
Early Stopping in Experimentation with Real-time Functional Magnetic 
Resonance Imaging Using the Sequential Probability Ratio Test 

 
Sarah J. A. Carr1,2, Weicong Chen3, Jeremy Fondran4, Harry Friel5, Curtis Tatsuoka4,2* 
 
1. Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s 
College London, UK 
2. Department of Neurology, Case Western Reserve University, Cleveland, OH, USA 
3. Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, 
OH, USA 
4. Department of Population and Quantitative Health Sciences, Case Western Reserve 
University, Cleveland, OH, USA 
5. Philips Healthcare, Highland Heights, OH, USA 
 
*Corresponding Author: 
Curtis Tatsuoka 
10900 Euclid Avenue 
Case Western Reserve University 
Cleveland, Ohio, 44106 
USA 
Email: cmt66@case.edu 
 
KEY WORDS: real-time fMRI, adaptive fMRI, dynamic experimentation, SPRT, early stopping 
 
Abstract 
 
Introduction: Functional magnetic resonance imaging (fMRI) often involves long scanning 
durations to ensure the associated brain activity can be detected. However, excessive 
experimentation can lead to many undesirable effects, such as from learning and/or fatigue effects, 
as well as undue discomfort for the subject, which can lead to motion artifact and loss of sustained 
attention on task. Overly long experimentation ironically can thus have a detrimental effect on 
signal quality and accurate voxel activation detection. Here, we propose a method of dynamic 
experimentation with real-time fMRI using a novel statistically-driven approach to fMRI 
analytics. This new approach to experimental design invokes early stopping when sufficient 
statistical evidence for assessing the task-related activation is observed.  
 
Methods: Voxel-level sequential probability ratio test (SPRT) statistics based on general linear 
models (GLM) were implemented on fMRI scans of a mathematical 1-back task from 25 subjects, 
14 healthy controls and 11 subjects born extremely preterm. This approach is based on likelihood 
ratios and allows for systematic early stopping based on statistical error thresholds being satisfied. 
We explored voxel-level serial covariance estimation in real-time using the “sandwich” estimator. 
We adopted a two-stage estimation approach that allows for the hypothesis tests to be formulated 
in terms of t-statistic scale, which enhances interpretability. Scan data was collected using a 
dynamic feedback system that allowed for adaptive experimentation. Numerical parallelization 
was employed to facilitate completion of computations involving a new scan within every 
repetition time (TR). 
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Results: SPRT analytics demonstrate the feasibility and efficiency gains of automated early 
stopping, while performing comparably in activation detection with full protocols analyzed 
through standard fMRI software. Dynamic stopping of stimulus administration was achieved in all 
subjects with typical time savings between 33 - 66% (4 – 8 minutes on a 12 minute scan).  
 
Conclusion: A systematic statistical approach for early stopping with real-time fMRI 
experimentation has been implemented. This allows for great savings in scan times, while still 
eliciting comparable activation patterns as full protocols. This dynamic approach has promise for 
reducing subject burden and fatigue effects. 
 
1.0 Introduction 
 
Analysis of task-based functional MRI (fMRI) scans is typically performed with fixed, 
predetermined experimental designs. As a result, subjects must often endure stimulus protocols 
that are overly long in order to ensure the neural activity can be statistically discerned in the noisy 
data. However, this can lead to fatigue, learning effects and excessive motion, such as from 
agitation, as well as being costlier to administer due to longer scan times and potentially less 
reliable measurement. Also, the experimenter does not know if the neural activity is detectable 
until long after the scanning session is over. Real-time functional MRI (RT-fMRI) provides an 
opportunity to ameliorate these issues. RT-fMRI has been successfully applied in the field of 
neurofeedback and biofeedback from neural responses, where subjects may be trained to alter their 
brain activity based on real-time information provided from the fMRI scans. This has been reported 
in ADHD (1), healthy subjects with no psychiatric or neurological disorders (2, 3), Alzheimer’s 
disease (4) and Parkinson’s disease (5, 6). Its uses have also been described in psychoradiology to 
aid diagnosis and treatment planning in psychiatric disorders (7). A largely unexplored application 
of RT-fMRI is to dynamically and statistically determine when a stimulus has been sufficiently 
presented in terms of replication of blocks to terminate early. The magnitude of effort and 
variability in neural activity while completing a task will vary from person to person. Trial 
administration within a block design can be stopped early if sequentially updated statistical 
inference on activation can be determined with sufficient accuracy based on the observed BOLD 
(blood oxygen level dependent) signal response up to that point. This application will be explored 
in detail.  
 
The benefits of adaptive RT-fMRI include: 1) Shorter scan times for fMRI testing: Shorter scan 
times cannot only save in technology and personnel costs, but fatigue and learning effects can be 
avoided, improving signal quality. Scanning becomes less burdensome on the subject as well, 
which is an especially important consideration for children or elderly subjects. 2) Real-time quality 
control: greater consistency in activation classification error can be obtained, through statistical 
error-based benchmarks for stopping rules and real-time feedback on classification performance 
and adjustment of stimulus durations. 3) Richer information: Paradigms can become more complex 
and sophisticated. With greater time efficiency and flexibility, more variations of a stimulus, such 
as reflected by a broader range of difficulty levels, can be administered in the same amount of 
time. 4) Wide applicability: Dynamic adjustment of stimuli based on BOLD response in real time 
can be generally applied across a range of focus areas that investigate localization of brain activity, 
including cognition and motor functioning.  
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Since the advent of RT-fMRI in the mid 1990’s (8), a handful of mainstream software packages 
have been developed for use by the fMRI community. These include Turbo BrainVoyager (9), 
AFNI’s real-time plugin (8) and FSL-based FRIEND (10). There have been few previous studies 
that have used adaptive RT-fMRI. In one example, it has been used to determine ‘good’ and ‘bad’ 
brain states to optimize learning (11). The presentation of novel scenes was prompted by the 
detection of ‘good’ brain states; the ‘good’ template was determined based on a prior standard 
acquisition test scan. They used real-time general linear model (GLM) methods described in (12) 
to estimate the BOLD signal magnitude at each time point (each scan) and compared it to a value 
within a region of interest from the earlier test scan. Another adaptive RT-fMRI study has used a 
person’s brain state to judge their attention to a task (13). When their attention appeared to be 
wandering, the difficulty of the task was increased bringing their attention back. The authors used 
multivariate pattern analysis to determine task-relevant and task-irrelevant activity. Lorenz et al 
(2016) used FSL to pre-process the scans in real-time before applying a GLM-based analysis. 
Their study involved eliciting activity in particular brain regions by presenting stimuli chosen 
based on the response to the previous stimulus. The aim was not to investigate brain activity related 
to a particular task but simply activate a brain region (14). Another example of adaptive RT-fMRI 
used a Bayesian optimization algorithm to estimate when brain activity was mapped to a particular 
network (15). The Bayesian optimization was trained on 4 difficulty levels of a task prior to 
switching to choosing the optimal difficulty levels to elicit the desired activity, where there were 
12 other levels to choose from. 
 
