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Abstract:  This work addresses the spread of the coronavirus through a non-parametric
approach, with the aim of identifying communities of countries based on how similar their
evolution of the disease is. The analysis focuses on the number of daily new COVID-19
cases  per  ten  thousand  people  during  a  period  covering  at  least  250  days  after  the
confirmation of the tenth case. Dynamic analysis is performed by constructing Minimal
Spanning Trees (MST) and identifying groups of similarity in contagions evolution in 95
time windows of a 150-day amplitude that moves one day at a time. The number of times
countries belonged to a similar performance group in constructed time windows was the
intensity  measure  considered.  Groups’  composition  is  not  stable,  indicating  that  the
COVID-19 evolution needs to be treated as a dynamic problem in the context of complex
systems. Three communities were identified by applying the Louvain algorithm. Identified
communities  analysis  according  to  each  country’s  socioeconomic  characteristics  and
variables related to the disease sheds light on whether there is any suggested course of
action. Even when strong testing and tracing cases policies may be related with a more
stable dynamic of the disease, results indicate that communities are conformed by countries
with diverse characteristics. The best option to counteract the harmful effects of a pandemic
may  be  having  strong  health  systems  in  place,with  contingent  capacity  to  deal  with
unforeseen events and available resources capable of a rapid expansion of its capacity. 

Keywords: COVID-19; Hierarchical Clustering; minimal spanning trees; hierarchical trees

1. Introduction

The COVID-19 pandemic continues to batter the world, with more than 70 million positive
cases and almost two million deaths by the end of December 2020 (see Santiago et al.,
2020). This study extends Alvarez et al. (2020), in which the authors analyze the evolution
of the COVID-19 in a dataset of 191 countries. The paper utilizes a clustering method
based on the correlation distance and a Minimal Spanning Tree (MST), from which they
obtain a Hierarchical Tree (HT). The algorithm identifies three clusters, each one associated



with a  different  shape in the infections  curve.  The authors suggest  that  the COVID-19
propagation is a complex phenomenon whose dynamics can be better understood within the
framework of the complex systems theory. 

Besides the already-mentioned Alvarez et al. (2020), other authors have also employed non-
parametric techniques in order to analyze the COVID-19 dynamics. Zarikas et al. (2020)
analyze the set of 30 countries with the highest number of COVID-19 cases and identify
four main clusters during the period between the 22nd of January 2020 and the 4th of April
2020. One of the groups is characterized by an abrupt increase in the number of active
cases. A second cluster is associated with both an increase and a flattening in the curve of
infections.  A third  group clustered  the  countries  with  the  lowest  number  of  cases  and
finally,  the  fourth  group  showed  an  abrupt  increase  during  the  last  part  of  the  period
analyzed. 

A K-means clustering study is presented in Chandu (2020), in which the author analyses
countries with at least 1,000 COVID-19 cases (for a discussion on the clustering algorithm
see Fahim (2020)). The algorithm grouped the set of countries into two clusters. It was
observed that one of the clusters, integrated mainly by European countries, Australia, USA
and Canada was characterized by a high fatality rate.

On the same line, Machado and Lopes (2020) analyze a data set of 79 countries following
two approaches, heuristic models and hierarchical clustering. The authors point out that the
emergence  and  propagation  of  COVID-19  is  an  example  of  a  complex  system.  A
consequence of this observation is that the analysis of the new Coronavirus disease requires
a methodological framework that assumes the fact that the World is currently facing a rare
and extreme event. As we will explain in the methodological section, in the first stage of
this work we analyze the spread of the coronavirus as a complex network in which each
link represents how similar  the coronavirus dynamics is  between any pair  of countries.
Additionally, network analysis is applied in order to identify the intensity of the similarity
among communities.

The  above-mentioned  studies  were  carried  out  for  different  time  frames  and  countries
obtaining  diverse  results.  This  suggests  that  findings  related  to  the  evolution  of  the
pandemic  are  sensitive  to  these  factors.  Considering  that  countries  presented  a  greater
variety  of  trajectories  as  the  disease  progressed,  this  study  is  based  on  analyzing  the
evolution of contagions from a dynamic perspective.

The remainder of this paper is organized as follows. Section 2 introduces data, Section 3
presents the methodology, whereas section 4 presents the empirical results. Finally, section
5 concludes. 

2. Data

This study is based on the COVID-19 data of active cases per population published by "Our
World in Data" (Roser et al., 2020). This source is put together with information from a
variety  of  sources:  European  Centre  for  Disease  Prevention  and  Control,  government



reports,  Oxford  COVID-19,  Government  Response  Tracker,  World  Bank  -  World
Development Indicators, United Nations Statistics Division and Eurostat.

