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Summary Box 

What is already known on this topic:   

Pre-pandemic, higher occupancy of intensive care units was shown to be associated with increased mortality 

risk. However, there is limited data on the extent to which occupancy levels impacted patient outcomes 

during the first wave of COVID-19, especially in light of the mobilisation of significant additional resources. 

A recent study from Belgium reported a 42% higher mortality during periods of ICU surge capacity 

deployment, although in the analysis surge capacity was evaluated only as a binary variable. Although, this 

contradicts earlier results from smaller studies in Australia and Wales, where no association between ICU 

occupancy and mortality was identified. 

 

What this study adds:  

The results of this study suggest that survival rates for patients with COVID-19 in intensive care settings 

appears to deteriorate as the occupancy of (surge capacity) beds compatible with mechanical ventilation (a 

proxy for operational pressure), increases. Moreover, this risk doesn’t occur above a specific threshold, but 

rather appears linear; whereby going from 0% occupancy to 100% occupancy increases risk of mortality by 

92% (after adjusting for relevant individual-level factors). Furthermore, risk of mortality based on occupancy 

on the date of recorded outcome is even higher; OR 4.74 (95% posterior credible interval: 3.54 – 6.34). As 

such, this national-level cohort study of England provides compelling evidence for a relationship between 

occupancy and critical care mortality, and highlights the needs for decisive action to control the incidence 

and prevalence of COVID-19.  
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Abstract 

 

Objectives: To determine if there is an association between survival rates in intensive care units (ICU) and 

occupancy of the unit on the day of admission. 

 

Design: National retrospective observational cohort study spanning the first wave of the England’s COVID-19 

pandemic. 

 

Setting: 114 hospital trusts (groups of hospitals functioning as single operational units). 

 

Participants: 4,032 adults admitted to an ICU in England between 2nd April and 1st June, 2020, with presumed 

or confirmed COVID-19, for whom data was submitted to the national surveillance programme and met study 

inclusion criteria. 

 

Interventions: N/A 

 

Main Outcomes and Measures: A Bayesian hierarchical approach was used to model the association between 

hospital trust level (mechanical ventilation compatible) bed occupancy, and in-hospital all-cause mortality. 

Results were adjusted for unit characteristics (pre-pandemic size), individual patient-level demographic 

characteristics (age, sex, ethnicity, time-to-ICU admission), and recorded chronic comorbidities (obesity, 

diabetes, respiratory disease, liver disease, heart disease, hypertension, immunosuppression, neurological 

disease, renal disease). 

 

Results: 79,793 patient-days were observed, with a mortality rate of 19.4 per 1,000 patient days. Adjusting for 

patient-level factors, mortality was higher for admissions during periods of high occupancy (>85% occupancy 

versus the baseline of 45 to 85%) [OR 1.19 (95% posterior credible interval (PCI): 1.00 to 1.44)]. In contrast, 

mortality was decreased for admissions during periods of low occupancy (<45% relative to the baseline) [OR 

0.75 (95% PCI: 0.62 to 0.89)]. 

 

Conclusion and Relevance: Increasing occupancy of beds compatible with mechanical ventilation, a proxy for 

operational strain, is associated with a higher mortality risk for individuals admitted to ICU. Public health 

interventions (such as expeditious vaccination programmes and non-pharmaceutical interventions) to control 

both incidence and prevalence of COVID-19, and therefore keep ICU occupancy low in the context of the 

pandemic, are necessary to mitigate the impact of this type of resource saturation. 

 

Trial Registration: N/A 
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Introduction 

 

From the first reports of a novel coronavirus (SARS-CoV-2) in late 2019, to date, global mortality associated 

with the resultant disease (COVID-19) has exceeded 1.7 million people.[1] The virulence of the pathogen has 

prompted persistent concern about the ability of health services around the world to effectively care for the vast 

numbers of people affected.[2] These concerns are most relevant in the context of scarce resources (e.g., 

mechanical ventilation) required by patients in need of high-acuity support, which is relatively common in 

patients with COVID-19.[3] Notably, even with the introduction of non-pharmacological interventions such as 

stay-at-home orders, almost a third of all hospitals in England reached 100% occupancy of their “surge” 

mechanical ventilation capacity (i.e., including the additional beds that were created through the re-allocation of 

resources) during the first wave of the pandemic.[4] England is now experiencing a second wave that is already 

worse than the first, with 40% more people in hospital, many hospitals overwhelmed and exhausted staff.[5] 

What remains unclear is whether and to what extent operating at these extremes of critical care occupancy 

impacted patient outcomes.  

