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In this work, we put forward a novel test strategy, that allows to significantly increase the test
capacity for SARS-CoV-2. The test strategy is based on an a priory risk assessment scheme, that
allows to dynamically find and adapt an optimal clustering size of test pools. We, furthermore,
suggest a method to overcome the efficiency loss of test clustering by avoiding concentration losses
in the test samples. We validated our method with several thousand probe pools performing RT-
PCR tests, and found it highly effective.

Introduction.— At present, there is an urgent need
for an increase in the testing capacity of the molecu-
lar biological testing of oropharyngeal swabs for the new
SARS-CoV-2 [1]. The effort is hindered by a limited
capacity of chemical agents, instruments, and medical
personnel to test symptomatic patients. Also, there is
a growing need for the testing of personnel in critical
professions, such as doctors, firefighters, and the police
force, but also business travelers. After being exposed to
SARS-CoV-2 positive individuals they need to be quar-
antined or tested. The second option, assuming a nega-
tive test result, allows a quick return to active duty. Thus
an increase of test capacities by pooling of patient swab
tests seems to be a viable strategy. Pooling techniques
are currently used to ensure antiviral quality controls of
donated blood samples, see for example Ref. [2]. These
pooling methods are effective, since the types of molec-
ular biological tests used are highly sensitive, even to
minuscule amounts of viral material in the sample [3].

Different strategies are possible in principle that are
based on test pooling [4, 5], however, under realistic lab-
oratory conditions, the logistical effort for the handling
of probes has to be minimal to avoid delays and errors
in a high throughput environment. We have thus imple-
mented a simple and effective method detailed below in
our study. In our initial test, a certain number of swabs
from different patients is unified in a single pool. In case
the test is negative, all patients from the pool can be
considered as negatively tested. In the case the pool test
gives a positive result, a second test is needed in which
all patients are tested individually. Thus the pooling pro-
cess has to take place in the diagnostic laboratory, as a
second probe sample has to be kept for each patient.

The challenges that arise by pooling test samples of
SARS-CoV-2 patients have been discussed in Ref. [6]. In
our work, we develop a comprehensive adaptive strategy
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for pool size optimization and address the issue of sen-
sitivity loss due to dilution processes. This provides a
concrete actionable proposal for increasing the number
of SARS-CoV-2 tests, especially during the currently on-
going SARS-CoV-2 pandemic.

To conserve cost and resources by a test pooling
method the number of patients in a test pool has to be
chosen such, that all positive patients are detected, but at
the same time the number of test repetitions is kept to
a minimum. The distribution of SARS-CoV-2 positive
patients is currently inhomogeneous. During the pro-
gression of the SARS-CoV-2 pandemic, the fraction of
infected individuals can evolve differently in different re-
gions. Also among individuals living in institutions, such
as nursing homes, or medical personnel, the numbers of
infected individuals can vary. However, well-defined co-
horts are likely to have specific mean probability values
for the number of infected individuals. For each hypoth-
esis of the underlying average number of infections, an
optimal pool size can be defined.

In this work we consider several patient cohorts, iden-
tify their specific infection risk factors, and propose opti-
mal pool sizes. Since our method relies on cohort specific
risk factors, that rescale the global risk of infection to
specific risk within a cohort, our results can be used for
risk estimates and pool size adaptation given an evolving
total infection probability during the ongoing pandemic.
In addition to the theoretical proposal, we perform an ex-
perimental validation of the method among a well-defined
test cohort.

In Fig. 1, we show a simple example of a cohort test
with an underlying positive rate of 3% and demonstrate
how an optimal pool size choice outperforms an ineffi-
cient pool size choice. In this letter, we present a pool
size optimization that can lead to a significant reduction
of tests per patient and can thus allow the screening of
much larger patient numbers. We note that a test pooling
should be only performed if it leads to a conservation of
resources and always be communicated and coordinated
with the local health agency. We describe the particular
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a) b)