In  particular,  our  main  variable  of  interest  is  "new cases  per  million",  reported  by the
European Centre for Disease Prevention and Control. We compare the evolution of the
disease  in  countries  that  by  December  2  had  data  for  more  than  250  days  after  the
confirmation of the tenth case.  With the aim of having a balanced panel that allows to
perform distance metrics, all countries' data of new cases per million are considered for the
same time  span.  This  implies  that  each  country's  COVID-19 cases  are  considered  in  a
different period. For example, for China, the first country that identified the disease, the
period between January 22 and September 27 2020 is considered. The country with the
most recent data is Mali,  which by March 27 had more than 10 confirmed cases, being
analyzed until December 1st.

A seven-day moving average smoothing centered on the day of reference was made to the
original data, reducing the time series to the central 244 data. Additionally, some countries
were removed due to having records of negative new cases after the applied smoothing
(Uganda, San Marino, Mauritius,  Monaco, Lithuania,  Luxemburg, Jordan and Ecuador).
Moreover,  Tanzania  was  removed  due  to  her  stopping  cases  report  since  May.
Consequently, the analysis is based on 124 series of 244 observations each.

Additional information from "Our World in Data" was considered for groups' analysis. In
particular,  socioeconomic  indicators  -Gross  Domestic  Product  (GDP)  and  Human
Development Index (HDI)-, demographic/population density, median age, life expectancy –
and others related to the pandemic – Government response, testing policy, contact tracing,
etc.- were considered (see Appendix 1).

3. Methodology

Following the methodology developed by Mantegna (1999), in this study the coronavirus
propagation is formulated as a network problem, where each country would be represented
as a node, and the relationship between each pair of countries as a link.

3.1. Time windows networks

On a first stage, distances between the time series of new cases per million of inhabitants
are calculated to construct complete adjacency matrices. Pearson’s correlation is the select
measure of distance, which summarizes the grade of similarity of new registered cases per
million  of  inhabitants  between  countries  at  each  considered  time  window.  Given  that
Pearson’s correlation is an invariant to scale measure (Aghabozorgi et al., 2015), countries
that had similar shapes at their trajectories of propagation but differ in the proportion of the
affected population will be considered similar and likely to cluster. Following Mantegna
and Stanley (2000), Pearson’s correlations between the n x n pairs of chosen countries is
computed (see Equation 1) as follows
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where  ri is the number of new daily cases in country  i and  (ri ) is the average value of  r i

during  the  considered  period.  Then,  the  correlation  matrix  is  built  with  the  correlation
coefficients  ρij . By  definition  ρij takes  values  in  the  interval(−1,1 ),  where  −1  means
completely  anti-correlation,  1  complete  correlation  and  0  that  the  two  variables  are
uncorrelated. This matrix is symmetrical, with  ρij=1 in this main diagonal. As it is well
known, the Pearson correlation coefficient (1) does not fulfill the three axioms that define a
Euclidean metric. For this reason, the correlation matrix is transformed into the correlation
distance matrix according to the Equation 2

d ij=√2 (1− ρij) (2)

which fulfills the three axioms of an Euclidean distance:

id ( i , j )=0↔i= j

iid (i , j )=d ( j , i )

iiid ( i , j ) ≤ d ( i , k )+d (k , j )

Subsequently,  Prim’s  algorithm  (Prim,  1957)  is  applied  to  adjacency  matrix  to  obtain
Minimal Spanning Trees (MST). Being introduced to graph theory by Kruskal (1956) and
Prim  (1957),  MST  have  been  a  widely  used  tool  (Limas,  2019;  Górski  et  al.,  2008;
Kwapień  et  al.,  2009;  Rešovský  et  al.,  2013;  Wang  et  al.,  2013),  mainly  because  it
simplifies  network  analysis  by  selecting  the  most  relevant  bounds.  Indeed,  MST  are
characterized for representing the core information of a complete network with n nodes by
selecting the n-1 links that minimize the overall distance. 

Prim’s algorithm establishes  a procedure in  successive stages for the selection of MST
links. Taking the information from a complete adjacency matrix,  at each step a node is
selected and incorporated to the network. The criteria is to choose, from the not connected
nodes, the one that has the shortest distance to a connected one. At the end of the process
all nodes (n) are connected by n-1 links in a network that has the smallest possible total
length (Prim, 1957). 

Subsequently,  the  single  linkage  method  is  applied  to  obtain  a  subordinant  ultrametric
distance matrix from constructed MST. This graph method is a particular agglomerative
hierarchical clustering algorithm. It starts by considering all the nodes of the network as
subgroups. In successive stages, the less distant subgroups are joined, the distance between
the  new  subgroup  and  the  rest  is  determined  based  on  the  nearest  neighbor  criteria.