Here, we extend the use of a statistically-based dynamic approach to RT-fMRI experimentation 
described in (16). This approach involves the sequential updating of voxel-level likelihood ratio 
tests, known as sequential probability ratio tests (SPRTs) and assessing after each scan whether 
there is sufficient statistical evidence to determine whether or not an associated parameter value 
indicates task activation. Such results, considered in aggregate across a collection of voxels, can 
be used as a basis for early stopping of experimentation. More generally, this approach can apply 
to competing hypotheses related to linear contrasts of task parameters. Our extension involves the 
actual implementation of this system on a Philips MRI scanner, in a real-time workflow, and 
sequential analysis of subjects across a study. This allows us to assess the variability in 
experimentation lengths across individuals to reach a rigorous threshold for decisive classification 
of activation. This work supports the premise that adaptive, individualized experimentation is 
feasible and can lead to savings in experimental durations.  
 
Most off-line, post-hoc analyses of fMRI data use the general linear model to test statistical 
associations of voxel activation magnitude to task administration (17-19). This approach involves 
the voxel-level estimation of task-related regression parameters that indicate magnitude of 
association between an expected hemodynamic response pattern from a task and the observed 
BOLD signal. In our previous work, we adapted this general method for real-time fMRI by 
sequentially updating GLM regression parameter estimates as soon as the brain volumes were 
collected. At the individual voxel level, we can then assess hypothesis tests related to activation 
that are based on these estimates. In aggregate, the voxel level analyses inform decisions on early 
stopping and the tailoring of fMRI experimentation. See (16) for more details.  
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In comparison to (16), we previously assumed independence when estimating the covariance 
model. Here, we extend these methods by considering the “sandwich” estimator to recognize serial 
covariance (20, 21). We also adopt a two-stage estimation approach that allows for the hypothesis 
test parameters to be formulated in terms of z-score scale at the voxel level. Moreover, we now 
present a novel workflow to apply and implement these methods on a Philips scanner, with a 
dynamic feedback system that allows for real-time dynamic adjustment of the experimentation 
with subjects. This was facilitated with adoption of numerical parallelization techniques. 
 
Another novel aspect of this work is the application of adaptive RT-fMRI in a sample group of 14 
healthy adolescent subjects and 11 adolescents born extremely preterm (EPT). Analysis was 
implemented using sequential probability ratio test (SPRT) statistics and our server was a custom-
built Linux computer located in a nearby building. The fMRI stimulus was a mathematical version 
of the well-known 1-back task. We show a novel workflow for the real-time processing of fMRI 
scans; a workflow that allows adaption of the stimulus difficulty level; processing of RT-fMRI 
was completed within 3 seconds before the next scan arrived; average time savings of 33 - 60% 
based on 80% of voxels being classified were achieved. This equated to 4 – 8 minutes savings with 
a 12 minute scan. 
 
2.0 Methodology 
2.1 fMRI Analysis Methods 
2.1.1 General linear model 
Briefly, the general linear model involves convoluting a double gamma hemodynamic response 
function (HRF) with task indicator variables that denote timing of administration to reflect 
expected task-related BOLD responses. Voxel-level task-related regression parameters are 
estimated and represent the association of the observed response to expected task-activated BOLD 
signal. Thus, activation is assessed through statistical inference on regression parameters. For a 
given voxel up to time t (i.e. for scans 1 through t), the GLM takes the form: 
 
 Yt  = XB+Et (1.1) 

 
Where Yt is a t × 1 vector of observed BOLD signal intensities for the voxel up to time t, and Et is 
a t × 1 vector that represents the error components. X is a t × p design matrix and includes the 
expected BOLD signal values per task. We also include cosine functions of increasing periodicity 
(scan duration*2, scan duration, scan duration/1.5, scan duration/2 and scan duration/2.5) to model 
physiological and other low frequency noise (22). For large periodicities, cosine functions are 
approximately linear for the time frame of scans we consider here, and hence are essentially 
collinear from a GLM modeling perspective. Five regressors were thus added to the design matrix. 
B = !𝑏!…𝑏" …𝑏#$	$ , a p × 1 regression coefficients vector. In this formulation, a regression 
parameter bj can represent magnitude of association with task j. Et is assumed to be distributed as 
multivariate normal with mean zero and covariance Wt, where Wt is a t × t matrix that represents 
the temporal autocorrelation structure. For spatial correlation, we conduct spatial smoothing, so 
do not explicitly model the spatial correlation structure. Yt is assumed to have a multivariate normal 
probability distribution as follows: 
 
 𝑓(𝑌$ , 𝐵, 𝜎%𝑊$) = 	

1

(2𝜋)$ %& |𝜎%𝑊$|
exp 6−

1
2 (𝑌' − 𝑋𝐵)′(𝜎

%𝑊$)(!(𝑌$ − 𝑋𝐵):  
(1.2) 
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where |s2Wt| is the determinant of s2Wt. Major sources of noise in fMRI data include brain 
metabolism, physiology, and spontaneous fluctuations (23). 
 
We fit regression models in parallel for all voxels under consideration in a target region of interest 
(ROI), which could include the whole brain. Real-time analysis requires signal and image 
processing steps, as well as the continual updating of statistical estimates as new scan data are 
received from the scanner. Hence, given the large number of voxels to be analyzed, real-time fMRI 
presents “big data” computational challenges. 
 
2.1.2 Sandwich Estimator  
 
In our previous work (16), we assumed serial independence for computational simplicity. Here we 
recognize serial covariance using the sandwich estimator. The sandwich estimator is a robust, 
model-free covariance estimator that does not require distributional assumptions. Importantly, it 
still provides asymptotically consistent covariance matrix estimates, although convergence rates 
can be slow (20, 21). The approach is evaluated for computational feasibility for real time analysis, 
as well as plausibility in effectively modeling the error structure of the BOLD data over time within 
a voxel.  
 
2.1.3 Wald’s Sequential Probability Ratio Test   
 
At the voxel level, we can use the sequential analytic framework of (16, 24-28), to adaptively 
assess activation status using real-time fMRI. As we will demonstrate, Wald’s SPRT is an efficient, 
sequential testing approach that can greatly reduce the need for experimental block administrations 
compared with fixed designs while attaining similar classification performance in simulation, and 
activation patterns with subject data. This approach relies on a SPRT statistic to conduct hypothesis 
testing, with the null hypothesis representing no activation with respect to a task, and the 
alternative hypothesis representing some threshold of activation, as represented by a GLM 
parameter value (16). This statistic is updated with each new observation, and its value is compared 
with thresholds for stopping. Exceeding thresholds indicate a decision on activation status can be 
made within predetermined statistical error levels. Additionally, we conduct two-stage estimation 
to obtain a preliminary estimate of the voxel-level error variance, so that an associated magnitude 
of the linear contrast of task parameters 𝑐′𝛽 can be determined as the threshold in the alternative 
hypothesis that will correspond to a desired t-statistic value. As an illustration, suppose a t-statistic 
value of 3.1 is selected, as will be done below in our studies. Note 3.1 is the one-sided p-value = 
0.001 - critical value for the standard normal distribution. Given an estimated value σ>% from a first 
stage, we solve for the value of 𝑐)𝛽 that satisfies 𝑐′𝛽 /sqrt(𝑣𝑎𝑟B !𝑐)βD$) = 3.1. See, for instance, (16) 
for the variance formula. 
 