FIG. 1. Two different pool size choices for a pool test. The
chosen cohort has a 3% infection rate. In panel a) 32 patients
are cleared with an initial pool test and 96 tests need to be
repeated. In total 100 tests are used to test 128 patients. In
panel b) 104 patients are cleared with 16 initial pool tests
and 24 tests need to be repeated. In total 40 tests are used
to test 128 people. The pool size of 8 in panel b), given the
3% infection rate, is optimal.
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FIG. 2. The viral load of pharyngeal swabs, determined
by PCR amplification. Panel a) shows a times series of 104
patients from the Wuhan region [10, 11] All tested positive
with the SARS-CoV-2 and all were symptomatic. The viral
load is logarithmically linked to the number of PCR cycles,
after which the probes were detected as positive. The red
solid line shows the time evolution of the mean CT-value,
and the red dashed lines indicate the one standard deviation
contours.

pooling method in the following.

The PCR test for SARS-CoV-2 detection is extremely
sensitive, even to very low amounts of viral material [7, 8].
We make use of the inherent low false-negative rate in the
following. Thus if a given pool test leads to a negative
result in the PCR test, all patients from that pool can
be considered as negative. In the case that the test is
positive, the PCR test is repeated for all patients in that
pool individually. From the logistics point of view, this
means that the probe material of each patient has to be

divided into two upon reception. Overall we will show
that in particular in the case that the positive rates are
relatively low a significant increase in test efficiency can
be achieved. We will present a data set, collected over
the past seven months, and demonstrate that we were
able to achieve a 79% increase in efficiency in the tested
patient cohort.

Sensitivity and Specificity of Pool Testing.—
An important question to be addressed is how to test

sample unification affects the sensitivity and specificity
of a given method. In particular, since the viral load
experiences a large day-to-day variation it is important
for a testing method to be sensitive to low viral loads, in
order not to generate an unacceptable number of false-
negative results.

The primer design of the PCR SARS-CoV-2 test [8] is
highly specific. Thus the false positive rate of the method
is essentially zero and obviously can not be affected by
the unification of several test samples in a pool. The
only way a false positive result can be generated is probe
contamination during the preparation process, which is
a systematic and not stochastic error of the method [9].
On the other hand, the question of sensitivity is much
more subtle.

Figure 2 shows the time series of viral loads in pha-
ryngeal swab samples determined by PCR amplifica-
tion [10, 11]. The significant observation is the large vari-
ability of the CT-values in the active phase of Covid-19
infection. The average one-standard deviation interval of
CT-values, i.e. the range in which the CT-value falls with
a 68% probability spans across 9 Ct-values steps. This
corresponds to an average fluctuation of the viral load by
a factor of 500. About 10% of the samples from patients
in the active phase of Covid-19 are below the detection
threshold. This value is an estimate of the underlying
systematic uncertainty, most probably connected to the
quality of sample collection.

Finally, it becomes obvious from Fig. 2 that given that
a patient is in a late stage of the Covid-19 syndrome a
low CT-value, below 33 − 34 is expected. The inverse
statement, that given a low CT-value of below 33 a pa-
tient is probably in the recovery phase, and not likely
to be infectious, is by no means true. Thus, the need
to prevent the spread of SARS-CoV-2 requires the use
of precise detection methods, that are sensitive to viral
loads of the order of 10 viral RNA units in a given sam-
ple. We discuss now how this issue can be addressed in
the pooling test method.

To quantify the sensitivity variation that is caused by
sample dilution we analyze the distribution of CT-values
from tests collected in Dezember 2020 in the “Diagnos-
tic laboratory for clinical pathology” in Hamburg. We
chose a representative sample that contains samples from
patients showing acute symptoms and positive tests ob-
tained from tests of asymptomatic individuals.

Figure 3 shows the collected data from 795 patients in
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FIG. 3. Panel b) shows the same data set as a histogram.
The magenta line shows the theoretically fitted probability
distribution and the blue dots show the integral values of the
theoretical distribution for each bin.

a Histogram, the applied detection technique is the au-
tomated RNA extraction procedure, and RT-PCR diag-
nostic provided by the cobas® 6800 system developed by
Roche®. The blue points indicate the predictions from
our best-fit model to the data, and the magenta curve
shows the underlying probability density function. The
fitted model is a bi-normal distribution with a probability
density given by NBi = N(µ1, σ1) p + (1 − p)N(µ2, σ2),
with N(µ, σ) being the normal distribution. The best
fit parameters are p = 0.65, µ1 = 23.3, µ1 = 31.9, and
σ1 ≈ σ2 ≈ 3.7. The overall goodness of fit is given by
a χ2 per degree of freedom of 1.2, which indicates an
excellent description of the data set.