 

Pre-pandemic, higher occupancy levels in intensive care (which may reflect operational strain), was shown to be 

associated with higher mortality risk.[6] However, there is limited data on the extent to which occupancy levels 

impacted patient outcomes during the first wave of COVID-19.[7] A recent study from Belgium reported 42% 

higher mortality during periods of ICU surge capacity deployment, although in the analysis surge capacity was 

evaluated only as a binary variable.[8] This contradicts earlier results from smaller studies in Australia and 

Wales, where no association between ICU occupancy and mortality was identified.[9,10]  A better 

understanding of how operating under such extreme circumstances affects outcomes is crucial for two reasons: 

firstly, to allow hospitals to adapt practice to improve outcomes and secondly, to provide policy makers with 

more accurate information about the potential consequences of allowing health services to be overwhelmed. As 

such, in this study, we sought to evaluate the extent to which mortality risk in intensive care units (ICUs) over 

the course of the first wave of the COVID-19 pandemic in England could be explained by differences in 

occupancy. 
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Methods 
Data Sources 

Data on all intensive care unit (ICU) admissions across England were extracted from the COVID-19 

Hospitalisation in England Surveillance System (CHESS).[11] Information on occupancy rates were extracted 

from the daily situation reports (i.e., ‘SitRep’).4 Both datasets are mandatory regulatory submissions for all 

National Health Service (NHS) acute care providers in England, and further details about them can be found in 

the eMethods. 

 

Study population 

All ICU admissions reported to CHESS between 2nd April – 1st June (see eMethods for details on date 

selection), with presumed/confirmed COVID-19 (94.7% tested positive during admission), aged 18 – 99, non-

pregnant, and with valid admission and occupancy data, were eligible for inclusion (eFigure 1). 

 

Patient and Public Involvement 

No patients were involved in the design, interpretation of the results, or dissemination of this study. However, 

we plan to disseminate the results to patients and the public in collaboration with several media partners whom 

have already agreed to report on this results. 

 

Recorded clinical features  

Patient-Level Data 

Information extracted from CHESS about each patient comprised: administrative features (admitting trust, 

admission date), demographic characteristics (age, sex, ethnicity), recorded comorbidities (obesity, diabetes, 

asthma, other chronic respiratory disease, chronic heart disease, hypertension, immunosuppression due to 

disease or treatment, chronic neurological disease, chronic renal disease, chronic liver disease). Ethnicity was 

coded as white, Asian (Subcontinent and other), black, mixed, and other; comorbidities were recorded as binary 

indicator variables, with missing entries assumed to reflect the absence of a comorbidity. The appropriateness of 

this assumption in CHESS has been previously explored.[12] 

 

Occupancy Data 

Trusts are groups of geographically co-located hospitals that function as a single organisational unit within the 

UK’s national healthcare system. Information extracted from SitRep about each trust comprised: pre-pandemic 

(January – March 2020) number of beds compatible with mechanical ventilation, the proportion of beds 

compatible with mechanical ventilation occupied on each day of the study period, and each trust’s geographical 

region.[4] Linkage was carried out based on the trust that an individual was admitted to and the date of ICU 

admission in CHESS; patients in CHESS were matched via their admission date to the relevant occupancy 

information from the corresponding date in SitRep. 
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Outcome 

The primary outcome was in-hospital all-cause mortality; all included patients were followed up until death, 

discharge, or transfer, and the latter two were treated as suggesting that the patient survived. All patients had a 

recorded outcome as of the 10th October 2020 dated extract of CHESS used for this analysis. 