Specifically, the general procedure of Wald’s SPRT is described as follows. Consider a one-sided 
hypothesis of the form 𝐻*:	𝑐)𝛽 = 	 𝑐)𝛽*  versus 𝐻+:	𝑐)𝛽	 ≥ 	 𝑐)𝛽! , where 𝑐)(𝛽! − 𝛽*) ≥ 0. Two-
sided formulations are described in (24) and (16). Implementation of Wald’s SPRT involves 
updating Wald’s likelihood ratio statistic as new data are observed (24):  
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Λ$ = 𝑙𝑜𝑔 M

𝑓N𝑌$|𝑐′𝛽!, 𝑣𝑎𝑟B !𝑐𝛽O$	P
𝑓N𝑌$|𝑐′𝛽*, 𝑣𝑎𝑟B !𝑐𝛽O$	P

Q 
 

(1.3) 

 
 

where 𝑓(𝑌|𝑐′𝛽*, 𝑣𝑎𝑟B !𝑐𝛽O$	 ) and 𝑓(𝑌|𝑐′𝛽!, 𝑣𝑎𝑟B !𝑐𝛽O$	)	 are the respective probability densities 
functions of Yt given 𝑐)𝛽* or 𝑐)𝛽! is the true value of parameter of interest and conditioning on the 
estimated covariance. After Yt is observed at a time point, t, one of three possible decisions is made 
according to the following rules:  

1. Continue sampling if 𝐵 < Λ$ < 𝐴 
2. Stop sampling and accept 𝐻* if Λ$ < 𝐵 
3. Stop sampling and accept 𝐻+ if 𝐴 < Λ$ 

 
where stopping boundaries (A, B) = (log((1-βE)/αE), log(βE/(1-αE))), and the target Type I and Type 
II error levels are respectively denoted as αE and βE. These error levels are specified before testing. 
Note that both the Type I and Type II error levels are controlled for with SPRT, as opposed to 
standard hypothesis test formulations that only control for Type I error level. Multiple SPRTs are 
conducted concurrently across voxels and boundary error levels can be adjusted for instance by 
Bonferroni correction to account for this simultaneous testing. A practical modification of the 
original SPRT formulation for stopping is to consider the truncated SPRT (29), which will 
additionally call for stopping if an upper bound for the number of observations is reached. In our 
case, this is reached when a fixed number of blocks have been administered.  
 
Ultimately, we aggregate the findings of the voxel-level SPRTs to determine whether or not 
experimentation within a block design should be terminated early. A “global” stopping rule that 
considers all voxels in a region of interest (can be whole brain or smaller ROIs) that we have 
adopted is to terminate task administration when a predetermined percentage of voxels have been 
classified by their respective SPRTs. For instance, we have used 80% as a global stopping criterion. 
Note that 80% classified means either as active or non-active. We choose this cut-off as it is fairly 
strict, which will facilitate correspondence in full scan data results. We also choose Type I and 
Type II error levels that are relatively more stringent for Type I error. For the future, we are 
considering adaptive and more flexible stopping rules beyond predetermined percentages. 
However, these will rely on vastly more powerful computational resources than available for our 
current experiments. For now, we stop early only in a conservative manner. Note that for 𝑐)𝛽 
parameter values that are “in-between” the null and alternative hypothesis values, the SPRT is 
indifferent to preferring one hypothesis over the other. This leads to larger numbers of scans 
needed before a stopping boundary is crossed. So, we have to accept a lack of decisive stopping 
decisions for these cases in order for overall experimentation to stop early. This is an acceptable 
trade-off for shorter experimental scan times and the ability to tailor experimentation.  
 
Note that it also is important to balance the stopping times for active and non-active decisions, so 
that there is not a systematic bias towards one activation status being classified faster and driving 
attainment of the global stopping rule, while the other status has less decisive classification. For 
instance, a potential concern is if the non-active voxels do not require as many scans to satisfy the 
SPRT criterion. If there also is a high percentage of non-actives in the ROI for the experiment, 
then the global stopping rule would result in decisively classifying only non-active voxels. On the 
other hand, if the SPRT stopping times for active and non-active voxels are generally similar, then 
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there will be a proportional balance of decisively classified active and non-active voxels. This mix 
can be adjusted by selection of the respective error thresholds that determine stopping boundaries. 
 
2.2 MRI Data Collection Methods 
 
Fourteen healthy subjects were recruited, 7 males. They were aged 15-16 years old and 13 were 
right-handed. They had no known neurological conditions and a normal developmental history. A 
group of 11 adolescents born EPT were also recruited, 1 male. EPT is defined as being born at < 
26-week gestation and weighing < 1000g. All were aged 15-17 years old and 8 were right-handed, 
2 left-handed and 1 ambidextrous. All subjects were recruited as part of a larger study to evaluate 
functional and structural differences associated with mathematical abilities and working memory 
between those born EPT and those born at normal term. Adolescents were recruited as they can 
handle the stress of fMRI experimentation, are mathematically advanced enough and have had 
time to master the subject area. EPT subjects were included to show that differences with patient 
populations are detectable with our methods. A subsection of the full study is reported here to 
demonstrate the real-time analysis.  
 
The subjects made one two-hour visit to the MRI department at University Hospitals Cleveland 
Medical Center (UHCMC). Ethics approval was obtained from the UHCMC Institutional Review 
Board office prior to the study and complied with the Declaration of Helsinki for human subject 
research. Subjects and their parents gave informed consent prior to taking part.  
 
2.2.1 MRI protocols 
 
The subjects were positioned head-first supine on the scanner bed with their head fixed in position 
using inflatable pads. An 8-channel head coil was used for data acquisition. Echo planar imaging 
scans were acquired on a Philips Ingenuity 3T PET/MR imager at UHCMC. The following fMRI 
scan parameters were used: TR = 3.0 s, TE = 35 ms, in-plane resolution was 1.797 mm2 (matrix 
128 x 128), slice thickness was 4 mm, number of slices = 36 slices and flip angle = 90°. A SENSE 
P reduction factor of 2 was implemented and scans were acquired in an ascending interleaved 
fashion. 
 
In addition to the fMRI scans, a high-resolution T1-weighted anatomical image of the brain was 
also acquired. This was taken using a standard gradient-echo sequence with TurboFLASH. 
Imaging parameters were: TR = 7.5 ms, TE = 3.7 ms, in-plane resolution was 1 mm2 (matrix 256 
x 256), slice thickness was 1 mm, number of slices = 200 slices and flip angle = 8°. 
 
