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Abstract

Epidemic models are used to analyze the progression or outcome of an epidemic under

different control policies like vaccinations, quarantines, lockdowns, use of face-masks, phar-

maceutical interventions, etc. When these models accurately represent real-life situations,

they may become an important tool in the decision-making process. Among these models,

compartmental models are very popular and assume individuals move along a series of com-

partments that describe their current health status. Nevertheless, these models are mostly

Markovian, that is, the time in each compartment follows an exponential distribution. Here,

we introduce a novel approach to simulate general stochastic epidemic models that accepts

any distribution for the sojourn times.

Keywords: Stochastic, Epidemic models, Markov chains, Simulations, Sojourn time

1. Introduction

A mathematical model is a real-life sketch that allows for experimentation and testing.

Engineers have used models for long time, where temperature, friction, durability and forces

play a role in decision making. Similarly, chemists have used mathematical models to

analyze chemical reactions with the purpose of optimization, but, despite the long-standing

tradition of using mathematical models, their use in biology or medicine is much more recent.

Sometimes scientists in these disciplines deal with not well understood phenomena and thus,
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the set of assumptions is usually larger and require the conjunction of different disciplines.

From the classical Ross Malaria model (Ross, 1915) that allowed to conclude that keeping

the mosquito population below a threshold would eliminate Malaria, to Blower’s findings

(Blower and McLean, 1994) that a vaccine with a low level of protective efficacy may do

more harm than good by providing a sense of false security to the vaccinated, models may

reveal a hidden ‘cobra effect’, that is, something that has not accounted for.

Mathematical models have been a valuable tool to analyze the demographics of biological

populations and have become a valuable tool to biologists to follow the health of populations

in the field (Caswell, 2001). As Cohen states: “Mathematics is biology’s next microscope,

only better; biology is mathematics’ next physics, only better” (Cohen, 2004).

Epidemics are not only driven by etiological agents but also by the behavior of the

population. For this later, mathematical models in epidemiology resemble more a field of

economics than of medicine. Examples of such behaviour may involve the population’s reac-

tion to vaccination, abortion, use of face-masks, medication, blood or plasma transfusions,

condom use, etc. The fact that a model considers such behaviors does not guarantee that

these have been correctly included in the model, which most of the times requires a deep

knowledge of the phenomena and interdisciplinary work. For instance, Needle/Srynge Poli-

cies (NSOs) that attempt to reduce HIV transmission by providing needles for free, must

face the fact that sharing needles is sometimes part of the experience (Kaplan and Heimer,

1994), and that peer pressure is a determinant factor in acquiring smoking habits (Evans

et al., 1978).

The most popular epidemic models consist of a series of stages that represent the differ-

ent real-life health status or conditions. Individuals move along the compartments according

some specified transition rules. The analysis of these models can be deterministic or stochas-

tic. There are many differences between these two types of models, but here we illustrate the

two that are the most relevant. In Figure 1 we can see a stage model with three compart-

ments, X,Y and Z. The deterministic model consists of a continuous drainage of individuals

from all compartments and thus, if at time t = 0 there is one individual in compartment

X, after some finite time t, the individual will be spread among the three compartments.

In contrast, in a stochastic model, the individual can be in only one of them. The most

important difference is the source of uncertainty: in deterministic models, based on differen-

tial equations, there is no uncertainty, whereas in stochastic models, the outcome may vary
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under the same parameter set. Figure 2 shows 5 stochastic simulations of an SEIR epidemic

model shown together with the solution of the deterministic model. Clearly, the distribution

of the stochastic simulations is shifted to the right, since small epidemics vanish quickly and

are unnoticeable. This will result in differences in the average time to extinction, the cost

of the epidemics (the integral under the curve of infected) and other functionals of time.