Additionally,  every  subordinate  ultrametric  distance  matrix  can  be  represented  by  a
Hierarchical Tree (HT) or dendrogram (Gan et al., 2007).Finally, the pseudo T2  and CH
cutting  criteria  are  considered  to  determine  the  optimal  number  of  groups,  the  highest
number  of  suggested  groups  with  a  maximum of  30  is  the  one  chosen.  The described
procedure is repeated for each considered time window.

3.2. Indicators of group dynamics

Four  measures  are  considered  to  analyze  group  conformation  dynamics;  MST  total
distance, MST average path and number of identified groups, and the number of times two
countries where in the same group. 

Total distance (Equation 3) corresponds to the total sum of the MST links with the lowest
connection cost (taking into account their respective weights). When comparing two MSTs,
the  one  with  the  lower  sum  of  links  has  a  lower  connection  cost,  reflecting  a  major
coincidence in countries disease evolution. 

Totaldistance=∑ ( d ij ∈MST ) (3)

In the case of analysis, average path refers to the average distance in the evolution of the
disease between two countries of the considered MST. 

A lower average geodesic indicates that on average, any two countries of the network had
more similar evolution in COVID – 19 contagions. The geodesic between nodes i and j is
the  shortest  path  between  them  (Jackson,  2010).  Equation  4  reflects  how  to  calculate
average distance, for which it is necessary to define geodesics concept. From all possible
paths between i and j in which any node does not figure more than one time, the geodesic is
the shortest. When considering the I geodesics of the MST, the i-th one is represented as
ni ∈ (1 , I ).

Averagepat h=

∑
i=1

I

ni

I

(4)

The number of identified clusters in each time window is determined as the highest number
of suggested groups according to pseudo T2and CH cutting criteria. A smaller number of
groups implies the presence of countries where the disease evolves in a similar way but that
differs from how it evolves in other groups. The increase in the number of groups implies
difficulties  in  identifying  groups  of  countries  that  differ  from others  according  to  the
evolution of the disease. 

Finally, the number of times two countries are in the same group can provide information
on groups’ stability. If the identified groups are constant (two nodes are always – 95 times -
or  never  –  0  times  –  in  the  same  group),  the  similarity  in  disease  evolution  between
countries does not change in time, and otherwise, it is dynamic. 



3.3. Communities identification

Subsection 3.1 procedure is repeated in every time window, obtaining information about
which countries belong to the same group. Intensity in similarity of disease evolution is
estimated by the number of times two countries were in the same group. Given that 95 time
windows of 150 days amplitude that move one day at a time are considered, the lowest
possible intensity between two countries is 0 and the highest 95. With this information, an
adjacency matrix and the corresponding network is constructed.

Community identification is done by Louvain algorithm (Blondel et al., 2008). This method
aims  to  achieve  the  maximum  modularity  (Equation  5),  that  represents  the  difference
between  observed  links  and  the  expected  ones  by  the  assumption  that  communities
structure  is  independent  from links  formation  over  total  links.  Modularity  takes  values
between -1 and 1,  with 0 meaning that  communities  are  independent  of the amount of
internal  links,  1 that  links are  only formed inside the community  and -1 that  links  are
outside the community. 

Q=
Obs −exp

Total
=

1
2 m

∑
i=1

n

∑
j=1

n

[ei , j
t −

k i k j

2 m ]δ (c i , c j ) (5 )

where nis the number of nodes in the network (124), e i , j
t  the element i , j of the adjacency

matrix, k i=∑
j=1

n

e i , j
t  the sum of edges related to node i, m=

1
2
∑
i=1

n

∑
j=1

n

ei , j
t , c i the community of

node i and δ ( c i , c j ) the Kronecker delta that takes value 1 if c i=c j and 0 if not. 

The procedure starts with n communities of one node each, which is moved to neighboring
communities if it implies an increase of modularity. First, community structure is obtained
when these movements do not produce a major modularity. Then the procedure is repeated
considering the formed communities as nodes and the sum of edges as links. Algorithm
ends when the movement of nodes between communities does not increase modularity. 

3.4. Communities characterization

Communities  are  characterized  in  several  aspects.  In  particular,  socioeconomic,
demographic and geographical indicators are considered. Other information related to the
pandemic, such as number of deaths and taken actions are also incorporated (more specific
information is provided in Appendix 1).

4. Results

This section presents the results in 3 subsections. The dynamics of the groups identified in
each time span is analyzed in the first subsection. The second subsection presents the main
observations of the intensity network in similarity of disease evolution and the identified
communities. Finally, the third section presents the results' robustness. 