2.2.2 Stimulus protocols 
 
During data acquisition subjects were presented with a mathematical version of the well-known 1-
back memory task. It involved performing basic addition and subtraction calculations and required 
the answer to be remembered and compared to the next answer. Two difficulty levels were 
included. The protocol was developed by our lab as part of a battery to assess mathematical and 
working memory abilities in 14 – 17-year olds to evaluate the functional differences between those 
born EPT and those born at normal term. The stimulus was presented on an MRI compatible LCD 
monitor (manufactured by Cambridge Research Systems, Rochester, UK) positioned at the end of 
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the bore and viewed via a mirror attached to the head coil. Equations were presented, for example, 
the subject may see “2 + 3 = ?”. The subject was required to work out the answer and then 
remember it while working out the next equation, for example “1 + 4 = ?”. If they thought the 
answers matched, then the subject pressed a button on a response box held in their right hand. If 
they thought the answers did not match, then they did nothing but remember the new answer to 
compare to the answer of the next equation. An example sequence is shown in Figure 1.  
 
The stimulus was presented in a block design. 8 equations were presented per block. Each block 
lasted 36 seconds followed by 21 seconds of rest condition (fixation dot). Two difficulty levels 
were presented. The easier level consisted of single digit numbers to add or subtract and the 
answers were always a single digit. The harder level involved addition or subtraction of single or 
two-digit numbers and the answers were always two digits. Blocks of difficulty levels were 
alternated during the scan and a total of 6 blocks per level were presented. Note: although only 2 
difficulty levels are used here, the setup is able to accommodate any number of difficulty levels. 
The full duration of the task was 238 scans or 11 minutes and 54 seconds. This was based on a 
moderate length of experimentation for a 1-back block design (e.g. see (30-33)), allowing 6 
minutes for each task. 
 
The visual stimulus was presented using an in-house custom written program that was developed 
using the Python programming language (Python Software Foundation, https://www.python.org/) 
and libraries from Psychopy - an open source visual presentation program (34-36). The program 
connected to a Cedrus Lumina controller to receive stimulus responses from the subject and trigger 
pulses from the MRI scanner (outputted every dynamic). The timing of the presentation of the 
visual stimulus was synchronized to the trigger pulses to ensure that stimulus images were 
displayed at the expected time. A Supervisor Window displayed on the experimenter’s computer 
screen allowed the visual stimulus to be tracked throughout. It displayed the current block number 
being presented, how many remaining blocks there were and when the subject responded. The 
program was also able to terminate one or both of the difficulty levels if it received a signal 
indicating the relevant areas in the fMRI data were sufficiently classified across voxels. The 
software is freely available from the Bitbucket repository: https://bitbucket.org/tatsuoka-lab/fmri-
presentation. 
 
2.2.3 Real-time fMRI acquisition 
 
Real-time image transfer was achieved by XTC (eXTernal Control). This is a program integrated 
into the Philips scanner software and enabled by a research clinical science key. XTC 
communicates with the reconstruction and scanner processes on the scanner computer and 
interfaces to a network Client application using a minimalistic CORBA (Common Object Request 
Broker Architecture) (37) interface which uses TCP/IP as the transport layer. CORBA is platform 
independent, reliable, and has the ability to process large amounts of data with minimum overhead. 
Each CORBA message consisted of a hierarchical attribute collection identified with UUIDs 
(universally unique identifiers) (38). Messages carried reconstructed image data and meta-data 
containing details of scan protocols. Due to hospital network security protocols the reconstructed 
images were placed in a folder on the scanner computer and then pushed across to a Linux 
computer. To achieve necessary image transfer speeds to the scanner computer folder a 
modification to XTC was installed on the scanner to disable two-way communications as only 
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one-way image transfer functionality was required. However, XTC does support two-way 
communication between the scanner and the Client.  
 
The Linux computer was a custom-built server equipped with a solid state hard drive and two 8-
core Intel Xeon E5-2687W processors running at 3.1 GHz and providing 40 MB L3 cache. It was 
installed with Centos 7.4 operating system. As the scans were received, custom written Python and 
Bash scripts implemented the analysis using core-based parallelization to preprocess the data and 
perform the SPRT statistical analysis. Preprocessing was performed using standard modules from 
AFNI (Analysis of Functional NeuroImages, https://afni.nimh.nih.gov) and FSL (FMRIB’s 
Software Library, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The analysis sequence is detailed in the 
following section. The setup is shown in Figure 2. 
 
2.2.4 MRI preprocessing and ROI identification 
 
At the beginning of the scanning session a single fMRI scan (3 sec) was acquired and used for 
coregistration (motion correction) purposes. In preparation, the skull was removed using FSL’s 
Brain Extraction Tool (BET) (39) and a mask of the full brain was created. During the real-time 
adaptive fMRI scan session, new scans arrived every 3 seconds and was dumped in a folder on the 
Linux workstation where the following actions were applied to each one. AFNI’s ‘dcm2niix_afni’ 
command was used to convert the .par/.rec files to nifti. Motion correction was performed using 
coregistration techniques. Every fMRI scan was realigned to the initial scan that was acquired 
before the task began, and AFNI’s ‘3dvolreg’ command was used. Spatial smoothing was also 
applied using an 8 mm kernel with AFNI’s ‘3dmerge’ command. The full brain mask created at 
the beginning of the session was applied using FSL’s ‘fslmaths’ command to remove noisy voxels 
outside the brain (voxels of no interest). The resulting images were then converted to ascii format 
for statistical analysis with SPRT. 
 
2.2.5 fMRI SPRT analysis 
 
The SPRT analysis was applied using highly-optimized C++ program that used Intel Cilk Plus 
library for multicore and vector processing of data. BLAS routines from Intel MKL were used to 
enable instruction-based acceleration for matrix computation. They are available from the 
Bitbucket repository at https://bitbucket.org/tatsuoka-lab. The design matrix was created prior to 
the scan session using AFNI’s ‘3dDeconvolve’ command to model the stimulus and HRF. It is 
possible to include the temporal derivatives of the HRF or other regressors in the design matrix 
where applicable in studies. Temporal derivatives were not included here due to the long durations 
of the block design used to present the task. Statistical analysis included the modeling of low 
frequency physiological noise and the associated removal of serial correlation using discrete cosine 
transforms. Motion parameters are also frequently used as regressors to remove correlated 
activations produced by movement. Here motion parameter regressors were not included with the 
estimation of the discrete cosine transforms due to the time limitation of conducting the analysis 
on each scan within the 3 second TR.  The automatic determination of when to terminate the 
scanning is based on the Type I and Type II errors, aE and bE, as described above. A percentage 
of voxels that must be classified before termination was also specified during the setup, such as 
80%.  
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3.0  Results 
3.1 Individual Subject Results of SPRT 
 
All subjects were able to complete the 1-back task. The median control subject response time 
across both difficulty levels was 1.44 sec (SD 0.51 sec), and median task accuracy was 90.8 % 
(SD 20.2 %). When these are broken down by difficulty level, the easy level median task accuracy 
was 86.1 % (SD 22.6 %) with median response time of 1.28 sec (SD 0.54 sec); and the hard level 
median task accuracy was 90.0 % (SD 18.4 %) with median response time of 1.56 sec (SD 0.51 
sec). EPT subjects had a slightly longer overall median response time of 1.91 sec (SD 0.48 sec) 
and overall median task accuracy was lower at 65.8 % (SD 21.2 %). For the easy level, the median 
accuracy was 72.2 % (SD 24.2 %) and median response time was 1.63 sec (SD 0.49 sec). For the 
hard level the median accuracy was 70.0 % (SD 19.8 %) with a median response time of 2.10 sec 
(SD 0.54 sec).  
 
