (α = λ = 0.95) 0.780 0.698 0.674 0.578 1,386.5 4,703.8 10,292.0 26,172.1
TVP-DMS (α = λ = 0.90) 0.798 0.727 0.670 0.563 1,279.3 4,168.4 10,795.7 25,094.8
BMA 0.635 0.360 0.148 0.082 1,951.9 7,406.7 26.864.7 60.539.0
BMS 0.543 0.371 0.259 0.184 3,348.2 10,422.7 27,913.4 48,423.4
SSVS 0.801 0.701 0.563 0.461 1,126.1 4,503.5 20,156.2 59,870.6
PLS 0.780 0.640 0.404 0.336 1,114.9 4,342.9 22,336.3 54,716.2
BAG 0.759 0.665 0.430 0.340 1,284.9 5,604.2 23,020.9 55,295.4
GLGM 0.164 0.153 0.133 0.113 29,209.4 32,278.0 38.140.0 46,884.9
GRGM 0.105 0.097 0.079 0.063 31,770.4 36,259.5 44.863.5 55,407.2
SIR - ML 0.099 0.091 0.086 0.083 22,166.53 27,334.29 39,491.74 64,629.79

Notes: Entries in columns 2-5 of this Table are mean 95% Prediction Interval Coverage (PIC) rates, and columns 6-9 are average
Mean Interval Scores (MIS). Entries for each model are PICR and MIS values. Higher PICR scores signify improvement whereas
lower values signify a deterioration. Lower MIS values signify an improvement whereas higher values a deterioration. Entries
in boldface indicate the best performing model for each forecast statistic and for each forecast horizon.

and in models. Versions of DMA that impose more gradual change do slightly worse,

but DMS versions with slower model and parameter change (i.e, α = λ = 0.99) obtain

the highest ALPLs for longer horizons h = 7 and h = 14. As regards the MAPFE, which

is our point forecast performance metric, the results of Table (3) show that the DMA for

h = 1 and h = 3 tend to outperform the DMS, but that the DMS can achieve one of the

lowest percentage errors at h = 14 steps ahead. In both metrics we find strong evidence

that allowing for faster model and parameter variation tends to increase accuracy. This

is evident when comparing the three DMA configurations given that as we decrease α

and λ the ALPL increases and the MAPFE of the DMA decreases.

Regarding the results of the MAPFE, we find that DMA/DMS are weakly dominated

by the TVP-AR(1)X-SV estimated by means of MCMC and with stochastic volatility,

at least for short run and medium horizons. The MAPFE of the TVP-AR(1)X-SV are

the 5%, 9.7% and 26.5% for h = 1, 3, and 7 whereas the lowest DMA/DMS MAPFEs

for these horizons are 5.7%, 13.3% and 33% respectively. However, for h = 14 the errors

of DMS with α = λ = 0.9 (55.4%), are much lower than those of the TVP-SV-AR(1)X

(84.7%). Taken together these results suggest that the optimal forecasting strategy

would be a DMA/DMS with stochastic volatility estimated with MCMC rather than

with forgetting factors but that would render the estimation too slow. Phenomenological
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models perform poorly in the short run irrespective but appear to be close in accuracy

to the DMA/DMS for h = 14. This is also the case of the SIR model as it produces the

lowest error at h = 14.

PIC and MIS results reveal that DMA/DMS are the best candidates when consider-

ing the uncertainty in the forecast for short run horizons. For h = 1 step ahead forecasts

the coverage of DMA (α = λ = 0.9) is the 93.5% and for h = 3 it is the 78.8%. Inter-

estingly, for horizons h = 7 and h = 14 the TVP-AR(1) and TVP-AR(1)X, estimated

with forgetting factors, produce a higher coverage of the 73.7% and 67.6% respectively.

However as revealed by the MIS, this higher coverage rate comes at the cost of producing

too wide confidence bands, as it is clear the MIS for longer forecast horizons for these

models is lower. In fact, for the MIS metric, the different DMA/DMS configurations

outperform the other approaches.

Taken together, the results of our forecasting exercise suggest that both model change

and parameter change help to improve accuracy. This can be seen in (i) the superior rel-

ative performance of TVP-AR(1)X with respect static parameter modeling approaches

such as the SSVS, the PLS or the Bagging and in (ii) the performance of the TVP-

DMA/DMS with respect the BMA and BMS.