The rate of false positive results is found by integrat-
ing the probability density function NBi over the range
of CT-values above a defined detection threshold T , and
is given by P (false negative, T ) =

∫∞
T
NBi(x) dx. As an

example, given the observed CT values distribution, we
estimate the expected sensitivity of the Roche® rapid
Antigen test, which effectively detects samples corre-
sponding to a CT ≈ 27 [12, 13]. The integral of the
CT-value probability distribution yields a false negative
probability of Prapid(false negative, 27) ≈ 40%, that is
substantially larger than the systematic uncertainty of
sample collection.

The detection threshold of the RT-PCR used in our
study is at a CT value of 38. The expected rate of false-
negative probes is then given by P (false negative, 38) ≈
2%, much smaller than the systematic uncertainty of
about 10% estimated above. Given a dilution fac-
tor of a probe D, the false negative probability is

1/D 1/2 1/5 1/10 1/15 1/30
P(false negative) 3% 5% 8% 10% 14%

TABLE I. The dependence of the probability of a false neg-
ative result in a RT-PCR SARS-CoV-2 test given a dilution
factor D.

P (false negative, 38− log2(D)).
In Table I the expected probabilities for a false neg-

ative result are summarized. The crucial observation is
that exceeding a dilution factor of D = 10 leads to a
sensitivity loss that dominates the expected systematic
sample-taking uncertainty. However, some strategies can
be used to overcome this problem.

• One method, used for the sensitivity improvement
of pooled tests, was developed in [14]. The de-
scribed procedure allows using RNA extraction to
ensure the same viral RNA concentrations in the
pooled test, as the would-be concentration in an
individual test.

• A viable option for moderate pool sizes is extrac-
tion in a reduced buffer volume.

• Finally, a simple solution is the use of two test
swabs, that need to be collected. One swab is used
in the pool test and the second is kept for a pos-
sible after the test. Since the swabs are taken at
the same time the viral shedding intensity in the
patient is the same. The systematic uncertainty of
a false negative result is in this case the same as in
the individual testing method.

From a practical point, the above solutions have the
following advantages and drawbacks. The first method
is, clean, and allows to handle large patient pools. On the
other hand, it requires substantial additional laboratory
work. The second method is only applicable to moderate
pool sizes with up to five test samples. The last method
is simple and reliable, and only requires the collection of
two test swabs from each patient.

In the experimental validation, we will thus make use of
the second and third option, since they are most resource-
conserving. An important question that remains to be
answered is the optimal size of the test pool.

Pool Size Optimization.— The probability that at
least one test in a given pool is positive and that repeti-
tion for all patients has to be performed, is given by

Prep. = 1− (1− p)N , (1)

where p is the mean infection rate of the tested co-
hort and N the number of patients in a pool. If this
possibility manifests itself additional N tests of the in-
dividual patients have to be performed. If the pool
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p [%] 0.1 0.5 1 2 3 4 5 6 7 8 9
N [Stk.] 32 15 10 7 6 5 5 4 4 4 3

Opt. [%] 94 86 80 73 67 62 57 53 50 47 44

TABLE II. The optimal pool sizes N given a certain mean
infection number in a cohort p. For average infection rates
above 10% the optimization becomes inefficient. However,
for infection rates of 1% and lower the optimization factor
exceeds 80%.

test is negative only one initial test is sufficient, such
that the expected number of tests is given by Ntotal =
(N + 1)Prep. + 1 − Prep. = 1 + N Prep.. Given this con-
struction, we can minimize the number of tests needed as
a function of the pool size N , while keeping the infection
rate p fixed. Our results, presented in the next section,
allow us to optimize the pool size and adjust it to the
patient cohort.