Functional MRI data were analyzed using typical Type I and II error levels, to test stopping time 
performance, with aE = 0.001, bE = 0.1 (40, 41). The results of the SPRT versions are presented in 
Tables 1 A-B. A full-length task protocol comprised 238 scans and lasted 12 minutes. The first 78 
scans were used for the first stage of experimentation and included two blocks per difficulty level. 
Note: data collection of subjects 1 and 3 were terminated early to test the early stopping 
functionality in real time and those datasets contain only 78 scans. 
 
Real-time transfer speeds between the scanner and the Linux computer were consistently fast, with 
individual scan files taking less than 150 milliseconds to transfer. All subject scans were processed 
within the 3 second TR period. Offline testing showed that the subject with the largest number of 
voxels (subject 21 with 135,379 voxels) was processed in just 5 minutes and 45 seconds. The 
subject with the fewest number of voxels (subject 5 with 77,359 voxels) was processed in 5 
minutes and 2 seconds. Thus, it is feasible for a TR of 2 seconds to be used with the software, 
depending on transfer speeds.  
 
Stopping was reached at 80% and 90% classified in most instances. At 80% classification for 
controls, 86% of subjects stopped early for the easy level and 93% for the hard level. The median 
stopping time at 80% for controls was 84 scans (SD 18 scans) for the easy level and 85 scans (SD 
10 scans) for the hard level. At 90% classification, 71% and 79% of control subjects stopped early 
for the easy and hard levels, respectively. For EPT subjects, at 80% classification, 91% of subjects 
stopped early for the easy level and all subjects stopped early for the hard level. At 90% classified, 
91% stopped early for both levels. At 80% classified, the median stopping scan was 104 scans (SD 
46 scans) for the easy level and 80 scans (SD 13 scans) for the hard level. At 90% classification, 
the median stopping scan times between the groups differed more significantly for the easy level: 
controls – 115 scans (SD 53 scans) and EPT – 141 scans (SD 44 scans). However, they are very 
similar for the hard level: controls 103 scans (SD 43 scans) and EPT – 106 scans (SD 46 scans).  
 
In summary, both groups had a good rate of stopping early for 80 % of voxels classified and a 
slightly lower rate for 90 %. Note: it is not possible to know if subjects 1 and 3 would have stopping 
early if the full 238 scans had been collected. It should also be noted that those born EPT can have 
structural abnormalities of the brain which can affect fMRI results. Subject 23 had an enlarged 
right ventricle that was obvious on the T1 and fMRI images. This may have affected the results 
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preventing early stopping occurring during the easy level and at 90% classification for the hard 
level.  
 
In Table 1, far right-hand column, are listed the active voxel counts if a full duration analysis was 
performed using all 238 scans (- 78 scans for subjects 1 and 3). For the easy level, two-thirds of 
subjects show an increase in the number of active voxels at scan 238 compared to the scan where 
80% of voxels are classified. At the hard level, the majority of subjects (96% of subjects) increase 
the active voxel count compared to early stopping. Visual inspection of the t-score maps at the 
stopping scan and at the full duration revealed similar patterns of clusters with centers overlapping, 
see example in Figure 3. In most instances, the additional active voxels at full duration were around 
the edges of existing clusters at the early stopping scan. This is explored further in Table 2 where 
we show the number of active voxels in common spatially between the two durations.  
 
In Table 2, the values given are for the scans where 80% of voxels were classified. The median 
spatial overlap for controls was 69.6% (SD 31.2%) for the easy level and 79.2% (SD 25.0%) for 
the hard level. For EPT subjects, the median was 64.3% (SD 32.6%) and 63.3% (31.6%) for the 
easy and hard levels, respectively. There are a few instances where the active voxel counts differ 
substantially between early stopping and full duration analyses (See Tables 1 A-B) - for example 
Subject 2, hard level: 80% classified with early stopping at scan 80, active voxel count = 2,026, 
full duration active voxel count = 23,351. The low early stopping active voxel count leads to a low 
percentage of spatial overlap with full duration, here 29.1 %. However, for most subjects, there is 
a good amount of spatial overlap between the two time points. Generally, across subjects the 
largest activations were centered bilaterally around the inferior and superior parietal areas, taking 
in the intraparietal sulcus, a region highly associated with mathematical functioning. Further 
activations were seen in the cuneus. These are most likely correlated with the visual processing 
associated with the task. Additional activations were seen in the precuneus, bilateral areas in the 
medial frontal gyrus, anterior cingulate, insula and inferior frontal gyrus. These areas are often 
associated with attention and memory systems (42, 43). 
 
3.2 Group Analysis Results 
 
The preprocessed files from the SPRT analysis can be used directly to perform a group analysis 
using AFNI’s 3dMEMA command (Mixed Effects Meta Analysis tool) (44). However, A group 
analysis was carried out using FSL to demonstrate that the data collected in real-time can still be 
used in a typical post-hoc analysis. Raw data was preprocessed with FSL FEAT (45). Motion 
correction was performed using a rigid body transform, spatial smoothing with a full-width-at-
half-maximum Gaussian kernel of 6mm was applied, high pass temporal filtering of 90 s was 
carried out and coregistration to (MNI) standard space was done before performing a first level 
individual GLM analysis. The statistical output from these were used to perform the higher level 
group statistics using FLAME 1 (FMRIB's Local Analysis of Mixed Effects, (46)). The results for 
the 1-back easy and hard contrasts are given for EPT and controls in Table 3 and Figure 4. The 
group results of full scan durations are compared to the group results using only the scans up to 
the early stopping point for each subject for each difficulty level.  
 
For controls, there is consistency in location and overlap of clusters between the group activations 
for each level with strong activations in the anterior cingulate and parietal regions, See Tables 3 
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and 4, and Figure 4. This suggests that the data is being stopped at an optimal point and that 
scanning for longer might not be adding useful information to the dataset.  
 
The EPT subjects demonstrate some activity in the parietal regions and, at full duration, the 
anterior cingulate too. However, there is much less activity as a group overall compared to control 
subjects. In order to understand this result it is necessary to consider neuropsychological skills and 
structural and functional brain changes within the group. Behavioral data collected as part of our 
wider study shows that nearly two thirds (63.6 %) of the EPT cohort have lower working memory 
function, compared to just over one third (35.7 %) of controls subjects. Working memory is a key 
skill required for both mathematics and this numerical 1-back task. Recall the lower accuracy and 
longer response times in the EPT group. fMRI studies on dyscalculia (difficulty in learning and 
performing mathematics) suggest that there is greater heterogeneity in activations with a more 
diffuse pattern being apparent (47, 48). Additionally, there is overlap in structural differences in 
white matter integrity, as measured from diffusion weighted imaging studies, between those born 
EPT and those with dyscalculia including inferior fronto-occipital fasciculus and the inferior and 
superior longitudinal fasciculi (49-52). These connect crucial areas associated with mathematics 
and working memory. A more diffuse and variable pattern of functional activity, perhaps partly 
due to structural differences, may confound a group analysis in this instance. More data points 
from individuals do seem to improve the results, perhaps allowing the variability to converge 
somewhat. This is supported by the change in variance for the group between early stopping and 
full duration analyses, see right-hand column of Table 4. The control group variances are much 
lower throughout. A group analysis of the EPT subjects based on early stopping at 90% 
classification does produce a map of activations similar to the full duration due to the longer scan 
times involved (not shown).   
 