As refers the importance of the information contained in exogenous predictors, the

evidence is more mixed. In terms of point and density forecasts we find that TVP-

SV-AR(1)X outperforms the TVP-SV-AR(1) for h = 1, 3 and h = 7, but the TVP-

AR(1) model does the same with respect the TVP-AR(1)X. Regarding the production

of accurate confidence bands, as measured by the PIC and the MIS, the specifications

including the information of exogenous predictors tend to dominate for h = 7 and h = 14

but not for h = 1. In any case, DMA and DMS produce an automatically selected degree

of shrinkage which in all cases leads to superior forecasts when compared to the extreme

cases of the TVP-AR(1)X and the TVP-AR(1).

Finally, what do Tables (2) to (4) say about the relative forecast performance of

DMA and DMS?. In this regard, what we find is that DMA with (α = λ = 0.90) seems

better suited than DMS for short run forecasts whereas DMS (α = λ = 0.99) does a

better job when producing long run forecasts.
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4.2 Which variables are good predictors for COVID-19 spread?

Off the different forecasting approaches in the preceding section only DMA and DMS

allow for different forecasting models at different times. Accordingly, in this section we

focus only in these two approaches. Given the huge number of models explored at each

time (i.e, 214 = 16, 384), we cannot possibly present empirical results for every model.

Instead, we summarize our results in two different ways. We begin with Figure (2) which

illustrates that, although we have fourteen predictors which could be selected to forecast

daily COVID-19 incidence, most of the time DMA attaches the highest probability to

parsimonious models including only a few predictors.

If we let Sizek,t be the number of predictors in model Mk at time t, then we can

calculate the number of expected predictors included in a DMA at time t as:

E (Sizet) =

K∑
k=1

πt|t−1Sizek,t (25)

Figure (2) plots the value of E (Sizet) for h = 1, 3, 7 and 14 days ahead for the various

configurations of the forgetting factors. This figure gives an indication of variations

in the degree of parsimony over time and across DMA configurations. As observed,

Figure (2) shows that the number of predictors used by DMA changes over time and

that the higher the degree of parameter variation, the higher the shrinkage. Another

key feature of our empirical results is that, although we have 14 potential predictors

(excluding the constant and the autoregressive term which are common to all models),

most probability is attached to parsimonious models including few predictors. This

result holds irrespective of the forecast horizon. Nonetheless, as it frequently occurs in

DMA analysis, at longer forecast horizons of h = 14 days ahead, slightly more predictors

are included in the forecasting model specification.

The pattern shown in Figure (2) indicates that forgetting factor configurations gen-

erate different model sizes with different variables inside them, with different estimates

of variable importance. For λ = α = 0.99 as time goes by, and more data is available

for estimation, more predictors are chosen. However, it can be observed that the period

that ranges from October 2020 to December 2020 is characterized by abrupt changes

in the model size (see the the abrupt drop in the number of predictors for medium to

long term forecast horizons h = 7, 14 during November 2020). On the other hand, for

the forgetting factor configurations λ = α = 0.95 = 0.90 which allow a higher degree

of parameter and model variability, we find a different pattern. In these configurations
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the expected model size falls until mid-August 2020 and raises substantially during the

second wave.

Taken together, these findings suggest that (i) when forecasting at longer horizons,

using additional exogenous information to that of the past state of the epidemic tends to

improve forecast performance. A second issue is that (ii) DMA results are quite sensitive

to the forgetting factors and that the optimal model size when forecasting at shorter

horizons is quite different to that of longer ones. This second point, together with the

fact that we are performing a reduced form forecasting exercise, precludes us to provide

too many stories on specific variables’ results or any interpretation on causal effects.

Figure 2: Expected model size

We now use the posterior inclusion probabilities (PIPs) of the different variables at

each time to classify evidence on the importance of the different COVID-19 incidence

drivers, such that predictors with PIPs above 0.5 are considered as relevant determi-

nants to forecast incidence at that period and specific horizon, and variables below that

threshold, as irrelevant ones.15

15From a Bayesian perspective, predictors with PIPs higher than others, reflect a higher importance
as they are more likely to be part of the data generating process, and as such, they can be considered
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Figure (3) presents the information regarding the PIPs for our different DMA con-

figurations. However, to keep the figure readable, we only present PIPs for the “top

predictors”, which are defined as the variables that appear to be part of the forecasting

model with a higher frequency over the full time sample considered, and for the three

forgetting factors configurations analyzed. Specifically, Figures (3) to (6) plot the PIPs

of a variable k at a forecasting horizon h if its average inclusion probability is in the

top quartile of the distribution of the average PIPs for all DMA configurations. To aid

interpretation, further note that if the lines in these figures were to be precisely one for

any factor, DMA would be using all the models containing this determinant whereas if

the lines in these figures were precisely zero, the DMA would completely exclude all the

models containing that factor. The interested reader can examine each of the panels

in Figures (3) to (6) for any particular variable of interest and horizon. Here we just

discuss the main points.