4.1. Evolution of groups in time windows

Figure 1 shows the evolution of the number of identified clusters in the 95-time windows
considered (purple) and the evolution of the MST total distance (orange). A wide variation
in the number of groups is observed; note that the time windows move one day at a time,
the maximum number of groups in  each time window is 30 and the lowest number of
identified  groups  is  3.  In  particular,  there  seems  to  be  a  cyclical  behavior  around  a
decreasing trend,  with increases  in  the number of  groups every 20 days  approximately
(corresponding to windows 21, 43, 58, 74 and 95). Total network distance increases in the
first 20 time windows and decreases after. This means that seen as a whole, the trajectories
of COVID-19 in the countries considered began to approach from the time window 20.
Additionally, Figure 2 shows the evolution of networks average path (red) in comparison
with the evolution of identified groups (purple).  The formation of a smaller number of
groups seems to be related to a major average path.  To sum up, the identification of a
smaller number of groups is related to moments in which the evolution of the disease was
more similar between some countries and widened among others. Moreover, this reflects
that evolution of the COVID–19 has been highly dynamic, changes in the interaction were
fast, reflecting a high diversity of interacting trajectories that move closer to and away from
each other and highlighting the importance to analyze it as a complex system.

Figure 1: Number of identified groups and MST total distance in each time window
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Figure 2: Number of identified groups and MST average path in each time window
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Likewise,  the  formation  of  groups  of  similarity  in  the  evolution  of  the  disease  is  also
dynamic, since only in 5.17% of the cases the groups were static (see Figure 3). Note that
most cases corresponds to a situation in which two countries are never in the same group
(389 in 7626, 5,1% of the cases), while it is rare to find countries that belong to the same
group in all considered time windows (5 in 7626, 0,07% of the cases). 

Figure 3: Number of times two countries where in the same group per time window
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Source: own construction based on OWID data.

4.2. Communities of countries by the intensity of similarity in the disease 
evolution. 

Three  communities  of  countries  were  identified  from the  intensity  of  similarity  in  the
disease  evolution  network  (see  Appendix  2),  represented  in  Figure  4.  Community  1 is
conformed by 56 countries, community 2 of 59 and community 3 has only 9 members. 



Figure 4. Intensity of similarity in the disease evolution network

Source: own construction based on OWID data. Appendix 2 presents countries corresponding to
each number. 

As Figure 5 shows, the evolution of COVID–19 rolling 7-day average of daily new cases
per  million  people  in  most  of  the  community  1  was  more  constant  than  in  the  other
communities.  Even when individual  trajectories were different  between members (some
had one wave, others two or more and levels are wide), the disease in these countries seems
to oscillate  in  a smaller  range in  comparison to  countries  from the other  communities.
Average group trajectory presents a low positive trend. Initial spread of the disease seems
to have been less abrupt than in other communities, with a more gradual increase in the
number of cases in several countries. Community 2 is composed by countries in which the
new confirmed cases per million had at least one phase of wide variation. Some of these
countries had an important and fast increase in the number of daily cases at the beginning
of infections, in others it happens during the middle of the considered time span. It is also
possible to identify some countries with a slower growth in the number of cases, but with
an important  difference between days with small  and high number of daily contagions.
Inmost of the community members, at least one pronounced wave can be seen, but for some
the  number  of  daily  new cases  stabilizes  at  a  high  level  after  surge.  On  average,  the
community presents a first high and short wave of contagions, followed by a positive trend
(higher than in community 1). 
Average disease evolution of community 3 is the most unstable, and fluctuates around a
positive  trend.  The  first  wave  of  contagions  seems to  have  been  less  pronounced  and
shorter than in community 2 for most members, additionally, longer phases of increase in
the number of daily cases seems to be presented. Given that average evolution presents a
positive trend in all communities, the number of daily cases has not yet entered a phase of
decline. These results suggest that the number of infections will continue for a while.

Figure 5. Rolling 7-day average of daily new confirmed COVID-19 cases per million 
people by country and community. 

Community 1.



Community 2

Community 3

Source: own construction based on OWID data. Black central lines correspond to group median; high and 
low black lines represent the upper and lower quartiles respectively.

Despite having similarities in relation to contagion dynamics, the identified communities
are different in several aspects. Considered in average, each community has very different
characteristics  in  terms  of  demographic,  socioeconomic  and  geographical  indicators,
actions taken in relation to COVID–19, and in the impact of the disease (measured by the
number of total deaths per million of inhabitants by December 1st). 



Table  1  presents  communities  demographic  and  socioeconomic  information  that  is
considered  as  relevant  in  relation  to  the  disease  evolution.  In  all  considered  measures,
communities have countries that belong to at least 3 quartiles of the variable distribution
along all considered countries. This indicates that, even when there are characteristics in
which  some  quartile  have  more  countries,  communities  are  diverse  in  all  considered
aspects. 