4.0 Discussion   
 
We present a workflow for the implementation of an adaptive real-time fMRI system that allows 
for statistically-driven dynamic adjustment of experimentation based on voxel-level SPRT. We 
show that this dynamic and adaptive statistical approach is comparable to corresponding fixed 
experimental designs in terms of detected activation. At the same time, time savings in experiment 
durations ranged between approximately one third and two thirds of the full protocol. The SPRT 
results in Tables 1 and 2 indicate that results are fairly comparable with a full protocol analysis. 
The statistical stopping criteria of the approach help ensure accurate characterizations of activation 
patterns while reducing time needed for scanning and providing a framework for flexible yet 
systematic dynamic paradigms.  
 
Our SPRT approach was effective at detecting brain activity at the individual level with early 
stopping in both the controls and EPT groups. We note the individual variability among subjects 
in early stopping performance. Factors that can affect stopping times include the magnitudes of 
activation, variability in task performance and the noise levels in the BOLD signal. In the future, 
we will consider development of adaptive approaches to individualize global stop rule threshold 
selection that can encourage early stopping while balancing the potential for improved activation 
classification with continued experimentation.  
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.15.21249886doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.15.21249886
http://creativecommons.org/licenses/by-nc-nd/4.0/


There are many possible applications in the research setting where individual level results may be 
the focus. A possible clinical application may be in clinical assessments for presurgical evaluation 
for brain surgery in patients with brain tumors or epilepsy. A group analysis was also feasible 
using the early stopping data in controls. A possible limitation was discovered in performing a 
group analysis of the EPT group who demonstrated greater variability in location at the individual 
level. While it is feasible to apply our approach for patient group studies, consideration should be 
given to the particular patient group of interest and the likely differences in brain activity when 
making the decision to terminate early. If early stopping is attractive, such as to reduce burden for 
an impaired population, we conjecture that larger sample sizes or stricter early stopping criteria 
may help overcome this larger variability. 
 
Use of SPRT allows for voxel-level control of both Type I (aE) and Type II (bE) error relative to 
a hypothesized GLM parameter or contrast. Other aE, bE- pairs were considered as well, to test 
how different combinations impact activity detection and early termination. For instance, given 
selection of aE = 0.001 and bE = 0.01, overall stopping did not occur. In this case, the more stringent 
choice of bE makes it more difficult to cross either of the SPRT thresholds, although here the active 
voxels are still classified relatively quickly. We also saw that for aE = 0.001 and bE = 0.1, we gain 
dramatic gains in shorter scan durations for experimentation, across both of the conditions that are 
considered. Note, that for SPRT, stopping is less likely for values in-between the null and 
alternative hypothesis values. As we selected a stringent alternative value (with t-statistic 
approximately equal to 3.1), this makes stopping less likely if we focus on reducing Type II error. 
Also, since we are stopping “globally”, SPRT values exceed stopping thresholds in many cases.  
 
In terms of the global stop rule threshold, we observed that for the cases under consideration, 
stopping when 80% of voxels in the full brain (or smaller ROI) respectively satisfy their SPRT-
based stopping criterion generally leads to early termination of stimulus administration, while also 
leading to comparable activation classification as with the full protocol. The stricter 90% criterion 
is not always satisfied, and hence does not always lead to early stopping of experimentation. Recall 
that when GLM parameter values are “in-between” the null and alternative hypothesis values, 
SPRT-based stopping is less likely at the voxel level. A 100% stopping rule is thus not feasible. 
Importantly, note that group-level analyses can still be conducted with varying experimentation 
durations across subjects, for example using AFNI’s ‘3dMEMA’ module (44), and data collected 
in real-time may also be analysed using normal post-hoc methods implemented, for example, in 
FSL.  
 
Here we demonstrated full brain analytics with parallelization using MKL Intel libraries for matrix 
computation with two Xeon E5-2687W 8-core processors. It is also feasible to consider only partial 
brain volumes where experiments demand more consideration of a particular area. Future 
directions for the study are to implement the SPRT and Bayesian sequential estimation methods 
using distributed computing approaches to increase processing speed allowing full brain real-time 
analyses and advance stopping rule methods in shorter scan times. This could include dynamic 
selection of global stopping rule thresholds, and look-ahead stopping rules that rely on 
probabilistic prediction. 
 
5.0   Conclusion 
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We introduce a systematic, statistically-based approach to dynamic experimentation with real-time 
fMRI. Saving in scan time and accurate voxel activation detection can be achieved, while 
redundant experimentation in block designs is reduced. These methods lay a foundation for future 
dynamic experimentation approaches with fMRI, and for real-time quality control analyses to 
assess statistical error performance across voxels. Use of high performance computing enables the 
advent of these more sophisticated real-time experimental designs.   
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Figure 1: Sample 1-back protocols demonstrating the two difficulty levels.  

 
 
Figure 2: Schematic of the experimental setup of the dynamic real-time fMRI process. The 
equations were presented to the subject while the scans were acquired and exported to the Linux 
workstation for processing with SPRT statistics. The results were relayed back to the presentation 
program with instruction to either continue or terminate the stimulus.  
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Figure 3: Full brain activation t-score maps that are associated with the easy and hard level 1-back 
task for 1 EPT subject (number 20). Left in red shows SPRT results with early stopping. Right in 
blue shows full duration results (activations at scan 238). P ≤ 0.001 uncorrected. Shown in subject 
own space. R = right, L = left, A = anterior, P = posterior.  

 
 
Figure 4: Group results for the 1-back task. Analysis performed for controls and EPT subjects 
using FSL. Early stopping is compared to full duration. Activations are overlaid on the MNI 
template brain. Red (Left) = early stopping group results, Blue (Right) full duration (238 scans) 
group results. P < 0.001 uncorrected. Slices z = 58 is shown. R = right, L = left, A = anterior, P = 
posterior.  
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Table 1: Subject results of the 1-back task using SPRT to analyse the data. Analysis reported here 
uses aE = 0.001, bE = 0.1 and thresholded at p < 0.001. A) Easy level, B) Hard level. 
 