Figure 3: Posterior Inclusion Probabilities for Top Determinants (h = 1)

First, for all forecast horizons and DMA configurations we find a strong evidence of

model change. That is to say, the set of predictors in the forecasting model is changing

over time. Moreover, it can be seen how DMA allows for both gradual and abrupt

changes in the role of top predictors. There are many times where the probability

as a relevant factor forecasting the evolution of the pandemic. Equivalently, PIPs are the weight used
by DMA attached to models which include a particular predictor.
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Figure 4: Posterior Inclusion Probabilities for Top Determinants (h = 3)

Figure 5: Posterior Inclusion Probabilities for Top Determinants (h = 7)
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Figure 6: Posterior Inclusion Probabilities for Top Determinants (h = 14)

associated with a predictor increases or decreases gradually over time (i.e, the gradual

increase in the PIPs of temperatures and work mobility when forecasting at h = 14 from

April to October) but there are also a considerable number of cases where a variable

experiments an abrupt change in few periods going from near one to zero (see the PIPs

of neighbor’s cases in November 2020 after the implementation of restrictions). This

tendency to switch over models is specially remarkable when looking at the changes

observed in the PIPs of the top determinants during the second wave.

Second, there is no single predictor that performs well over the entire sample across

forgetting factor specifications and horizons. Thus, we find evidence favoring the idea

that epidemic predictors are short-lived and relevant for the spread of the disease only

in short periods or “pockets of predictability”. Moreover, we do not find evidence of the

PIPs of any predictor to display a horizontal trajectory at the 0% for a long period of

time, which indicates that DMA is averaging over many models and using many different

models with no single variable being consistently dominant, and no single variable being

consistently dropped from the forecasting exercise. Therefore, the picture we are finding

is one where DMA is averaging over many parsimonious models rather than selecting

just a few parsimonious models, and that this set of models is changing rapidly over
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time.

Third, when analyzing the entire course of the epidemic, the lagged values of the

number of new cases in neighboring regions appears to be the most relevant factor, which

suggests the relevance of imported cases when driving the spread of the epidemic. In a

second level of importance, we find variables included in our set of top drivers. These

factors perform well in some periods and horizons, but not in others. This is the case

of the mobility to workplaces and stations, the reproductive number, the temperatures

or pollution.

As observed in Figures (3) to (6) the human mobility through transit stations is

among the top predictors for horizons h = 1, 3 and 7 days, with PIPS above the 90%

in many configurations and periods. It contributed to forecast new cases until May-

June 2020, its importance declined during summer and from September onwards, its

predictive importance increased again. On the other hand, when forecasting at the

longer horizon of h = 14, we find that mobility to workplaces is more relevant than

that of transit stations, specially during the period that goes from mid August to mid

October, which coincides with the period of children returning to school and adults

returning to work. As regards pollution, we find that NO2 pollution is relevant when

forecasting h = 1 days ahead, whereas suspended particle matter provides valuable

insights when forecasting at longer time horizons. Regarding the reproductive number,

Rt, it behaves as a top predictor but only when performing forecasts one day ahead. As

observed, the reproductive number experienced a considerable increase in importance

during the second wave, from September onwards. As refers to the climate factors,

we observe temperatures do not seem to be relevant when forecasting at short-term

horizons, but since the beginning of June, their PIPs experienced a steady increase for

h = 7 and h = 14.

Fourth, none of the policy factors appears to be an overall “top determinant”. The

reason is that during the summer period of 2020, which covers more than one third of

our sample observations and where incidences where relatively low, these factors were

not relevant to forecast incidences at any horizon and experienced PIPS below the 50%

threshold. However, as shown in Figures (7) to (10), in some specific periods of key

importance from a health policy point of view such, as the beginning of the first wave

and the end of the second wave, the predictive performance of these factors was high.

During the first months of the epidemic up to May 2020, when forecasting at h = 7 and

h = 14 with the various DMA configurations we find that both, the use of masks and the

stringency of the containment policy, registered PIPS above the 50%. This is also the

case when forecasting incidences during the period that goes from October to December.
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However, during the second wave, the specific DMA configuration matters a lot in

shaping the variable importance profiles. When using α = λ = 0.99 the use of masks

is the dominant predictor in this category, whereas the share of detected cases receives

a steady PIP value of the 50% and the importance of the policy stringency fluctuates.

On the other hand, in the DMA configurations of α = λ = 0.95 and α = λ = 0.90 we

find that from mid October to mid November, the share of detected cases seems more

relevant for forecasting than the use of masks, irrespective of the horizon. Under these

flexible DMA configurations, the stringency of the policy measures adopted to curve

the spread of the COVID during October and November are reflected in higher PIPs,

specially when forecasting at h = 1 and h = 3. Taken together, these results suggest

that information on the protective behavior of individuals and epidemic policy measures

can be used to forecast incidence, specially before critical turning points.