Table 1.Communities’ demographic and socioeconomic data

community 1 community 2 community 3

Average population density 326 182 96

Number of countries per quartile of
population density

1 14 15 1

2 10 16 5

3 13 16 2

4 19 11 1

Median age 33 35 29

Number of countries per quartile of
median age

1 16 11 3

2 13 14 3

3 10 19 1

4 14 15 1

Average GDP per capita* 20,545 26,327 11,196

Number of countries per quartile of
GDP per capita

1 16 9 4

2 15 13 2

3 12 16 3

4 11 19 0

Averagelifeexpectancy 75 76 72

Number of countries per quartile of
life expectancy

1 14 12 5

2 15 15 1

3 14 14 3

4 13 18 0

Average Human developmentindex 32.7 34.6 29.5

Number of countries per quartile of
Human development index

1 17 11 3

2 16 12 2

3 9 18 3

4 14 17 0
Source:  own  construction  based  on  OWID  data.  Note:  Difference  between  sum  of  countries
frequency and total  countries  per  group at  each variable  are  due to  lack of  data.  *Measure  in
constant 2011 international dollars, most recent year available.

In particular, community 1 has the highest average population density, with most countries
in the 4th quartile. In terms of median age, average per capita GDP, average life expectancy
and average HDI, community 2 has the highest value. These communities present average
values more similar to each other than to community 3 in most of the variables considered.
Community  3  has  the  lowest  population  density  and  the  youngest  population  (lowest
average median age), but it is by far the most vulnerable in terms of the others variables. 



In terms of geographical distribution there is not a clear pattern between communities. Most
African  and  American  countries  belong  to  community  1  and there  are  more  European
countries in community 2. Even so, both communities have members from all continents.
Members of community 3 are African, European and Asian countries, note that 99 of the
124 considered countries belong to this continents. All above considered, continent does
not seem to be a crucial factor in determining communities of intensity in similarity of the
evolution of COVID – 19 (see Table 2). 

Table 2.Communities geographic data

No. of countries by continent

No. of countries Africa Asia Europe North America Oceania South America No. of islands

Community 1 56 11 17 14 8 1 5 9

Community 2 59 7 18 24 5 1 4 10

Community 3 9 3 2 3 1 0 0 0

Total 124 21 37 41 14 2 9 19

Source: own construction based on OWID data.

Additionally,  figure 6 shows how communities  locate  in  the  globe.  As it  can  be  seen,
communities are spread in a wide range of latitudes and their members are not necessarily
border.

Figure 6. Communities map

Source: own construction based on OWID data.

Communities’ members are also diverse in terms of implemented actions to counteract the
negative  effects  of  the  disease in  order  to  control  its  propagation.  Overall  government
responses  were  varied  within  each  community,  due  to  both  containment  and  health
measures as well as economic ones (see table 3).

Table 3. Countries actions in relation to COVID – 19
community 1 community 2 community 3

Average Max. Government Response Index 77 76 75



Number of countries per quartile of Max.
Government Response Index

1 10 16 3

2 18 8 2

3 15 13 1

4 10 17 2

Average Max. Containment Health Index 80 79 77

Number of countries per quartile of Max.
Containment Health Index

1 10 16 3

2 14 8 2

3 18 14 1

4 11 16 2

Average Max. Economic Support Index 65 68 70

Number of countries per quartile of Max.
Economic Support Index

1 7 8 1

2 20 16 2

3 15 14 3

4 11 16 2

Predominant testing policy*   2 2 1

Number of countries per predominant 
testing policy

1 14 14 5

2 25 23 3

3 15 18 0

Predominantcontacttracingpolicy   2 2 1

Number of countries per predominant 
contact tracing policy

0 4 3 0

1 19 11 6

2 31 41 2
Source:  own  construction  based  on  OWID  data.  Note:  Difference  between  sum  of  countries
frequency and total countries per group at each variable are due to lack of data. 

Testing policy codebook: 0 – No testing policy, 1 - Only those who both (a) have symptoms and
also (b)  meet  specific  criteria  (e.g.  key workers,  admitted to  hospital,came into contact  with a
known case, returned from overseas), 2 - Testing of anyone showing COVID-19 symptoms, 3 -
Open public testing (e.g. “drive through” testing available to asymptomatic people).*Any country
of the sample had category 0 as predominant  testing policy.  Tracing policy codebook: 0 – No
tracing, 1 - Some, but not all, cases are traced, 2 – All cases are traced. 

More differences can be identified in terms of predominant testing and contact tracing policies
(see table 3). In communities 1 and 2, the most frequent testing policy between January 22 and
December 1st was to test anyone showing symptoms, while in community 3 people had to also
meet specific criteria. Tracing policy has also been more rigorous in communities 1 and 2; the
most frequent tracing policy between January 22 and December 1st was to traced almost all cases,
in community 3 it  was to trace some cases. Given that in average,  communities  1 and 2 had
smoother evolution of the disease than community 3, testing and tracing policies  seems to be
important  in  controlling  contagions.  Even  so,  communities  are  not  homogeneous  in  the
implementation of these policies, indicating that these measures do not guarantee the control the
COVID–19 spread. 