 

Statistical Analysis  

Descriptive summaries were generated as median and interquartile ranges for continuous variables, and 

frequency and percentage incidence for categorical factors. Exploratory analyses included: the relationship of 

the COVID-19 epidemic curve to bed occupancy at a national level (eFigure 2); the distribution of missingness 

amongst patients and trusts (eFigure 3); variation in age and comorbidity burden over the first wave (eFigure 4); 

the impact of modelling continuous variables either linearly, through the use of threshold functions, or via 

(standard cubic) splines/smooths (eMethods). 

 

A Bayesian hierarchical approach was used to model the association between the trust, group and patient-level 

factors and mortality risk. Specifically, a generalised additive mixed model was utilised, with intercept and 

slope coefficients for population and group level effects, and a Bernoulli likelihood with logit function to link to 

mortality outcome. Coefficients were inferred by Markov chain Monte Carlo sampling, using Stan (CmdStan 

V2.25.0), with a model specified using BRMS (V2.14.4) in R (V4.0.3).[13-15] Further information on the 

Bayesian prior specification and modelling methods are reported in the eMethods. 

 

As secondary analyses, two potential interactions were assessed: 1) baseline trust size and occupancy; 2) patient 

age and occupancy (results not reported due to insignificance). We also assessed the association of occupancy 

on the recorded outcome date with mortality, and occupancy expressed in terms of pre-pandemic ICU size. 

Several sensitivity analyses were carried out: 1) filtering for different degrees of missingness of patient-level 

comorbidity data at trust-level; 2) adjusting for week of admission; 3) adjusting for trust and region as random 

effects; 4) additional patient-level factors: time from hospital admission to ICU admission, chronic liver disease 

and obesity; see eMethods for justifications.  
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Results 

 
4,032 individuals were included in this study following application of the inclusion/exclusion criteria (see 

eFigure 1), of whom 1,548 (38.4%) died. In total, 79,793 (median 13 days per patient; IQR: 6 – 27) patient-days 

were observed, equating to a mortality rate of 19.4 per 1,000 patient days. A full summary of the recorded 

patient-level characteristics is reported in Table 1. 

 

Mechanical ventilator occupancy rate on the day of admission is associated with mortality risk  

For high occupancy rates (85 – 100%), the unadjusted odds ratio (OR) for mortality based on the mechanical 

ventilator occupancy rate on the day of admission was 1.13 (95% posterior credibility interval (PCI): 0.98 – 

1.35), relative to the baseline of 45 – 85%. For low occupancy rates (0 – 45%), the unadjusted odds ratio was 

0.74 (95% PCI: 0.64 – 0.87), relative to the baseline of 45 – 85%. Following adjustment for patient-level factors 

(age, sex, ethnicity, and comorbidities), the OR was 1.19 (95% PCI: 1.00 – 1.44) for high occupancy rates, and 

0.75 (95% PCI: 0.62 – 0.89) for low occupancy rates. Figure 1 illustrates the posterior probabilities for the fully 

adjusted ORs (see eFigure 5 & 6 for other model coefficients). To aid interpretation, the difference in risk for a 

70-year-old man with no comorbidities being admitted during a period of high versus low occupancy is 

equivalent to the risk if they were approximately a decade older (Figure 2). Sensitivity analyses as detailed in 

eTable 1 were all concordant with the primary analysis.  

 

Mortality risk increases linearly with admission and date-of-outcome specific occupancy 

The fully adjusted OR for mortality (Figure 3), using occupancy on the day of admission coded as a continuous 

linear variable ranging from 0 to 1 was 1.92 (95% PCI: 1.36 – 2.67). Moreover, using the bed occupancy from 

each individuals’ outcome date identified an even larger association (full model specification in eTable 2), OR 

4.74 (95% PCI: 3.54 – 6.34). 

 

Larger ICUs experience exaggerated impacts of extremes of mechanical ventilator occupancy rates 

Although pre-pandemic number of beds did not substantially alter the OR of occupancy as a sensitivity analysis 

(eTable 1), it did appear independently informative. An increase in pre-pandemic size by 25 beds was associated 

with a 25% decrease in risk of mortality (eTable 3). The introduction of an interaction term between pre-

pandemic size and occupancy identified that larger ICUs experience exaggerated impacts of extremes of 

mechanical ventilator occupancy rates (eFigure 8).  
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Table 1: Characteristics of the study cohort stratified by occupancy on the day of admission. 