Figure 7: Posterior Inclusion Probabilities for Policy factors (h = 1)
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Figure 8: Posterior Inclusion Probabilities for Policy factors (h = 3)

Figure 9: Posterior Inclusion Probabilities for Policy factors (h = 7)
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Figure 10: Posterior Inclusion Probabilities for Policy factors (h = 14)

5 Conclusions

This article has investigated the use of DMA and DMS methods for forecasting

the time-series of the daily new cases of the COVID-19 pandemic in the Italian re-

gion of Lombardy. To our knowledge DMA and DMS have not been used by epidemic

modelers and forecasters. This approach developed by Raftery et al. (2010) allow for

the coefficients in a model to evolve over time, but also allow for the set of predictors

used for forecasting to change over time. The alternatives of working with one general

model including all potential predictors, or choosing one single parsimonious model are

unattractive, given that a good parsimonious forecasting model at some periods could

be a bad model at others.

In our empirical analysis, we present evidence indicating the benefits of DMA and

DMS. By allowing for both, model and parameter change, DMA and DMS lead to

substantial improvements in forecast performance with respect these options. In fact,

we find that the DMA forecasting performance is higher the more flexible and quickly

adaptable specifications of the forgetting factors, allowing to rapidly capture changes

in the transmission speed of the epidemic disease. We also find that the best predic-
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tors for forecasting the COVID-19 epidemic are changing considerably over time, and

that different factors are automatically picked up by the DMA/DMS depending on the

forecasting horizon and the forgetting factor configuration.

When employing different DMA/DMS configurations, we obtain different variable

importance trajectories. However, among the set of factors considered, we find that the

epidemic dynamics in neighboring regions stand out as the most consistent predictor. In

a second level of importance, we find that human mobility intensity in transit stations

and workplaces, together with pollution matter pollution and temperatures are of major

importance to anticipate the evolution of the epidemic. The general pattern, however,

is one where the best forecasting model is changing over time. Indeed, we find that

epidemic policy variables such as the stringency of restrictions and bans, the use of

masks or the share of detected cases, which do not appear to be top determinants

shaping the spread of the disease, due to their relatively low overall inclusion pattern

in the forecasting models. However, during the second wave taking place in the fall of

2020, these predictors achieved high posterior inclusion probabilities.

When compared to alternative time-series, machine learning and epidemic modeling

frameworks, we find that DMA outperforms all of them in accuracy in terms of density

forecasts and interval forecasts. DMA with α = λ = 0.9 outperforms DMS for h = 1, 3

and 7 whereas DMS (α = λ = 0.99) does the same for h = 14. As regards point forecast

accuracy, measured by the MAPFE, we find that in the short run the TVP-AR(1)X-SV is

the best option whereas the classical SIR model does a good job when in longer horizons.

However, the difference between these options and the best DMA/DMS configuration

for each horizon is low. Taken together, our results suggest that DMA/DMS methods

can greatly contribute to the monitoring and forecasting of the COVID-19 pandemic.

There are some interesting extensions to this research that could be explored to

produce more accurate forecasts within the context of DMA/DMS, which in turn could

help the decision making of public health officials. One is a sensitivity analysis over a

larger set of values for λ and α. Here we did not explore the optimal configuration of

the forgetting factors when minimizing loss functions such as the MAPFE, the ALPL or

the MIS. However, forecastability gains in these metrics could be achieved in a more in-

depth grid-search. A second alternative is to add stochastic volatility in the measurement

variance and employ a slower but more exact MCMC estimation procedure. This seems

a promising avenue to increase accuracy in forecasts, at least up to one week ahead.

Finally, the performance of iterated forecasts relative to that of direct forecasts could

be explored. This is because of by design, in our direct forecast setting, parameter

estimates used to forecast h steps ahead cannot include the most recent information on
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the linkages between Xt and yt. Given the strong evidence presented here in favor of

abrupt parameter and model changes, iterated forecasts using last available information

on the relationships between Xt and yt could potentially reduce forecast errors.
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6 Appendix A: Data

This section details the construction of the database employed in our empirical ex-

ercise.