Having a similar evolution of the disease did not imply different results in terms of deaths, since
average  community  registered  deaths  at  December  1st per  million  are  similar  between
communities. Moreover, higher averages on healthcare access and quality index were not reflect in
lower deaths averages (see table 4). 

Table 4. Healthcare system and deaths per million.
community 1 community 2 community 3

Average Healthcare access and quality index   68 72 61

Number of countries per quartile of
Healthcare access and quality index

1 15 12 3

2 18 10 3

3 9 19 2

4 13 18 0

Average deaths per million at December 1st   289 285 281

Number of countries per quartile of deaths
per million by December 1st

1 16 9 3

2 12 17 2

3 10 20 1

4 16 12 3
Source: own construction based on OWID data. Note: The difference between thesum of the countries 
frequency and total countries per group at each variable are due to lack of data.

4.3. Results Robustness

Variations  in  the  maximum number  of  groups allowed in  each time  window can have
effects in formed communities. In this study, results were obtained for a maximum of 10,
20 and 30 groups per time window. Identified communities were stable; only 10 out of 124
countries belonged to a different community in at least one of the exercises performed.
Table 5 presents observed countries community changes when varying the maximum of
allowed  groups  per  window.  Appendix  3  presents  countries’  values  and  quartiles  per
considered variable, confirming that communities are still diverse when these changes in
membership are considered. 



Table 5. Country community changes by allowed group maximum in each time window. 

Max. No. of groups per time window

30 20 10

Belgium 1 1 2

Bolivia 1 3 1

Bangladesh 1 2 2

Andorra 1 3 1

Chile 1 1 2

Morocco 1 1 2

Togo 1 3 3

Australia 2 3 3

South Africa 2 3 3
Montene-
gro 3 2 3

Source: own construction based on OWID data.

5. Conclusions

Measuring the intensity of similarity in the disease evolution, three communities of
countries were found, with distinctive aspects in their  average behaviors.  Community 1
presents the most controlled path, while in Community 3 average contagions were more
unstable. Community 2 presents an intermediate average evolution, with an initial wave
followed by a more stable path. Even so, communities’ members  were diverse in several
aspects, and the three communities present particular cases that do not follow the average
behavior.  All  communities presented positive trends, which suggests that the number of
infections will continue for a while. Furthermore, the multiplicity of dynamics suggests that
the  impact  on the  national  economies  will  be  heterogeneous,  with  some countries  less
affected.  This might be observed in the levels of unemployment.  In this  regard,  Milani
(2020)  finds  that  the  behavior  of  unemployment  across  countries  has  been  very
heterogeneous. In Latin American countries, and even in the US, socially disadvantaged
populations cannot follow the order to stay at home. Thus, the issue of income inequality
turns  to  be  the  main  obstacle  for  a  complete  and  effective  implementation  of  social
distancing measures. Even so, each community is integrated by countries from different
GDP per capita levels. 

Our results confirm the initial assumption. The spread of COVID-19 is a complex
phenomenon, characterized by both a multiplicity of patterns and non-linear dynamics. This
point  suggests,  on  one  hand,  the  presence  of  diverse  drivers  behind  the  spread  of  the
COVID-19 and that public policy responses should not be homogeneous, but should rather
be adapted to different contexts. However, it is important to note that communities with a
more stable  evolution were composed by a  majority  of  countries  implementing stricter
testing and contact tracing policies.

Given  the  complexity  of  the  phenomenon,  we  consider  relevant  to  distinguish
between short-term and medium-term interventions. The implementation of lockdowns is
an example of the former. When discussing the effect of lockdowns, the available literature
seems to show contradictory results.  However,  since COVID propagation is  a  complex



phenomenon, we consider that there is no such contradiction, but that the results should be
analyzed  within  their  specific  contexts.  Note  that  countries  from the  same community
implemented different levels of maximum containment health policies.

In  particular,  policy  makers  should  specify  in  their  objective  function  which
segments of the population are being targeted and which indicators are been used. In this
regard, as Ehlert (2020) points out, policymakers should consider the identification of risk
groups  when  designing  their  response  strategies.  In  addition,  Huang  et  al.  (2020)
recommend  policy  makers  to  guarantee  that  the  impacts  of  public  policy  include  the
interests of the socially disadvantaged groups. It is also important to consider the existence
of trade-offs within the objective function, since minimizing both COVID-19 propagation
and economic  impacts  might  be two conflicting  goals.  On this  line,  Mahasinghe et  al.
(2020) suggest that the lockdown strategies are non-linear. For example, in the case of Italy,
Ciminelli and Garcia-Mandio (2020) offer evidence that the shutdown of service activities
is  effective  in  reducing  COVID-19  mortality,  although  shutting  down  factories  is  less
effective. Thus, they recommend closing down services, however the government should be
more careful when considering closing down factories, particularly given the social costs
derived from halting production. In the case of Chile, Asahi et al (2020) found out that
localized lockdowns were associated to up to 15% drop in the local economic activity.