2. Simulations

Before the advent of computers one could only rely on analytic results which limited the

complexity of the models. Computer simulations allow researchers to obtain the response

to ‘What would happen if...’ in complex situations. In deterministic models, the term

simulation refers to the numerical solution of a set of differential equations. In stochastic

models, it implies the use of pseudo-random numbers to decide when an individual leaves a

compartment as well as the origin and destination compartments. Stochastic models allow

researchers to obtain information on the variability of the possible outcomes: while in a

deterministic model the number of infected at time t is constant, in stochastic models, this

number follows a statistical distribution whose moments may be infered by performing a

large number of simulations.

In Markovian epidemic models, sojourn times in each compartment are exponential

random variables. Simulating these models is easy because the memoryless property allows

to describe the whole system at any time t with a vector containing the number of individuals

in each compartment. But the mean and standard deviation of an exponential distribution

are equal, which is a very stringent condition for real-life situations. If sojourn times are not

exponential we would need to keep track no only of the number of individuals in any given

compartment, but also on the actual time each individual has been there, which affects the

decision on who moves next and where to. Keeping this record is computationally intensive.

We first provide a review of what is being called as time to step simulation, used in

simulating epidemic models with exponential sojourn times and how it is commonly dealt

when the sojourn time is not exponential.

Review of “time to step” simulation.

As mentioned before, whereas in a deterministic model there is a continuous ‘leaking’

between boxes, in the Markovian version of the model, only one transition between two
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Figure 1: The main differences between deterministic and stochastic models can be shown in this Figure.

Suppose that at time t = 0 there is only one individual in compartment X. In a deterministic model this

individual is drained continuously at a rate λ and a fraction p of this goes to compartment Y , thus, after

some finite time t, this individual is spread among the three compartments, whereas in a stochastic model

the individual is in only one of them.

compartments takes place at any time, which is a random event and the time when this

transition takes place is another (independent) continuous random variable. The following

results from exponential distributions are used in time to step simulations:

If X and Y are two exponential distributions with respective parameters α and β, then:

(i) P (X < Y ) = α/(α+ β)

(ii) The min(X,Y ) follows an exponential distribution with parameters α+ β

(iii) The probability that X < Y is independent of the distribution of min(X,Y ).

(iv) If an event occurs at a time which follows an exponential distribution with parameter

α but when the event occurs, there is a probability p that event will be of type A, then

the time to the occurrence of an event of type A follows an exponential distribution

with parameter αp.

Property (iii) implies that the time to the next event is independent of the event that

will take place. This is an important property because we can independently simulate the
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Figure 2: Stochastic simulations of as SEIR model. Some simulations vanished quickly and are unnoticeable.

The plot shows the number of infectious (I) over time, with N = 1000 and R0 = 2. Dashed line is the solution

of the deterministic model.

time to the next event and the event that will take place. Property (iv) is called thinning

the Poisson processes.

Assume that there are K compartments and that transitions at time t from compartment

i to compartment j occur a a rate δij(t). For simplification, we will write this rate as δij .

A stochastic simulation of these models involves:

(a) Calculating the rates of all transitions δij .

(b) Calculating the total transition rate R =
∑
ij δij .

(c) Calculating the transition probabilities pij for every possible transition: as pij = δij/R.

(d) Simulating when the next transition will take place using an exponential distribution

with parameter R.

(e) Selecting the transition that will take place.
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(f) Updating the system, that is, moving one individual from compartment i to compart-

ment j according the chosen transition in step (e) and adding the simulated time ob-

tained in step (d).

(g) Re-starting from step (a) and continuing until R = 0 or a predefined stopping time tmax.

Due to property (iii) steps (e) and (d) can be exchanged. For step (d), since the time to

the next transition is exponentialy distributed, we can simulate it by using T = −log(u)/R,

where u is a uniform random number (0, 1). For step (e), we can select a single sample from

a multinomial distribution with parameters pij , for i = 1, 2, . . . ,K; j = 1, 2, . . . ,K where

the outcome is the index of the event that will take place.