The function which determines the number of tests
needed is numerically minimized with respect to the pool
size. We find that the outcome strongly depends on the
underlying infection probability.

In Fig. 5, we show the pool size optima for different
assumptions for the mean infection rate of the cohort.
At present, the mean infection rate, among the tests per-
formed in Germany, seems to be around p ≈ 10% [15].
Thus a pooling of test samples without a cohort sep-
aration is not effective at the moment. However, we
will demonstrate that an appropriate cohort selection can
lead to a significant reduction in the testing efforts, and
allows to dramatically increase the test capacities.

Table II shows the optimal pool sizes given a certain
mean infection value for the tested cohort. It is shown
that a good cohort selection with percent level infection
rates can lead to an ∼ 90% reduction of the test effort.
Thus, it is possible to increase the number of tested pa-
tients by an order of magnitude using the same number
of tests.

Experimental Validation.— The laboratory valida-
tion of the method was performed in the period from
May 5 2020 to December 15 2020. The test cohort
were individuals from the region of Hamburg that showed
no symptoms but was routinely tested to ensure safety
in health care facilities, ship crews departing from the
harbor of Hamburg, and companies screening employees
working at the office.

For the pool size, five patients per pool were chosen. To
reduce the dilution factor each throat swab was extracted
in 2 ml Guanidinium thiocyanate buffer, then 400 µl of
the five samples were unified and tested by the cobas 6800
system. The standard extraction procedure of the cobas
6800 system uses 4 ml for the extraction of each swab.
Thus the dilution of 1 : 5 was reduced by a factor of two
and resulted in a total dilution of 1 : 2.5.
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FIG. 4. Probability values of a Kolmogorov-Smirnov test
of the pool test CT-values. The maximum probability value
indicates that the pool test CT-values are most likely to follow
a Binormal distribution based on a shift of the dilution factor
by a value of 3 to 4, which corresponds to a CT-value additive
shift of 1.6 to 2.

In the test period of 224 days, a total of 1910 pool tests
were performed. The number of positive pool tests was
14 and thus resulted in 5 × 15 = 75 test repetitions to
identify the individually positive patients. Therefore, a
total of 1910 + 5 × 15 = 1985 tests were performed to
test 9950 patients. This amounts to a reduction of the
experimental effort by 79%. The percentage of positive
tests in our test cohort was as low as ptested = 0.15%.
This was expected from the cohort choice and application
in safety screenings. During the period of the study, the
overall positivity rate of PCR tests across Germany was
on average 3%, thus the risk factor of our cohort was
twenty times lower than an average laboratory test in this
period. Furthermore, we performed a likelihood analysis
of the CT-values found in the pool tests, to estimate our
dilution hypothesis.

Figure 4 shows the result of a Kolmogorov-Smirnov
test of the pool test CT-values, that evaluated the prob-
ability that the numbers resulted from an underlying
CT-value distribution determined in the previous sec-
tion. The expected errors σ1 and σ2 were rescaled by the
inverse square roots of the sample sizes, and the expec-
tation values of the bi-normal distribution were shifted
by a factor µi → µi + log2D for i = {1, 2}. Thus, for
example, a dilution by a factor D = 2.5 would result in
CT-values that are larger by an additive factor of 1.3.
The p-value curve shown in Fig. 4 has a maximum in the
range of D = 3− 4. Given the relatively small size of the
positive pool sample, this is an excellent agreement with
our initial hypothesis of a dilution factor of D = 2.5. We,
therefore, can conclusively show the validity of the pool-
ing procedure for the RT-PCR method for SARS-CoV-2,
and given the bi-normal CT-value distribution model we
find that its false-negative rate is below 5%, see Tab. I.

Risk Analysis.— As discussed above the applicabil-
ity and efficiency of the pool testing method are largely
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determined by the expected positivity rate of a given co-
hort. We adopt a simple hypothesis, that patients can be
divided into risk groups. Those risk groups have intrin-
sic risk coefficients r that can be determined empirically
and relate the positivity risk within a cohort to the total
positivity rate of the population. We have thus a simple
relation Rcohort = Rpopulation × r.