Regarding the service sector, it would be important to have a second thought when
considering a complete shut down in the tourism sector, as Ehlert (2020) suggests. In his
study of Germany's 401 counties, he finds no evidence of the tourism sector as a driver of
infection  or  death  rates.  At  this  point,  it  would  be  important  to  consider  that  tourism
encompasses a wide range of activities and that many tourists travel in order to isolate
themselves during their leisure time. Thus, this activity might be favoring conditions for
social distancing. In the case of Latin American countries, in which the rate of infections
and  mortality  has  been  growing,  policy  makers  might  stimulate  self-isolation  through
promoting the use of resorts for risk groups.

The best options to counteract the harmful effects of a pandemic may be having
strong health systems with contingent capacity to deal with unforeseen events or available
resources  capable  of  a  rapid  expansion  of  its  capacity.  Regarding  the  medium-term
interventions, the expansion of health services should be considered. In Latin American
countries,  an  important  proportion  of  population  has  diabetes  and  hypertension,  which
increase fatality rates. The policy recommendation is a robust public-funded health system
with wider accessibility, as Sherpa (2020) and Gandjour (2020) suggest. There should be an
increase in public health funding, as well as in the number of doctors per population and
bed availability. Alternatively, countries could have available resources with the capacity to
rapidly strengthen the health system. Ciminelli and Garcia-Mandio (2020) point out that a
robust health care system is the only way to prevent a huge death toll. Their results for Italy
show that locations at 10 km from the closest intensive care unit had up to 50% higher
mortality.Even when communities are heterogeneous in terms of total deaths and healthcare
access, lack of information on the number of cases that required hospitalization in several
considered countries limits our results in this aspect. Additionally, policy makers should
pay attention to bottlenecks in the access to health services, since it has been observed that
isolating health areas just for COVID-19 patients has complicated the treatment of other
health problems. In order to avoid additional disruptions in health treatments, Degeling et al
(2020) recommend the restoring of health service to normal levels as soon as possible.
Another  relevant  medium-term  intervention  would  be  improving  the  health  of  the
population via the intake of more fruits and vegetables. Since it implies a drastic change in



dietary habits, it might require time and an important effort by governments and regulatory
agencies. This intervention might be particularly relevant in Latin American countries, in
which obesity and related co-morbidities are common. In a study of the population in the
Nordic countries, Mol and Karnon (2020) found the that the existence of low obesity rates
facilitates a more liberal social distancing policy and that the impact of consumption of
fruits  and  vegetable  on  deaths  rates  would  be  comparable  or  even  better  than  strict
lockdowns. The study shows evidence that as the disease progresses, the pattern diversifies.
As  there  are  no  clear  general  characteristics  that  allow the  different  trajectories  to  be
identified,  the  best  response  in  the  medium term is  a  well-prepared  and  strong  health
system.
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Appendix 1. Complementary variables codebook 
Description - Data source

Populationdensity
Number of people divided by land area, measured in square kilometers, most recent year available -

World Bank World Development Indicators, sourced from Food and Agriculture Organization and
World Bank estimates

Median age
Median age of the population, UN projection for 2020 -  UN Population Division, World Population

Prospects, 2017 Revision

GDP per capita

Gross domestic product at purchasing power parity (constant 2011 international dollars), most recent
year available - World Bank World Development Indicators, source from World Bank, International

Comparison Program database

Lifeexpectancy
Life expectancy at birth in 2019 - James C. Riley, Clio Infra, United Nations Population Division

HDI
Summary measure of average achievement in key dimensions of human development: a long and

healthy life, being knowledgeable and have a decent standard of living - United Nations Development
Programme (UNDP)

Max Gobermentrespon-
ceindex

The Oxford Covid-19 Government Response Tracker tracks individual policy measures across 18 indi-
cators.Highest daily value is taken.- Thomas Hale, Sam Webster, Anna Petherick, Toby Phillips, and
Beatriz Kira (2020). Oxford COVID-19 Government Response Tracker, Blavatnik School of Govern-

ment.

Max conteinment and
health index

This is a composite measure based on eleven policy response indicators including school closures,
workplace closures, travel bans, testing policy and contact tracing, rescaled to a value from 0 to 100
(100 = strictest). If policies vary at the subnational level, the index is shown as the response level of
the strictest sub-region. Highest daily value is taken. - Thomas Hale, Sam Webster, Anna Petherick,
Toby Phillips, and Beatriz Kira (2020). Oxford COVID-19 Government Response Tracker, BlavatnikS-

chool of Government.