Tthis kind of simulation is known as time to event simulation because we modify the

contents in each compartment until the next event takes place. Thus, in a SEIR model the

number of times the loop (a)-(g) above has to be executed is about 3 times the number of

infected, since each one of them must move eventually through the stages E, I and R. For

R0 large, the number of infected may be close to N , the population size.

Review of fitting non-exponential sojourn times to the compartments

As mentioned before, stochastic Markovian models assume that the duration of time in

each compartment is exponential because these distributions have the memoryless property

in which regardless of the time an individual has been in a compartment, the probability that

the individual will leave it in the next s units of time is 1− e−λs, for some λ. Consequently,

it is not necessary to track the current time of an individual in a compartment to decide if

it is time to leave it or not. We only need to know how many individuals there are in each

compartment and the respective exit rates to decide what happens next. Exponential times

implies a constant hazard rate, which is not precisely a characteristic of most stages in most

diseases. For instance, an individual that just had surgery may present complications from

surgery, and the possibility of a complication in the next unit of time reduces with time,

thus, this is an example of a decreasing hazard rate. On the other hand, an individual that

has been infected may eventually die or recover eventually and the possibility that one of

these events will occur in the next unit of time increases with time, thus, it has a positive

hazard rate.

An attempt to approximate a distribution with some mean µ and some variance σ2

can be done using Erlang distributions (Anderson and Watson, 1980; Lloyd, 2001; Wearing
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et al., 2005; Champredon et al., 2018). This approach is equivalent to divide a compartment

into several sub-compartments, each with an exponential duration, so that the sojourn time

through all of them has the desired mean and variance. An exact match is sometimes

impossible and we need to get as close as we can to the desired moments. There are two

problems inherent to using this technique: the first one is that, in a model with K stages

(excluding the susceptible state), there are roughly K−1 transitions for each individual, and

if each of those K stages is divided in n substages, the number of transitions increases by

n, resulting in more computing time. The second problem is that the approximation of the

first two moments of a single stage alone may require a very large number of substages. For

instance, if we want to match a distribution with mean 20 days and standard deviation
√

8,

we would need an Erlang distribution with parameters 50 and 5/2, that is, 50 compartments

in a row, each with an exponential sojourn time with parameter 5/2. At some point, the

number of compartments may become prohibitive, and some relaxations would be made,

and the distribution is only approximated. If this is repeated for a model with several

compartments, things can become very complicated.

3. A new method to simulate stochastic compartmental models

In most epidemic models, an individual starts in a compartment S for the susceptible

stage and then starts a passage through some or all of the remaining stages. Once an

individual leaves the S compartment, the passage through the other stages is independent

of what other individuals are doing. Assume that there are N individuals and K stages

excluding the susceptible, thus, we can generate a matrix T of size N ×K with entries ti,j

for the duration of individual i in compartment j. Since most popular computer scientific

programs can handle vectorization to generate random variables, the generation of each

column of T is fast.

The only problem that remains is deciding when an individual becomes infected, if this

occurs. Let y a vector of size N × 1 where yi is the time when individual i leaves the S

compartment. The vector y and the matrix T contain all information of one simulation.

We start with one infected at time t = 0, that is, y1 = 0, whose transition through the rest

of the stages is contained in the first row of T. Vector y is not easy to get, and is, by far,

the most time-consuming step in the process.

Sellke (1983) developed an alternative construction of a stochastic SIR epidemic that we

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.15.21249880doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.15.21249880
http://creativecommons.org/licenses/by-nc-nd/4.0/


will use to derive vector y. Sellke’s goal was to provide a simple proof of Daniel’s (1967)

result regarding the final number of removed, that is, the size of an epidemic. Sellke’s

derivation relaxed the small number of initially infected, but still needed the assumption of

an exponential distributed infectious period. Here, Ball (1986) version of Sellke’s construc-

tion is used because it does not require the assumption of exponential distribution for the

duration of the infectious state.