6.1 Epidemic Dynamics Variables

• [1] Reproduction number

The reproductive number is measure of the instantaneous transmissibility and it is used

as a near real-time indicator of epidemic growth. If the Rt > 1, the number of cases

will increase, if Rt = 1, the disease course will stabilize whereas if Rt < 1, there will

be a decline in the number of cases. We follow Cori et al. (2013) to estimate the Rt as
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follows:16

Rt =
It∑t−1

s=1 It−sωs
(26)

where the numerator is given by the number of new infections generated at time step

t, It, and the denominator is given by the product of the the total infectiousness of

infected individuals up to time t − 1, weighted by the infectivity function ωs, which is

approximated by the distribution of the serial interval. In this study, Rt is calculated

specifying an uncertain serial interval distribution (ωs) with a mean of 5.2 (3.7 -6.5) days

and a standard deviation of 2.9 (1.9- 4.9) (i.e, we characterize this distribution using

the results of Nishiura et al. (2020) and Rai et al. (2020)). We employ the statistical

package EpiEstim developed in R-software to obtain our estimate of the Rt using the

default setting of a smoothing sliding window of 7 days.

• [2] Neighbour’s cases

Neighbour’s cases are defined as the 7-days moving average of the average 4-nearest

neighbour’s incidence. Nearest neighbor’s are calculated using the distance between

the centroid of each region vis a vis with Lombardy. Thus, neighbour’s new cases are

calculated as:

NCt =
∑
j

wjCjt (27)

where wj = 0.25 and Cjt is the daily incidence in region j at time t. We have experi-

mented with several specifications to define this spatial autoregressive term, finding a 4

nearest neighbor’s performs well in the present context. The four neighboring regions

considered are Liguria, Emilia-Romaga, Trento and Bolzano.

6.2 Mobility variables

Measurements on mobility come from the Google Mobility Reports (see https:

//www.google.com/covid19/mobility/). Google mobility reports identify six distinct

areas classified by the Google Maps tool: Retail & Recreation, Grocery& Pharmacy,

16We opt for this approach instead of the alternative of Bettencourt and Ribeiro (2008) or ? because
these approaches either require data from after time t, or rely on structural assumptions that if are not
satisfied, yield biased estimates of the Rt (see Gostic et al., 2020 for a critical review on the measurement
methods of Rt).
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Parks, Workplaces, Transit Stations and Residential areas. These data capture the

variation in terms of volume of visitors in the classified places compared to the value

of a baseline period. The baseline value represents the median value from the 5-week

period Jan 3 Feb 6, 2020 (see Google LLC (2020)).

In our analysis we use a 7-day moving average scaled values to filter out weekend

effects (i.e, the baseline period is set to 100 rather than to 0) of the regional mobility

data of Lombardy on (3) Workplaces, (4) Transit stations, (5) Residential areas and

(6) Parks.17 Each of these categories consist on data on:

• [3] Work: mobility trends for places of work.

• [4] Transit Stations : mobility trends for places like public transport-hubs such

as subway, bus, and train stations.

• [5] Parks: mobility trends for places like national parks, public beaches marinas,

dog parks, plazas,and public gardens

• [6] Residential: mobility trends for places of residence.

6.3 Climate variables

Meteorological data is taken from the NASA-Prediction Of Worldwide Energy Re-

sources (NASA-POWER) v8 GIS database (see https://power.larc.nasa.gov/docs/).

All the daily measurement of these climate variables are measured at the coordinates

of the regional centroid. The meteorological data-parameters in POWER Release 8 are

based upon a single assimilation model from Goddard? Global Modeling and Assimi-

lation Office (GMAO), whereas the solar based data-parameters in POWER Release 8

are based upon satellite observations with subsequent inversion to surface solar insola-

tion by NASA? Global Energy and Water Exchange Project-Surface Radiation Budget

(SRB) and NASA’s Fast Longwave And SHortwave Radiative project (FLASHFlux)

17We do not include the mobility data time series for the categories of Retail & Recreation and
Grocery& Pharmacy as they are highly correlated with the Workplace and Transit Stations indicators
to avoid collinearity issues.
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(see https://power.larc.nasa.gov/#resources for details).

Specifically the set of predictors in this group and the formulae used to calculate

them are:

• [7] Mean temperature 2 meters above the surface in celsius degrees.

• [8] Mean relative humidity 2 meters above the surface. The relative humid-

ity (RH) is the ratio of actual partial press of water vapor to the partial pressure at

saturation, expressed in percent. RH is calculated as:

RHt =
ea
esat
× 100 (28)

where ea is the water vapor pressure and esat is the saturation water vapor pressure at

the ambient temperature Ta.

• [9] Solar radiation: The daily average amount of the total solar radiation inci-

dent on a horizontal surface at the surface of the earth.

6.4 Air pollution

Air quality data is taken from the European Environment Agency EEA (see https:

//www.eea.europa.eu/themes/air/air-quality-and-covid19), which provides daily

measurements of NO2, PM25 and PM10 pollutant concentration in (ug/m3) recorded

by monitoring stations scattered across cities in European countries. In the region of

Lombardy, NO2, PM10 and PM25 measurements are available at various stations differ-

ent cities, which allows us to measure pollution for each pollutant and city at different

spatial locations.