 

 
Occupancy 

 
0 - 45% 45 - 85% 85 - 100% 

 
(n = 959) (n = 2333) (n = 740) 

Age in Years       
Median [IQR] 59 [50, 67] 60 [51, 67] 59 [51, 66] 

Time in Days to ICU from Hospital Admission  
Median [IQR] 1 [0, 3] 1 [0, 4] 1 [0, 3] 

Age Group       

18 - 24 6 (0.6) 16 (0.7) 8 (1.1) 
25 - 34 36 (3.8) 89 (3.8) 27 (3.6) 
35 - 44 85 (8.9) 203 (8.7) 69 (9.3) 
45 - 54 234 (24.4) 489 (21.0) 163 (22.0) 
55 - 64 274 (28.6) 790 (33.9) 257 (34.7) 
65 - 74 218 (22.7) 524 (22.5) 167 (22.6) 
75 - 84 92 (9.6) 193 (8.3) 43 (5.8) 
85 - 99 14 (1.5) 29 (1.2) 6 (0.8) 

Sex       

Female 335 (34.9) 677 (29.0) 211 (28.5) 
Male 624 (65.1) 1656 (71.0) 529 (71.5) 

Ethnicity       

White 625 (65.2) 1149 (49.2) 250 (33.8) 
Asian Subcontinent 47 (4.9) 241 (10.3) 96 (13.0) 
Asian (Other) 58 (6.0) 174 (7.5) 80 (10.8) 
Black 38 (4.0) 203 (8.7) 101 (13.6) 
Mixed 7 (0.7) 56 (2.4) 33 (4.5) 
Other 52 (5.4) 197 (8.4) 59 (8.0) 
Missing 132 (13.8) 313 (13.4) 121 (16.4) 

Obesity       

Obese 408 (42.5) 899 (38.5) 321 (43.4) 
Non-Obese 313 (32.6) 780 (33.4) 163 (22.0) 
Missing 238 (24.8) 654 (28.0) 256 (34.6) 

Comorbidity       

Diabetes 206 (21.5) 632 (27.1) 215 (29.1) 
Chronic Respiratory Disease(s) 239 (24.9) 448 (19.2) 141 (19.1) 
Chronic Heart Disease 113 (11.8) 262 (11.2) 59 (8.0) 
Chronic Renal Disease 74 (7.7) 185 (7.9) 50 (6.8) 
Chronic Neurological Disease 58 (6.0) 108 (4.6) 22 (3.0) 
Chronic Liver Disease 45 (4.7) 45 (1.9) 12 (1.6) 
Immunosuppressive Disease 36 (3.8) 101 (4.3) 12 (1.6) 
Hypertension 313 (32.6) 839 (36.0) 221 (29.9) 

 
Legend: Continuous covariates are presented with their median and interquartile range, whilst categorical covariates are 

presented with their frequency and within column percentage prevalence. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2021. ; https://doi.org/10.1101/2021.01.11.21249461doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.21249461
http://creativecommons.org/licenses/by/4.0/


 

Discussion 

 
The results of this study highlight a potential major impact of operational pressure on patient survival during the 

first wave of the COVID-19 pandemic. Survival rates for patients with COVID-19 in intensive care settings 

appears to deteriorate as the occupancy of beds compatible with mechanical ventilation (a proxy for operational 

pressure),[17] increases. These observations are consistent with the aforementioned Belgian study,[8] except 

that our results suggest a linear association rather than single step increase at a specific threshold. Moreover, the 

results might partially explain the decreased mortality rate seen in the latter half of the first wave in the UK,[18] 

where occupancy rates were much lower than at the peak.[4] Our findings also corroborate previous reports of 

an association between larger ICUs and lower COVID-19 mortality.[19] However, we additionally observe an 

interaction with (pre-pandemic) unit size, whereby larger ICUs experience more exaggerated impacts from both 

higher and lower (surge) occupancy rates. It is unclear from our data what is driving this heterogeneity. 