If the population is of size N and there is an initial infected at time t0, according to Sellke

(1983) and Ball (1986), the exposure required to achieve infection follows a Poisson process

with parameter λ/N . Therefore, to generate a vector L′ = [L1, L2, L3, . . . , LN−1] with the

ordered required exposures, we must first generate a sorted vector u = [u1, u2, u3, . . . , uN−1]

where ui follow a Uniform distribution in [0, 1] such that ui > ui+1 and then:

L = [0 − (N − 1) log(u)/λ] (1)

The i-th individual will leave the S compartment after reaching a level of exposure equal

to Li, but the exposure required by individual i + 1 is equal to the duration of infection

of the i previously infected, consequently, if this sum is smaller than Li+1, the i + 1-th

individual will not be infected and the epidemic stops with i infected. Figure 3 illustrates

the idea behind this construction. The epidemic terminates with n infected when:

R = min

{
n :

n∑
i=1

Ti < L(n+1), n ≥ 0

}
.

Although there are many ways to generate vector y containing the times when individ-

uals leave the susceptible state, we chose a general approach that can be used with more

complicated models, for instance, models with several infectious stages with differential de-

gree of infectiousness. This approach is based on the concept of individual exposure that we

will describe.

3.1. Individual exposure, fj(yj , t)

The individual exposure of individual j, fj(yj , t), that is, the force of infection produced

by this individual, is a piecewise function defined as follows: let W be the cumulative sum

over rows of matrix T. Let w′j be the j-th row of W appending a 0 at the beginning, that

is:
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T1 T2 T3 T4 T5 T6

Figure 3: Sellke’s construction of an epidemic starts with a single infected whose infectious period is T1.

Intervals Ti on the top line correspond to the duration of the infectious period of the individuals in the

order they were infected, whereas the bottom line Li, represent the amount of exposure required to achieve

infection by the i-th individual. The sixth infection requires an exposure greater than
∑5

i=1 Ti, therefore,

the epidemics stops with 5 infected. This construction of the epidemic is useful to calculate the final epidemic

size but neither Li nor Ti represent the actual times of infection or removal and these must be calculated

from the Ti’s and Li’s. Ti’s are not required to be exponential distributions.

w′j = [0, wj,1, wj,2, wj,3, . . . , wj,K ]

The individual exposure fj(yj , t) is:

fj(yj , t) =


0, t ≤ yj

λkt, yj + wj,k < t ≤ yj + wj,k+1

λKt, t > yj + wj,K

(2)

where λk is the infection rate of individuals in stage k. As we can see, yj in fj(yj , t) is

the time when the j-th individual leaves the S compartment. Two examples of individual

exposures are depicted in Figures 4a and 4b.

Let λ′ = [λ1, λ2, . . . , λK ] a vector with the infectious contact rates of each stage. Define

E = W λ and similarly let e′j be the j-th row of E appending a 0 at the beginning, that is:

e′j = [0, ej,1, ej,2, ej,3, . . . , ej,K ].

Observe that fj(yj , t) is completely defined by the set (yj ,w
′
j , e
′
j ,λ), where (yj + w′j , e

′
j)

marks the boundaries of each segment, with slopes contained in λ.
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3.2. The accumulated exposure, Fj(t)

After j infections, the infected individuals have provided some exposure to infection

which is a non-decreasing piecewise function Fj(t) as the one depicted in Figure 5. Fj(t) is

also a piecewise set of linear functions with inflection points when some individual started

or stopped as infectious. Given j infections, the infection of the next individual starts at

yj+1 = F−1j (Lj+1) and therefore has an individual exposure fj(yj+1, t). To update the

exposure to Fj+1(t), we need to perform:

Fj+1(t) = Fj(t) + fj(yj+1, t),

with F0(t) = 0. Figure 5 illustrates the idea to calculate when the next infection will take

place.