A) Easy level  
Subject No of Voxels 

in ROI (full 
brain) 

No of 
Voxels 

Classified 
Active at 

80% 

No of 
Voxels 

Classified 
Active at 

90% 

Scan when 
80% 

Reached 

Scan when 
90% 

Reached 

No of 
Voxels 

Classified 
Active at 
Scan 238 

Controls       
1* 91,936 7,935^ 7,935^ Not reached Not reached 7,935 
2 115,062 6,182 2,717 121 140 3,556 
3* 103,128 1,010^ 1,010^ Not reached Not reached 1,010 
4 113,564 5,236 9,049 83 155 12,803 
5 77,359 4,531 8,233 79 109 13,472 
6 103,591 15,065 13,680^ 132 Not reached 13,680 
7 114,260 2,583 6,505 100 108 10,540 
8 121,353 979 979 79 79 4,674 
9 107,406 115 1,892 79 108 4,115 
10 106,267 7,242 9,341 107 156 7,124 
11 121,195 349 349 79 79 9,329 
12 96,565 549 3,596 103 139 7,340 
13 107,016 2,146 2,398 84 120 6,357 
14 96,936 10,150 12,429^ 104 Not reached 12,429 
      
Median values   84 (SD 18) 115 (SD 53)  
       
EPT       
15 94,623 64 56 79 100 49 
16 94,905 4,870 10,779 104 141 15,866 
17 98,799 795 580 105 108 750 
18 118,098 16,139 14,598 111 177 13,484 
19 124,749 4,782 5,192 79 165 3,487 
20 97,437 734 1,263 79 105 3,925 
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21 135,379 246 6,854 85 140 7,402 
22 89,609 1,397 3,664 79 108 8,093 
23 104,584 10,039^ 10,039^ Not reached Not reached 10,039 
24 114,201 5,881 11,637 107 203 13,817 
25 86,177 11,354 9,437 106 148 6,715 
      
Median values   104 (SD 46) 141 (SD 44)  

  
B) Hard level 
Subject No of Voxels 

in ROI (full 
brain) 

No of 
Voxels 

Classified 
Active at 

80% 

No of 
Voxels 

Classified 
Active at 

90% 

Scan when 
80% Reached 

Scan when 
90% 

Reached 

No of 
Voxels 

Classified 
Active at 
Scan 238 

Controls       
1* 91,936 2,708^ 2,708^ Not reached Not reached 2,708 
2 115,062 2,026 2,737 80 102 23,351 
3* 103,128 2,237 2,237^ 78 Not reached 2,237 
4 113,564 12,051 10,462 102 121 20,749 
5 77,359 4,127 8,409 89 104 14,976 
6 103,591 5,322 5,722 84 98 9,874 
7 114,260 3,743 11,787 79 114 14,939 
8 121,353 3,784 5,233 87 113 7,829 
9 107,406 1,194 330 85 95 2,494 
10 106,267 7,229 7,977 97 117 14,634 
11 121,195 5,527 3,380 85 101 8,898 
12 96,565 6,048 3,353 80 101 10,921 
13 10,7016 5,205 7,609 110 183 11,355 
14 96,936 6,352 29,279^ 98 Not reached 29,279 
      
Median values   85 (SD 10) 103 (SD 43)  
       
EPT       
15 94,623 139 139 79 79 860 
16 94,905 7,779 19,974 79 158 21,074 
17 98,799 1,325 922 84 87 1,696 
18 118,098 11,491 10,401 99 126 14,984 
19 124,749 1,848 2,212 79 96 4,335 
20 97,437 16,677 9,877 119 156 10,967 
21 135,379 1,310 1,223 79 86 7,609 
22 89,609 1,563 4,979 79 106 8,754 
23 104,584 1,822 10,038^ 80 Not reached 10,038 
24 114,201 2,651 8,197 84 114 15,374 
25 86,177 6,110 8,715 97 105 8,088 
      
Median values   80 (SD 13) 106 (SD 46)  

* The datasets of these subjects contain only 78 scans in total. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.15.21249886doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.15.21249886
http://creativecommons.org/licenses/by-nc-nd/4.0/


^ Values taken from last scan – scan 78 in subjects 1 and 3, scan 238 in subjects 6, 14 and 23. 
 
Table 2: At each subject’s stopping scan, the number of active voxels that spatially overlap 
between early stopping and full duration are listed. The percentage of voxels-in-common is also 
given relative to the total number of active voxels detected at the stopping scan, given in Tables 1 
A-B. Stopping based on 80% classification. Maximum number of possible scans is 238, minimum 
is 78 scans, equal to two blocks of easy and hard stimulus administration. 
 Easy Level  Hard Level   
Subject Stopping 

Scan 
No. of 

Voxels in 
Common at 

Scan 238 

% of 
Common 

Voxels with 
Scan 238 

Stopping 
Scan 

No. of 
Voxels in 

Common at 
Scan 238 

% of 
Common 

Voxels with 
Scan 238 

Controls       
1* 78 7,935 100 78 2,708 100 
2 121 1,797 29.1 80 1,208 59.6 
3* 78 1,010 100 78 2,237 100 
4 83 1,888 36.1 102 10,610 88.0 
5 79 4,410 97.3 89 4,098 99.3 
6 132 11,278 74.9 84 3,724 70.0 
7 100 2,414 93.5 79 3,608 96.4 
8 79 432 44.1 87 2,597 68.6 
9 79 103 89.6 85 334 28.0 
10 107 4,653 64.3 97 5,838 80.8 
11 79 92 26.4 85 4,289 77.6 
12 103 456 83.1 80 2,829 46.8 
13 84 194 9.0 110 1,460 28.0 
14 104 5,447 53.7 98 5,451 85.8 
 
Median 
values 

 
84 (SD 

18)  
69.6 (SD 

31.2) 

 
85 (SD 

10) 

  
79.2 (SD 

25.0) 
       
EPT       
15 79 0 0.0 79 0 0.0 
16 104 4,028 82.7 79 7,233 93.0 
17 105 137 17.2 84 294 22.2 
18 111 10,379 64.3 99 7,278 63.3 
19 79 1,251 26.2 79 930 50.3 
20 79 361 49.2 119 5,904 35.4 
21 85 161 65.4 79 549 41.9 
22 79 1,358 97.2 79 1,510 96.6 
23 238 10,039 100 80 1,194 65.5 
24 107 4,576 77.8 84 2,495 94.1 
25 106 5,361 47.2 97 4,801 78.6 
 
Median 
values 

 
104 (SD 

46)  
64.3 (SD 

32.6) 

 
80 (SD 

13) 

  
63.3 (SD 

31.6) 
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Table 3: List of activations from a group analysis using FSL. Easy and hard levels for controls 
and EPT subjects are reported for early stopping and full scan durations. Thresholds of p < 0.001 
uncorrected and minimum cluster extent = 10 voxels have been applied. 
Group Cluster 

No. 
Coordinates 

(MNI) 
No. of 
Voxels 

Peak t-score Side Location 

Early stopping:      
Easy       
EPT 1 

2 
3 
4 
5 
6 
7 

-44 4 30 
-42 8 0 
2 14 38 

-40 -40 36 
-52 10 0 
10 4 28 
48 6 48 

52 
40 
36 
31 
29 
12 
11 

4.92 
4.68 
5.61 
4.57 
5.81 
3.88 
4.83 

Left  
Left  
Left  
Left  
Left  

Right  
Right  

Precentral Gyrus 
Insula 
Cingulate Gyrus 
Supramarginal Gyrus 
Superior Temporal Gyrus 
Cingulate Gyrus 
Middle Frontal Gyrus 

