Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Labeling self-tracked menstrual health records with hidden semi-Markov models

View ORCID ProfileLaura Symul, View ORCID ProfileSusan Holmes
doi: https://doi.org/10.1101/2021.01.11.21249605
Laura Symul
*Stanford University, department of Statistics
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Laura Symul
  • For correspondence: lsymul@stanford.edu
Susan Holmes
†Stanford University, department of Statistics,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Susan Holmes
  • For correspondence: susan@stat.stanford.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Globally, millions of women track their menstrual cycle and fertility via smartphone-based health apps, generating multivariate time series with frequent missing data. To leverage data from self-tracking tools in epidemiological studies on fertility or the menstrual cycle’s effects on diseases and symptoms, it is critical to have methods for identifying reproductive events, e.g. ovulation, pregnancy losses or births. We present two coupled hidden semi-Markov models that adapt to changes in tracking behavior, explicitly capture variable– and state– dependent missingness, allow for variables of different type, and quantify uncertainty. The accuracy on synthetic data reaches 98% with no missing data, 90% with realistic missingness, and 94% accuracy on our partially labeled real-world time series. Our method also accurately predicts cycle length by learning user characteristics. It is publicly available (HiddenSemiMarkov R package) and transferable to any health time series, including self-reported symptoms and occasional tests.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

Laura Symul was supported by a Stanford Clinical Data Science Fellowship and Susan Holmes by an NSF DMS RTG

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The study was deemed exempt by the Stanford IRB.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

Kindara users data are not publicly available. Code for the experiments, supplementary material and synthetic dataset can be found following the Data Availability Link below.

https://github.com/lasy/semiM-Public-Repo

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted January 13, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Labeling self-tracked menstrual health records with hidden semi-Markov models
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Labeling self-tracked menstrual health records with hidden semi-Markov models
Laura Symul, Susan Holmes
medRxiv 2021.01.11.21249605; doi: https://doi.org/10.1101/2021.01.11.21249605
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Labeling self-tracked menstrual health records with hidden semi-Markov models
Laura Symul, Susan Holmes
medRxiv 2021.01.11.21249605; doi: https://doi.org/10.1101/2021.01.11.21249605

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (62)
  • Allergy and Immunology (144)
  • Anesthesia (47)
  • Cardiovascular Medicine (419)
  • Dentistry and Oral Medicine (72)
  • Dermatology (49)
  • Emergency Medicine (147)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (174)
  • Epidemiology (4906)
  • Forensic Medicine (3)
  • Gastroenterology (185)
  • Genetic and Genomic Medicine (689)
  • Geriatric Medicine (72)
  • Health Economics (193)
  • Health Informatics (636)
  • Health Policy (322)
  • Health Systems and Quality Improvement (209)
  • Hematology (86)
  • HIV/AIDS (157)
  • Infectious Diseases (except HIV/AIDS) (5408)
  • Intensive Care and Critical Care Medicine (333)
  • Medical Education (96)
  • Medical Ethics (24)
  • Nephrology (77)
  • Neurology (692)
  • Nursing (42)
  • Nutrition (115)
  • Obstetrics and Gynecology (128)
  • Occupational and Environmental Health (211)
  • Oncology (447)
  • Ophthalmology (140)
  • Orthopedics (36)
  • Otolaryngology (91)
  • Pain Medicine (37)
  • Palliative Medicine (18)
  • Pathology (131)
  • Pediatrics (201)
  • Pharmacology and Therapeutics (131)
  • Primary Care Research (88)
  • Psychiatry and Clinical Psychology (787)
  • Public and Global Health (1832)
  • Radiology and Imaging (328)
  • Rehabilitation Medicine and Physical Therapy (142)
  • Respiratory Medicine (257)
  • Rheumatology (87)
  • Sexual and Reproductive Health (69)
  • Sports Medicine (63)
  • Surgery (102)
  • Toxicology (23)
  • Transplantation (29)
  • Urology (38)