3.3. Dealing with several infectious stages with different contact rates.

When there is a single infectious stage with contact rate λ, the exposure required by

each individual to be infected can be simulated using (1). When there are r infectious

stages with differential degree of infectiousness we have a vector of contact rates λ′ =

[λ1, λ2, . . . , λK ]. Choose some positive and finite λ∗ and let λ′ = λ∗[r1, r2, . . . , rK ] where

ri = λi/λ
∗. The exposure required for the individuals to become infected is obtained with

L = −(N − 1) log(u)/λ∗. Clearly, the exposures required contained in L depends on the

chosen λ∗. Nevertheless, the time to infection is not affected by the chosen λ∗ because

the shape of individual exposures change (Figure 5). This is the essence of the Time-scale

Transformation Algorithm to simulate random events from a non-homogeneous Poisson

process. We provide a simple proof in the Appendix.

3.4. A suggested pseudocode to obtain the times of infection y.

The pseudocode to obtain the infection times is actually very simple:

i) Let λ′ = [λ1, λ2, λ3, . . . , λK ] be the infectious contact rates of the different stages.

ii) Choose some λ positive and finite so that λ′ = λ[k1, k2, k3, . . . , kr], a vector with the

infectious contact rates of the different stages.

iii) Generate required N−1 exposure times as L = −(N−1) log(u)/λ, where u is a vector

of size N − 1 of uniform (0, 1) random numbers. Append a 0 to the beginning of L.
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iv) Set j = 1. Start with fj(0, t) and let Fj(t) = fj(0, t)

v) Set j = j + 1. Let yj = F−1j−1(Lj).

vi) Generate fj(yj , t) as in (2) and obtain Fj(t) = Fj−1(t) + fj(yj , t)

vii) Return to (v), stop with j infected if there is no yj+1 that satisfies yj+1 = F−1j (Lj).

The infection times are y′ = [y1, y2, y3, . . . , yj ].

3.4.1. Recovery of the information contained in y and T

To recover the evolution of the number of individuals in a particular compartment, we

need to recover the times at which each individual leaves and enters that compartment.

To achieve this, we concatenate [y T] and let Q the cumulative sum over rows. To follow

the progression of individuals in some stage in the k-th column, k > 1, consider that the

(k − 1)-th and k-th columns of Q contain the times when each individual entered and left

that compartment respectively.

4. Examples

We can classify epidemic compartmental models in two categories: models in which no

stage can be visited more than once, and models in which one or more stages can be visited

more than once. The difference is that in the first case, there is a maximum for the number

of transitions that an individual can make, thus, the size of a matrix containing the duration

in each stage can be preset to N × K. In the second case the matrix can be of any size,

presenting computational challenges. Here, we will deal only with the fist case and indicate

how to proceed in the second case.

4.1. Example 1: and SEIQR model

The model in Figure 6 is a Susceptible- Latent- Infectious- Quarantined- Removed

(SEIQR) model. Infectious individuals have contacts according a Poisson process with

parameter λ and encounter susceptibles with probability S/N , thus, individuals leave the

S compartment at a rate λIS/N . Once they leave the S compartment they go through the

rest of stages E, I,Q and finally arrive to R, where they remain. The notation on top of

each stage indicates the associated statistical distribution. For this model, the infectious

contact rates are: λ′ = [0, 2.1, 0] for stages E, I and Q respectively.
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In this case we use a Gamma(2.3, 2) distribution for the E stage, a Weibull (1, 2) for the

I stage and a Gamma (5.7, 2.5) for the Q stage. Figure 7 shows a single simulation of the

SEIQR for N = 10, 000. The Python code for this example (version 3.8.1) is provided as

Supplementary material.

4.2. Example 2: a more general model

The model depicted in Figure 8 is an example where individuals are infectious at different

stages and with different degree of infectiousness. This is an Ebola model where infectious

individuals are infectious even while hospitalized or even dead before being buried, (Legrand

et al., 2007). This is a complete example for the models in this category since not all stages

may be visited and there are several kinds of infectious stages with differential degree of

infectiousness. Here, the model has been modified to admit any distribution for the duration

in stage i, Di(·).