We compute a population weighted average of the daily pollution concentration

records for each station located in each city within the region of Lombardy. Since

PM2.5 and PM10 indicators display a strong correlation, we use the average of the two

indicators of suspended particle matter to produce an overall PM pollution index after

applying a max-min normalization to the raw data PM2.5raw,t and PM10raw,t.
18

18The sources of this pollutant are varied, including the combustion of fuel for the heating of residential,
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• [10] The PM pollution index is given by:19

PMi,t = 0.5× PM2.5raw,t −min (PM2.5raw,t)

max (PM2.5raw,t)−min (PM2.5raw,t)

+ 0.5× PM10raw,t −min (PM10raw,t)

max (PM10raw,t)−min (PM10raw,t)
(29)

where the PM2.5raw,t =
∑

j wjPM2.5j,t and PM10raw,t =
∑

l wlPM10lt where wl is

the relative share of the population in city l with respect the total population in our

sample of cities (i.e, wl = POPl∑
l POPl

. To estimate regional PM2.5 pollution we use available

records from the cities of Bergamo, Brescia, Como, Cremona, Lecco, Milano, Pavia and

Varese.

For the NO2 and PM10 pollutants the set of cities with measurement stations are:

Bergamo, Brescia, Busto Arsizio, Como, Cremona, Lecco, Milano , Pavia, Varese and

Vigevano.

Our second indicator to capture the evolution of pollution is a:

• [12] NO2 pollution index: measured in (ug/m3) . NO2 is a pollutant mainly

emitted by road transport. Its aggregation from the city level to the regional level follows

that of the PM10 as we the sample of cities with available measurements is the same.

6.5 Health Policy and Epidemic Monitoring

• [12] Health policy containment index

This is a composite measure based on eleven policy response indicators school closures;

workplace closures; cancellation of public events; restrictions on public gatherings; clo-

sures of public transport; stay-at-home requirements; public information campaigns;

restrictions on internal movements; international travel bans and controls, testing pol-

icy and contact tracing, rescaled to a value from 0 to 100 (100 = strictest). The database

commercial and institutional buildings, industrial activities and road traffic.
19Using other procedures of data reduction such as principal components gives a weighting scheme of

0.49 and 0.51.
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scores the stringency of each measure ordinally, for example depending on whether the

measure is a recommendation or a requirement and whether it is targeted or nation-wide.

• [13] Detection of cases (%)

To model the epidemic monitoring by health authorities, we opt for this metric rather

than the raw number of tests (or tests per capita) given that a problematic issue with

the use of the number of tests as a proxy of the quality of epidemic monitoring is that

it is uninformative on the share of cases that are not detected and that could amplify

the epidemic later on. We estimate the share of reported of cases following Nishiura et

al. (2009) and Russell et al. (2020) who show that combining a “best estimate” of the

lethality and a delay-adjusted case fatality distribution of cases with known outcomes

it is possible to obtain daily estimates of the under-reporting of cases in the official

statistics. Specifically, we calculate the share of detected cases as:

Dt =
bCFR

dCFRt
(30)

where (i) bCFR denotes the best available estimates of lethality taken from large ran-

domized seroprevalence studies in China, Spain and South Korea, which are in the 1% -

1.5% range (we assume a bCFR = 1.25 %) and dCFRt = Dt
dCc,t

is the delay-adjusted case

fatality ratio in t. The delay-adjusted case fatality is given by the ratio of the number

of daily deaths to dCc,t, which is a correction of the cases accounting for the proportion

of cases with known outcomes which is given by:

dCt =

t∑
j=0

ct−jgj (31)

where gj represents the probability density function between confirmation to death (i.e,

we use a lognormal distribution with a mean delay of 13 days and standard deviation

of 12.7 days).

• [14] Use of Masks

To proxy the use of masks we employ Google Trends search data. Google Trends indexes

allow us to capture the relative quantities of web searches through the Google search

engine for face masks related keywords, as well as the specified time period, being the

values normalized and ranging from 0 to 100. 20.

20The maximum value of each region-keyword specific index is assigned to the peak of the respective
time series during that period
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Given the absence of a general pre-defined search category to proxy the use of masks,

we select fourteen individual keywords in Italian language that we believe can help to

capture variations in the use of face-masks during all the year 2020.