We estimate the intrinsic risk coefficients based on our
pool test study normalized to the average population pos-
itivity rate of the collection period in Hamburg, which
was Rpopulation ≈ 3% [16]. Furthermore, we use data
collected from patients in the test center at the Ham-
burg main station ZOB for the weeks 44, 47, 48, 50 of
the year 2020. The average population positivity rate
within this collection period was higher at a value of
Rpopulation ≈ 9% [16].

Table III shows the estimated risk coefficients for five
patient cohorts. Persons returning from trips within
Germany considered as risk zones (Travelers), persons
who received a warning by the COVID Warning APP
(App-Warning), persons who had contact with an in-
fected individual (Contact), persons who showed symp-
toms of Covin-19 (Symptom), and the cohort used for
the pool test validation, tested in routine safety screen-
ings (Screen).

Travelers App-Warning Contact Symptom Screen
Total 5428 1727 761 3046 9550
Pos. 184 30 43 516 14
Rate 3.4% 1.7% 5.7% 17% 0.15%

r 0.4 0.2 0.5 1.9 0.05

TABLE III. Absolute numbers of tested patients, the posi-
tivity rate and the corresponding risk coefficients in five pre-
defined patient cohorts.

Based on the determined risk coefficients and the cur-
rent overall positivity rate of the population in Hamburg
Rpopulation ∼ 10% following pool sizes appear optimal.

• Returning travelers, and persons with a suspected
contact with an other positive individual: Risk:
Rpopulation × r ≈ 4 %, Optimal pool size: N = 5.

• Corona App warning: Risk: Rpopulation × r ≈ 2 %,
Optimal pool size: N = 7.

• Routinely screened individuals: Risk: Rpopulation×
r ≈ 0.5 %, Optimal pool size: N = 15.

Individuals with symptoms resembling Covid-19 syn-
drome should not be tested in a test sample pool. This es-
timates are an example of how given a population positiv-
ity value Ppopulation, the risk coefficients in Tab. III can be
used to identify the ideal test pools size using Tab. II. Fi-
nally note that to avoid sensitivity loss in pool tests with
more than five patients, the double swab technique is
highly recommended and represents the most simple solu-
tion to the sensitivity loss problem. We have successfully
applied the double swab collection technique for safety
screening of the personnel employed by the“Diagnostic
laboratory for clinical pathology” in Hamburg.

Summary.— The current situation of the SARS-
CoV-2 pandemic is highly worrisome. A potent weapon
in the struggle for containment are systematically per-
formed molecular biological SARS-CoV-2 tests. In this
way, infected individuals can be identified, quarantined,
and treated as fast as possible. In this letter, we suggest
a pooling method, with the help of which the test capac-
ities can be significantly increased. We demonstrate op-
timal pool sizes based on the underlying individual mean
infection numbers. Also, we validate our theoretical pre-
dictions in a defined cohort of pooled patient tests.

We observe that the pool test efficiency strongly de-
pends on the underlying rate of positive patients. We
demonstrate a simple method of how to estimate the ex-
pected positivity rate of a given cohort based on the un-
derlying population risk in a region. In our work, we use
collected patient data to estimate the risk coefficients for
five relevant patient cohorts. Ultimately, we note that the
most promising application of the pool testing method
is large safety screening in companies, medical facilities,
and other critical institutions. Larger pool sizes will al-
low increasing the test capacity by more than 90%. In
particular, since the sensitivity loss problem can be sim-
ply overcome by collecting two test swabs. One for the
pool test, and one for a potential test to determine which
patients were positive in the pool. With the method
suggested here not only the test efficiency can be sig-
nificantly improved, but also the cost of testing lowered
and, time and valuable material resources preserved.
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FIG. 5. Optimal pool sizes, given a characteristic average infection rate a) p = 0.5%, b) p = 2%, c) p = 4%, d) p = 15%. In
particular for low infection rates, a high efficiency improvement can be reached. Thus it can be highly beneficial for this method
to identify cohorts with intrinsically low infection rates. Note that in the case of nearly degenerate minima it is advantageous
to choose the smaller pool size, as this lowers the number of repeated tests, given the same total test number, and accelerates
the average result times.
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