We start by generating a matrix T with four columns, one for each of the stages E, I,H

and F . Then, there are several strategies to simulate the possible paths that an individual

can follow and here we chose a simple approach. Table 1 shows a list with the possible

visited stages and the associated probabilities. We can simulate from this distribution and

generate N possible paths which can then be recorded in a matrix P of 0’s and 1’s depending

on the stages {E, I,H, F} being visited or not.

Table 1: Possible paths after infection with their probabilities.

Path Probability

E − I −H − F p1q1

E − I −H p1(1− q1)

E − I − F p2

E − I 1− p1 − p2
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After the simulation of the N paths, the resulting matrix will look like:

P =



1 1 1 0

1 1 0 1

1 1 0 0
...

1 1 1 1

1 1 0 0


(3)

and then matrix T can be redefined as:

T = T�P (4)

matrix T contains the time spent for each individual in each state, and we can apply the

pseudocode suggested in §3.4 to this matrix.

4.2.1. Example

We performed a single simulation of the Ebola model (Legrand et al., 2007) to illustrate

this using arbitrary parameters and distributions for the duration on every state. For the

model in Figure 8, we use λI = 0.15, λH = 0.1, λF = 0.05, p1 = 0.797, p2 = 0.163, q1 = 0.9,

whereas we use the distributions indicated in Table 2 for each state. The infectious contact

rates are: λ′ = [0., 0.15, 0.1, 0.05] for stages E, I,H and F respectively and use N = 10, 000.

The Python code is provided also as Supplementary material.

Table 2: The distributions used to simulate the Ebola model from Legrand et al. (2007)

Stage Distribution Parameters Mean SD

E Truncated Normal in [4,10] µ = 7, σ = 3, 7 1.62

I Rayleigh 4.3 5.39 2.81

H Gamma α = 7, β = 2.1 14.7 5.55

F Constant 2 2 0

The first five rows of T are:

13
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T =



E I H F

5.145 4.239 14.807 0.000

4.048 2.729 0.000 2.000

8.279 10.502 32.745 2.000

5.283 3.645 21.114 2.000

6.143 5.695 10.694 0.000


where we can see, for instance, that the first and fifth individuals were buried immediately,

and the second died without being hospitalized.

5. Discussion

The purpose of this research is to introduce a method to simulate stochastic epidemics

when sojourn times follow a general distribution. Using the true distribution may be useful

to obtain better estimates of functionals of path integrals, for instance, to estimate the

total bed-days required in hospitalization or in IC units. However, although it is clearly

better than using a general exponential distribution or even an approximation to the first

moments, it is important to note that we do not explore how much improvement is achieved

because that would require to establish some optimality criteria that is beyond the scope of

this work.

Models that allow one or more stages to be visited more than once can be simulated using

the same theory, although they are clearly more complicated to implement in a computer

because some rows of matrix T are longer than others. In practice, the major limitation

of this method is computing time, which increases as a power of N : it takes on average of

0.7 seconds to generate a single simulation of the Ebola model in a 2.7 GHz MacBook Pro

when N = 103; 7 seconds in a population of N = 104 and 1600 seconds when N = 105.

We found that about 92% of the total simulation time is required by the addition of the

piecewise linear functions Fj(t) = Fj−1(t) + fj(yj , t), which is an area of opportunity.

Observe that models in which individuals move between compartments i and j accord-

ing to some fixed probability pij implicitly consider that this probability is constant and

independent of the individuals. It is reasonable to assume that pij was calculated using a

frequentist approach, as it is customary in Markov models wit pij = nij/ni where ni is the

number of individuals that visited stage i and nij is the number of transitions between from

14
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stage i to j. If it happens that this probability depends on the length of stay in stage i the

model is not Markovian anymore. An important advantage of the construction presented

here is that it is possible to include a relaxation in the transition probabilities between com-

partments. For instance, in the Ebola model in Figure 8, suppose that the probability that

an infected individual moves from stage I to stage F decreases the longer the individual

stays in the I compartment, for example, following the relationship e−αt where t is the time

spent in stage I, then, we can construct vector p1 as a function of the residence times in

stage I, tI :

p1 = e−αtI

thus, building the matrix P in (3) with these considerations. Clearly, each row of P must

be generated with information on the particular values of p1, p2 and q1 for each individual.