       
Controls 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

-40 28 26 
38 -46 46 
-6 8 52 

-34 -50 48 
-42 14 2 
22 -32 18 
14 6 64 
-8 8 18 

-14 12 34 
-42 44 16 
-20 8 66 
38 16 2 
6 12 18 

-32 60 16 
-46 8 50 

690 
382 
352 
134 
69 
64 
57 
25 
24 
21 
18 
18 
14 
10 
10 

6.66 
7.1 
5.81 
4.99 
4.53 
4.04 
3.84 
3.97 
4.75 

5 
5.05 
3.55 
3.62 
3.56 
3.48 

Left  
Right  
Left  
Left  
Left  

Right  
Right  
Left  
Left  
Left  
Left  

Right  
Right  
Left  
Left  

Middle Frontal Gyrus 
Inferior Parietal Lobule 
Medial Frontal Gyrus 
Inferior Parietal Lobule 
Insula 
Caudate 
Superior Frontal Gyrus 
Caudate 
Cingulate Gyrus 
Middle Frontal Gyrus 
Superior Frontal Gyrus 
Claustrum 
Anterior Cingulate 
Superior Frontal Gyrus 
Middle Frontal Gyrus 

Hard       
EPT 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 

28 -62 48 
40 -42 48 
-42 2 26 
32 -54 66 
18 12 62 
-32 20 28 
8 28 26 
-8 8 52 
-6 0 70 
50 0 44 

88 
84 
48 
26 
26 
17 
16 
13 
12 
10 

6.45 
6.06 
5.35 
4.36 
4.81 
3.67 
4.6 
4.2 
4.45 
4.87 

Right  
Right  
Left  

Right  
Right  
Left  

Right  
Left  
Left  

Right  

Superior Parietal Lobule 
Inferior Parietal Lobule 
Precentral Gyrus 
Superior Parietal Lobule 
Medial Frontal Gyrus 
Middle Frontal Gyrus 
Cingulate Gyrus 
Medial Frontal Gyrus 
Superior Frontal Gyrus 
Precentral Gyrus 

       
Controls 1 

2 
3 

-10 14 36 
40 -44 44 
-44 2 30 

509 
481 
237 

5.99 
8.54 
5.09 

Left  
Right  
Left  

Cingulate Gyrus 
Inferior Parietal Lobule 
Precentral Gyrus 
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4 
5 
6 
7 
8 
9 
10 
11 

-32 -48 46 
-54 22 26 
-32 22 0 
-18 6 66 
-6 0 52 

-38 22 26 
-30 42 30 
-40 -54 62 

236 
82 
30 
28 
25 
21 
14 
10 

9.48 
5.7 
4.32 

4 
4.93 
4.41 
3.75 
5.62 

Left  
Left  
Left  
Left  
Left  
Left  
Left  
Left  

Inferior Parietal Lobule 
Middle Frontal Gyrus 
Claustrum 
Middle Frontal Gyrus 
Medial Frontal Gyrus 
Middle Frontal Gyrus 
Middle Frontal Gyrus 
Superior Parietal Lobule 

Full duration:      
Easy       
EPT 1 

2 
3 
4 
5 
6 
7 
8 

28 -56 50 
-10 8 44 
-40 12 32 
52 20 38 
32 18 44 

-30 -60 44 
8 30 38 
46 14 28 

150 
144 
44 
28 
28 
17 
14 
13 

4.93 
4.49 
4.81 
5.48 
4.54 
4.30 
4.16 
5.75 

Right  
Left  
Left  

Right  
Right  
Left  

Right  
Right 

Superior Parietal Lobule 
Cingulate Gyrus 
Precentral Gyrus 
Middle Frontal Gyrus 
Middle Frontal Gyrus 
Angular Gyrus 
Cingulate Gyrus 
Precentral Gyrus 

       
Controls 1 

2 
3 
4 
5 
6 

-46 0 26 
40 -44 46 
-12 14 36 
-36 -46 44 
20 -30 18 
-40 18 -2 

754 
612 
573 
225 
65 
17 

6.52 
9.21 
6.05 
9.53 
5.06 
3.62 

Left  
Right  
Left  
Left  

Right  
Left 

Inferior Frontal Gyrus 
Inferior Parietal Lobule 
Cingulate Gyrus 
Inferior Parietal Lobule 
Caudate 
Insula 

Hard       
EPT 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 

-14 14 34 
36 -42 48 
-44 2 38 

-30 -58 42 
-50 22 24 
-32 16 34 

8 0 68 
12 4 28 

-10 -4 66 
40 10 26 

446 
418 
66 
40 
15 
15 
14 
11 
11 
10 

6.78 
5.93 
5.09 
4.31 
3.65 
3.98 
4.2 
4.26 
3.68 
4.25 

Left  
Right  
Left  
Left  
Left  
Left  

Right  
Right  
Left  

Right 

Cingulate Gyrus 
Precuneus 
Precentral Gyrus 
Angular Gyrus 
Inferior Frontal Gyrus 
Middle Frontal Gyrus 
Medial Frontal Gyrus 
Cingulate Gyrus 
Medial Frontal Gyrus 
Precentral Gyrus 

       
Controls 1 

2 
3 
4 
5 
6 
7 
8 
9 

-10 14 36 
38 -44 44 
-34 -46 44 
-44 0 28 
-46 22 22 
-16 -24 22 
20 -32 18 
-40 16 -6 
-22 6 66 

680 
590 
277 
259 
128 
68 
63 
45 
12 

7.70 
9.12 
9.47 
5.16 
5.00 
4.02 
3.94 
5.62 
3.43 

Left  
Right  
Left  
Left  
Left  
Left  

Right  
Left  
Left  

Cingulate Gyrus 
Inferior Parietal Lobule 
Inferior Parietal Lobule 
Precentral Gyrus 
Middle Frontal Gyrus 
Caudate 
Caudate 
Insula 
Superior Frontal Gyrus 
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10 0 -86 6 11 3.69 Left Lingual Gyrus 
 
Table 4: The number of active voxels that spatially overlap between early stopping and full 
duration group analyses are listed. Images thresholded at p < 0.001. The percentage of voxels-in-
common is given relative to the total number of active voxels detected at early stopping. Stopping 
based on 80% classification at the individual level. 
 No of Active 

Voxels 
No. of Voxels in 

Common at 
Scan 238 

% of Common 
Voxels with Scan 

238 

Variance 
Magnitudes 

EPT - Easy     
Early stopping 409   45,939 (SD 3,664) 
Full duration 528 320 21.8 18,351 (SD 1,135) 
     
EPT - Hard     
Early stopping 477   35,842 (SD 4,177) 
Full duration 1,186 319 33.1 27,110 (SD 1,054) 
     
Controls - Easy     
Early stopping 2,034   8,819 (SD 631) 
Full duration 2,276 699 65.6 11,082 (SD 469) 
     
Controls - Hard     
Early stopping 1,765   11,156 (SD 943) 
Full duration 2,520 545 69.1 9,104 (SD 685) 
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