Max economicindex

The Oxford Covid-19 Government Response Tracker tracks individual policy measures across 2 indica-
tors, income suport and debt/contract releif. Highest daily value is taken. - Thomas Hale, Sam Web-
ster, Anna Petherick, Toby Phillips, and Beatriz Kira (2020). Oxford COVID-19 Government Response

Tracker, BlavatnikSchool of Government.

Testingpolicy
Applied criteria to carry out COVID-19 tests - Thomas Hale, Sam Webster, Anna Petherick, Toby

Phillips, and Beatriz Kira (2020). Oxford COVID-19 Government Response Tracker, BlavatnikSchool of
Government.

Contacttracing
Applied criteria to carry out COVID-19 contact tracing - Thomas Hale, Sam Webster, Anna Petherick,
Toby Phillips, and Beatriz Kira (2020). Oxford COVID-19 Government Response Tracker, BlavatnikS-

chool of Government.

Acsesshelth and quality

The Healthcare Access and Quality (HAQ) Index is measured on a scale from 0 (worst) to 100 (best)
based on death rates from 32 causes of death that could be avoided by timely and effective medical
care (also known as 'amenable mortality'). - Global Burden of Disease Study 2015. Global Burden of

DiseaseStudy 2015 (GBD 2015)

Total deaths per million
at Dec. 1st

Total deaths attributed to COVID-19 per 1,000,000 people by december 1st -  COVID-19 Data Reposi-
tory by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University

Source:  own  construction  based  on  OWID  and  GitHub  data.  December  8  search
in:https://github.com/owid/covid-19-data/blob/master/public/data/owid-covid-codebook.csv,
https://ourworldindata.org/coronavirus-testing,  https://ourworldindata.org/grapher/healthcare-access-and-quality-index?
time=2015,  https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/index_methodology.md and
https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/codebook.md

https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/index_methodology.md
https://ourworldindata.org/coronavirus-testing
https://github.com/owid/covid-19-data/blob/master/public/data/owid-covid-codebook.csv


Appendix 2 Identified communities. 
Community 1- Blue Community 2 - Green Community 3 - Red

1 Afghanistan 2 Albania 28 Cameroon

38 Andorra 3 United Arab Emirates 42 Ethiopia

6 Armenia 5 Argentina 77 Latvia

9 Azerbaijan 7 Australia 88 Montenegro

14 Belgium 8 Austria 92 Pakistan

12 Burkina Faso 10 Bahrain 93 Panama

19 Bangladesh 15 Belarus 112 Tunisia

16 Bulgaria 20 Brazil 118 Uzbekistan

17 Bosnia and Herzegovina 11 Brunei 120 Kosovo

18 Bolivia 24 Cote d'Ivoire

13 Barbados 29 Democratic Republic of Congo

67 Canada 52 Costa Rica

26 Switzerland 30 Cuba

21 Chile 31 Cyprus

23 China 32 CzechRepublic

25 Colombia 36 Djibouti

27 Germany 35 Denmark

34 Dominica 41 Estonia

37 DominicanRepublic 43 Finland

39 Algeria 44 France

105 Egypt 46 UnitedKingdom

48 Spain 33 Georgia

47 Ghana 49 Equatorial Guinea

50 Greece 53 Honduras

51 Guatemala 59 Croatia

57 India 55 Hungary

64 Jamaica 54 Indonesia



65 Japan 58 Ireland

122 Kazakhstan 56 Iran

69 Kenya 60 Iraq

66 Kyrgyzstan 61 Iceland

79 Lebanon 62 Israel

76 Liechtenstein 63 Italy

84 Sri Lanka 73 Cambodia

80 Morocco 70 South Korea

78 Madagascar 71 Kuwait

83 Mexico 81 Moldova

85 Mongolia 75 Maldives

89 Nigeria 82 Macedonia

90 Netherlands 74 Mali

91 New Zealand 86 Malta

98 Poland 87 Malaysia

100 Paraguay 97 Norway

101 Palestine 96 Oman

102 Qatar 94 Peru

103 Romania 95 Philippines

106 Russia 99 Portugal

104 Rwanda 107 Saudi Arabia

123 Singapore 108 Senegal

109 Slovenia 68 El Salvador

115 Togo 40 Serbia

111 Thailand 72 Slovakia

4 Uruguay 22 Sweden

45 UnitedStates 110 Trinidad and Tobago

119 Vietnam 113 Turkey

124 Zambia 114 Taiwan



116 Ukraine

117 Venezuela

121 South Africa

Source: own construction based on OWID data.



Appendix 3: Countries data. 

Source: own construction based on OWID data. Note: With exception to testing policy and contact 
tracing that have 3 categories, red corresponds to first quartile, orange to second, yellow to third and
green to forth. 
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