By using the keyword of mask, in Italian language (i.e, “mascherine”) as a bench-

mark category to obtain trend indexes, we aggregate seven different searches in sin-

gular: “mascherina”, “mascherina ffp2” , “mascherina chirurgica”, “mascherina ffp3”,

“mascherina KN95” “mascherina con filtro” and “mascherina covid” and seven in plu-

ral “mascherine”, “mascherine ffpp2”, “mascherine ffp3”, “mascherine chirurgiche”,

“mascherine KN95”, “mascherine con filtro”, “mascherine covid”. We use the sum

of all the 14 keyword scores. That is

Maskst =
∑
j

Mask −Keywordjt (32)

7 Appendix B: Settings used in competing models

7.1 Time Series and Machine Learning models

• TVP-AR1(X)-SV: Time-Varying Parameter Autoregressive Model with Stochastic

Volatility. This model is estimated with the efficient MCMC algorithm developed by

Chan and Jeliazkov (2009). This is the standard time-varying paramter model regression

model used in economics (see Cogley and Sargent (2005)). It consists of the following

Equations:

yt = xtβt + εt, εt ∼ N
(
0, σ2

)
βt = βt−1 + ηt, ηt ∼ N (0,Wt)

(33)

where xt is a 1 × K vector of predictors, εt and ηt are independent of one another,

the measurement variance σ2 is known, Wt is a diagonal K × K matrix (i.e, Wt =

diag (w1t, . . . , wK,t). The crucial setting that affects the amount of time-variation in

the regression coefficients βt is the prior on state variances wt which is of the form

w−1j ∼ Gamma (v1, v2). We set v1 = 3 and v2 = 20

• BSSVS: Bayesian Stochastic Variable Search Selection. BSSVS is a predictor vari-

able selection method for Bayesian linear regression that searches the space of potential

models for models with high posterior probability and averages the models it finds after
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it completes the search. The static variable selection prior of George and McCulloch

(1993) developed for the constant parameter regression using MCMC is of the form:

βj |γj ∼ (1− γj)N
(
0, τ20j

)
+ γjN

(
0, τ21j

)
γj =

K+1∏
j=1

gδj (1− gj)1−δj

p
(
σ2
)
∼ IG (a, b)

(34)

for j = 1, . . . ,K where a, b and gj are fixed prior hyper-parameters and τ21j = 4 and

τ20j = 0.001. By setting
τ21j
τ20j

to a large number, the latent binary variables γj govern

which one of the normal distributions above is active. When γj = 0 because of τ20j

is very small we shrunk the variable j corresponding parameter towards 0 whereas if

γj = 1, the prior exerts little influence on the posterior. We set a = b = 0.01 and

gj = 0.5. Therefore the prior probability of inclusion of each variable Xj is the 50%.

• BAG: Bagging. Bagging stands for “Bootstrap aggregating”. With the bagging al-

gorithm we first re-sample our data B times, with replacement blocks of size m. For each

pseudo-generated data set we estimate with ordinary least squares using the Newey and

West estimator of the covariance with lag truncation parameter int T 1/4. In each draw

we select the optimal model using only those predictors that have t-statistics larger than

a threshold c∗ in absolute value. We forecast with the optimal model, and the bagging

forecast is obtained as the average of all forecasts over the B Bootstrap replications. We

set B = 1000, m = 1 and c∗ = 1.965

• PLS: Partial Least Squares (PLS) is a method that originated in chemometrics

(see De Jong (1993)). It allows to estimate factors that are extracted with reference to

the variable to be predicted (target variable). A key difference with principal compo-

nents is that the later only maximize the variance explained by the large dataset, and

may not be optimal for prediction of the target variable. While more elegant methods

have been proposed recently for prediction, the PLS is undeniably a good benchmark

for assessing whether we can improve on the information content of simple principal

component estimates. We use again the MATLAB function “plsregress” available in the

Statistics and Machine Learning Toolbox, and we extract fifteen factors from our dataset.
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7.2 Epidemic Models

• Phenomenological models

We consider three distinct phenomenological models of epidemic growth. The first

model is the (i) Generalized Logistic Growth Model (GLGM) which is given by the

following ordinary differential equation

dC (t)

dt
= C ′ (t) = rC (t)p

(
1− C (t)

K

)
(35)

where C (t) is the cumulative cases at time t, r is the early growth rate and K is the

carrying capacity. This specification extends the simple logistic growth model with

a scaling of growth parameter p ∈ [0, 1] that accommodates sub-exponential growth

patterns. Our second candidate is the (ii) Generalized Gompertz Growth Model (GGoM)

which is given by:

dC (t)

dt
= C ′ (t) = rCp (t) exp (−bt) (36)

where b > 0 describes the exponential decay of the growth rate r. Finally, (iii) the

Generalized Richards Growth Model (GRGM) is given by:

dC (t)

dt
= C ′ (t) = rCp (t)

(
1− C (t)

K

)a
(37)

where a is a parameter used to capture the deviation of the symmetric S-shaped dy-

namics of the simple logistic growth model.