The possibility of making individual transition probabilities opens the door to a new kind

of models.
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7. Appendix 1

Let X be the first occurrence of a non-homogeneous Poisson process with parameter λ(t)

following the piecewise set of linear functions:

λ(t) =

λ1, if t ≤ T

λ2, if t > T

Observe that with probability p = 1 − e−λ1T , the event will occur in [0, T ], and with

probability 1 − p = e−λ1T the event will occur after T . Thus X is a mixture distribution

of two exponential distributions with parameters (λ1, λ2) and mixing parameters (p, 1− p).

One way to simulate this is by generating a random number u from a Uniform distribution

and thus, X follows the same distribution than the mixture of Y1 = − log(u)/λ1 and Y2 =

− log(u)/λ2. Now let λ2 = kλ1, thus, we have that X is the mixture distribution of:

Y1 = − log(u)/λ1, Y2 = − log(u)/(k λ1)

which reveals that we can simulate X by simulating an Exponential random variable W

with parameter λ1, and if this is smaller than T we take X = W and if it is larger than T ,

we divide the excess W − T by k and add T . But this is equivalent to the construction of a

function F (t) with the accumulated exposure provided by all infections by time t and and

letting X = F−1(W ), where W is as described before. In our example:

F (t) =

λ1t, if t ≤ T

λ1T + λ2(t− T ), if t > T

We can generalize this to a Poisson process with λ(t) defined as a piecewise set of linear

functions in r intervals.
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Figure 4: The individual exposure fj(0, t). In both cases the sojourn time in each of the five stages

S1, S2, S3, S4, S5 are: [1, 2, 0.5, 3, 1.8]. In (a) the contact rates are [0, 1, 0, 1, 0] whereas in (b) these are

[0, 1, 0, 0.5, 0], that is, stage S4 is half infectious in the second case, resulting in a smaller individual expo-

sure. The arrows at the end of both lines indicate the exposure remains constant starting stage 5.
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Figure 5: The top line in Figure (a), is Fj(t), the accumulated exposure achieved by the previous j infectious

individuals. The (j + 1)-th infection starts at x = F−1
j (Lj+1) where Lj+1 is the exposure required by the

j+1 individual. Once the starting point is derived, we update the accumulated exposure by adding Fj+1(t)

and the new individual exposure. In this example the line in the bottom of Figure (a) is a new infection of

an individual that required an exposure of 2.66, thus, it starts at t = 2.02 This individual will remain latent

for 0.67 units of time and then it will start its infectious period that will last 1.26 units. The dashed line is

the accumulated exposure provided by this individual. Figure (b) shows both lines in Figure (a) after being

added, producing the updated exposure.
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Figure 6: A Susceptible- Latent- Infectious- Quarantined- Removed (SEIQR) model. The notation on top

of each stage indicates the associated statistical distribution.
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Figure 7: A simulation of the SEIQR model of Figure 6.
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Figure 8: An Ebola transmission model adapted from Legrand et al. (2007), in which hospitalized and

unburied are a source of infection. S, Susceptible individuals; E, Exposed individuals; I, Infectious; H,

hospitalized; F, dead but not yet buried; R, removed. Di(·) indicates some general distribution for the

duration in stage i described in Table 2. The total infection rate is Θ = (λII + λHH + λFF )S/N .
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Figure 9: A single simulation of an Ebola epidemics depicted in Figure 8 in which hospitalized and unburied

are a source of infection. The duration in each stage is described in Table 2.
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