 

Strengths and Limitations 

The strengths of this study are the national cohort of patient-level data with near-perfect capture of 

admissions,[20] coupled with a rigorous modelling method (eTable 4 & eMethods). Limitations include a lack 

of physiological data, limiting our ability to adjust for differences in severity upon admission. Moreover, the 

characterisation of operational strain as a function of surge occupancy likely fails to fully reflect the complexity 

of using non-specialist staff and other resource allocation issues present when ‘creating’ new ICU beds (see 

eTable 5 using an alternative definition of occupancy based on baseline capacity; mortality risk given this linear 

continuous factor was 1.08 (95% PCI: 0.98 – 1.26). Finally, we lack clear 30-day outcome data for discharged 

and transferred individuals, and thus were forced to model under a naïve assumption that these individuals 

survived. 

 

Implications for Policy Makers and Clinicians 

In summary, our study highlights the importance of public health interventions (such as expeditious vaccination 

programmes and non-pharmacological interventions), to control both incidence and prevalence of COVID-19, 

and therefore actively manage ICU occupancy, as there is evidence of direct harm to patients as a consequence 

of saturation. This is especially relevant given the identification of a new strain of COVID-19 with a potentially 

increased risk of transmission,[21] coupled with observations that second wave-related operational pressures 

(including bed occupancy rates) in England have exceeded levels seen during the first wave of the pandemic,[5] 

suggesting immediate and decisive action is necessary.  
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Figure Legends 

Figure 1: The adjusted odds ratios for the risk of mortality based on different ICU bed occupancy rates 

(treated as a three-level categorical variable) 

The full posterior distribution of the odds ratio (OR) for mortality given low occupancy 0 – 45% (Top; Green), 

and high occupancy 85 – 100% (Bottom; Red) are presented. The PCIs presented are equally tailed credibility 

intervals for the posterior odds ratio distributions. The outer (less saturated) interval is the 95% PCI, and the 

inner (more saturated) interval shows the 90% PCI. The reference category is 45 - 85% occupancy. Exact values 

are tabulated below. 

 
Posterior Credible Intervals 

 
Median 

 
95% 

 
90% 

  

 
Lower Upper 

 
Lower Upper 

  Occupancy 
              

0 - 45% 0.62 0.89 
 

0.64 0.87 
 

0.75 

85 - 100% 1.00 1.44 
 

1.01 1.41 
 

1.19 
 

Figure 2: The increase in mortality risk associated with admission to intensive care during periods of 

different occupancy rates, expressed in terms of the equivalent increase in years of age. 

The plot illustrates the number of years of additional age that ICU admission on a day with each different 

mechanical ventilation bed occupancy rate equates to. For example, an individual with a chronological age of 

40, has an effective age of 31 in a low occupancy setting (Green), and 45 in a high occupancy setting (Orange). 

Both of the aforementioned comparisons are relative to the baseline occupancy of 45 - 85%). A comparison of 

the difference in risk between being admitted to the highest occupancy range relative to the lowest is shown in 

(Red), and for a 40-year-old is equivalent to an increase in their age by11 years. The method for generating this 

specific type of plot is described in detail in the eMethods and via eFigure 7.[16]  

 

Figure 3: The adjusted odds ratios for the risk of mortality based on ICU bed occupancy (treated as a 

linear continuous variable) on the day of admission (top) and each individual’s recorded outcome date 

(bottom) 

The full posterior distribution of the odds ratio (OR) for mortality given occupancy on the date of ICU 

admission (Top; Purple), and occupancy on the date of each individual’s recorded outcome (Bottom; Blue) are 

presented. The PCIs presented are equally tailed credibility intervals for the posterior odds ratio distributions. 

Occupancy was specified without multiplying out by 100 (i.e., 20% = 0.20), therefore the odds ratio is for a step 

from 0% to 100% (i.e., 0.0 to 1.0). Exact values are tabulated below. 

 

Posterior Credible Intervals 
 

Median 

 

95% 

 

90% 

  

 
Lower Upper 

 
Lower Upper 

  Occupancy 
              

Continuous Linear (Admission Date) 1.36 2.67 

 

1.44 2.54 

 

1.92 

Continuous Linear (Outcome Date) 3.54 6.34 
 

3.70 6.07 
 

4.74 
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