We approximate the solution of the ODEs described above using the Runge-Kutta

(4,5) iterative numerical method given the initial condition, C0 using the ode45 solver of

Matlab. Once we have the numerical solution of the ODE, we estimate the best-fit model

solution to the reported data using weighted nonlinear least squares fitting (WNLSQF).
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That is we fit the evolution of contagions by minimizing: 21

Θ̂ = min
T∑
t=1

wt (f (t,Θ)− Ct)2 (38)

where wt = wt−1 (1− α) and w0 = α (i.e, with a higher α value we attribute more

weight to the most recent data). This simple exponential smoothing regulates the rate

at which the weights decrease by setting α ∈ [0, 1]. In our empirical analysis we set

α = 0.5. Parameter uncertainty is investigated by means of bootstrap methods by

sampling from a Poisson distribution. Using the best model fit f
(
t, Θ̂
)

we generate

S-times replicated simulated datasets denoted by f∗1

(
t, Θ̂
)
, . . . , f∗S

(
t, Θ̂
)

by drawing

from:

f∗k

(
t, Θ̂
)

= Po
(
F
(
t, Θ̂
)
− F

(
t− 1, Θ̂

))
∀k = 1, . . . , S (39)

where F
(
t, Θ̂
)

=
∑T

t=1 f
(
t, Θ̂
)

. We then re-estimate the parameters for each of the

S-simulated realizations given by Θ̂k. These re-estimated parameters are used to char-

acterize the empirical distribution of Θ̂ (see Chowell (2017) pp 385-386 for details).

Finally, forecasts are generated by propagating the estimated model uncertainty given

by f
(
t, Θ̂1

)
, f
(
t, Θ̂2

)
, . . . , f

(
t, Θ̂S

)
in time by a horizon of h time units as follows:

f
(
t+ h, Θ̂1

)
, f
(
t+ h, Θ̂2

)
, . . . , f

(
t+ h, Θ̂S

)
(40)

Therefore, we forecast the entire uncertainty of the system using the uncertainty asso-

ciated with the parameter estimates which allows us to construct the 95% confidence

intervals.

• SIR. Susceptible-Infected-Removed model. The SIR model classifies individuals in

the compartment as one of three classes: susceptible (S), infectious (I), and recovered or

removed (R). Infectious individuals spread the disease to susceptible individuals at rate

β and remain in the infectious class for a given period of time known as the infectious

21In Matlab (The Mathworks, Inc.), two numerical optimization methods are available to solve the
nonlinear least squares problem: The trust-region reflective algorithm and the Levenberg-Marquardt
algorithm. We employ the trust-region-reflective since we impose bound constraints on the parameter
values. Moreover, the ode solvers need a guess on the parameters r0, p0, b0, a0 and K0 to initialize
the search. We set r0 = p0 = a0 = 0.5, K0 = Ct when implementing the GRGM and the GLGM. The
parameter constraints imposed in these contexts are r ∈ [020], p ∈ [0, 1], a ∈ [0, 20] and K ∈ [K0, 20K0].

For the GGoM we set p0 = 0.5 r0 = 1− C′(0)
Ct

and b0 = r0(1−p0)
C

1−p0
t −(C′(0)1−p0)

.
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period before moving into the recovered (or removed) class at rate γ. Individuals in the

recovered class are assumed to be immune for an extended period (or removed from the

population). For the total population N = S + I +R, the dynamical system describing

the SIR equations is given as:

dS

dt
= −

(
βI

N

)
S

dI

dt
= +

(
βI

N

)
S − γI

dR

dt
= γI

(41)

To connect the model with the data, we will use the following measurement equation:

yt = C ′ (t) = It
κ , where 1/κ is a combination of the reporting rate, the asymptomatic

rate, and the total population size.

We fit the SIR model by means of Maximum Likelihood using the “fminsearch” algo-

rithm of unconstrained nonlinear optimization in Matlab assuming a Poisson data gen-

erating process for the incidences and providing the following initial parameter guesses

β0 = 0.4 and γ0 = 0.25, κ0 is set to 80,000. With our fitted parameters values in hand,

in sample fitted trajectory of infections Ît and yt are obtain using the ode45 solver after

passing initial conditions I(0), R(0) and S(0). Uncertainty is investigated by means of

bootstrap methods by sampling from a Poission distribution as in the context of phe-

nomenological models. Again, each re-estimated parameter draw is propagated forward

to produce out-of-sample forecasts and derive confidence bands.
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