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Supplementary Information

Examples of excess death data

FIG. A1: Mortality evolution in different countries. The evolution of weekly deaths in New York City, Spain, Eng-
land/Wales, and Switzerland for different age classes (where available). Grey solid lines and shaded regions represent the
historical mean numbers of deaths and corresponding confidence intervals. Blue solid lines indicate weekly deaths and weekly
deaths that lie outside the confidence intervals are indicated by solid red lines. For England/Wales and Switzerland, weekly
means and 95% confidence intervals are based on data from 2015–2019. In the case of Spain, we show the reported COVID-19
deaths across all age classes [35] in the inset and use the 99% confidence intervals that are directly provided in the corresponding
data [26]. The red shaded regions represent the mean cumulative excess deaths De. The data are derived from Refs. [21–25].

We tally weekly deaths according to Eq. (1) for each week i starting from the first week of 2020, and cumulative
excess deaths as in Eq. (2) adding all weekly contributions from the first week of 2020 onwards. Note that some
governmental agencies tabulate weekly deaths starting on the Sunday closest to January 1 2020 (December 29 2019,
such as the United States), others instead use January 1 2020 as the first day of the week (such as Germany). A detailed
list of how each country bins weekly deaths is included in Ref. [27]. The final week k up to which the cumulative count
is taken depends on data availability, since some countries have larger reporting delays than others. In the majority
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FIG. A2: Weekly and cumulative death rates in different countries and regions. We compare the evolution of

confirmed weekly deaths d
(0)
c (i) (dashed black curves) and cumulative deaths Dc(k) (dashed dark red curves) with weekly

excess deaths d̄e(i) (solid grey curves) and cumulative excess deaths D̄e(k) (solid red curves). The deaths are plotted in units of
per 100,000 in different countries and regions. The data are derived from Ref. [27] and the error bars for the excess deaths are
derived from Eqs. (1) and (2). For Spain, we used the 99% confidence intervals that are directly provided in the corresponding
data [26] to approximate the 95% confidence intervals. Typically, we find D̄e(k) > Dc(k).

of cases k is beyond the fourth week of November 2020. Quantities are calculated from data that include deaths from

typically J = 5 previous years [27]. In Fig. A2 we plot the weekly confirmed deaths d
(0)
c (i), the cumulative deaths

Dc(k) =
∑k
i=1 d

(0)
c (i), and the mean weekly and cumulative excess deaths d̄e(i) for 2020 as available from data. We
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also show D̄e(k) per 100,000 persons from the start of 2020 using Eqs. (1) and (2). The corresponding error bars
in Fig. A2 indicate 95% confidence intervals defined by d̄e(i)± 1.96σe(i) and D̄e(k)± 1.96 Σe(k) in Eqs. (1) and (2),
respectively. For Spain, we used the 99% confidence intervals that are directly provided in the corresponding data [26]
to approximate the 95% confidence intervals. Excess death statistics evolve differently across different countries and
regions. For example, in France excess deaths were negative until the end of March 2020, quickly increasing in April
2020. In Ecuador and Peru, the number of excess deaths is more than 2.5 times larger than the corresponding number
of confirmed COVID-19 deaths.

Statistical testing model

Given biases in sampling and testing errors, it is important to use a statistical testing model that takes them into
account when estimating the fraction f of a population N that are infected. Testing biases arises, for example, if
symptomatic individuals are more likely to seek testing. Thus, the probability fb that an individual who chooses to
be tested is positive may be different from f the probability that a randomly selected individual is positive, as defined
in Eq. (3). If all tests are error-free, the probability that Q+ positive results arise from the Q ≥ Q+ administered
tests is given by

Ptrue(Q
+|Q, fb) =

(
Q

Q+

)
fQ

+

b (1− fb)Q−Q
+

. (A1)

Eq. (A1) is derived under the assumption that once individuals are tested, they are “replaced” in the population
and can be tested again. The analogous distribution Ptrue(Q

+|Q, fb) for testing “without replacement” can be
straightforwardly derived and yields results quantitatively close to Eq. (A1) provided Q/N . 0.3.

Eq. (A1) also assumes flawless testing. Tests with Type I (false positives) and Type II (false negatives) may wrongly
catalog uninfected individuals as infected (with rate FPR) while missing some infected individuals (with rate FNR).
For serological COVID-19 tests, such as antibody tests, the estimated percentages of false positives and false negatives
are typically low, with FPR ≈ 0.03− 0.07 and FNR ≈ 0.1 [39, 50, 51]. For RT-PCR tests, the FNRs depend strongly
on the actual assay method [52, 53] and typically lie between 0.1 and 0.3 [40, 41] but might be as high as FNR ≈ 0.68
if throat swabs are used [39, 41]. FNRs can also vary significantly depending on how long after initial infection the test
is administered [54]. A systematic review conducted worldwide found FNR ≈ 0.54 at initial testing [55], underlying
the need for retesting. Reported percentages of false positives in RT-PCR tests are about FPR ≈ 0.05 [39]. A large
meta-analysis of serological tests estimates FPR ≈ 0.02 and FNR ≈ 0.02− 0.16 [54]. These testing errors can lead to
inaccurate estimates of disease prevalence; uncertainty in FPR, FNR will thus lead to uncertainty in the estimate of
prevalence.

As illustrated through Fig. 2, errors in testing may result in the recorded number Q̃+ of positive tests to be different
from the Q+ that would be obtained under perfect testing. The probability that Q̃+ positive tests are returned due
to testing errors can be described in terms of Q+, FPR, and FNR and the corresponding probability distribution
Perr(Q̃

+|Q+,FPR,FNR) is given by

Perr(Q̃
+|Q+,FPR,FNR) =

Q̃+∑
p+=0

(
Q+

p+

)
(1− FNR)p+(FNR)Q

+−p+
(
Q−

q+

)
(FPR)q+(1− FPR)Q

−−q+ . (A2)

where q+ ≡ Q̃+ − p+. By convolving Perr(Q̃
+|Q+,FPR,FNR) with Ptrue(Q

+|Q, fb) we derive the overall like-

lihood distribution for the measured number Q̃+ of true and false positives given a set of specified parameters
θ = {Q, f, b,FPR,FNR} describing the population and testing

P (Q̃+|Q, f, b,FPR,FNR) =

Q∑
Q+=0

Perr(Q̃
+|Q+,FPR,FNR)Ptrue(Q

+|Q, fb(f, b)). (A3)

When Q+, Q̃+, and Q� 1, we can approximate Ptrue, Perr, and P by normal distributions and rewrite P as a function
of the observed positive fraction f̃b ≡ Q̃+/Q (Eqs. (4) and (5)).

Using Bayes’ rule, we can then formally define the likelihood of θ given a measured f̃b,

P (θ|f̃b, α) =
P (f̃b|θ)P0(θ|α)∑
θ P (f̃b|θ)P0(θ|α)

, (A4)
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where α = {θ̄, σθ} are hyperparameters defining the prior P0(θ|α), such as their means θ̄ = {D̄e,FPR,FNR, b̄, N̄} and
standard deviations σθ = {Σe, σI, σII, b, σb, σN}. Formally, the probability of measuring a value of a mortality measure
Z = CFR, IFR,M,M, or r, can be computed from

P (Z|α) =

∫
P (Z|θ)P (θ|α)dθ, (A5)

where P (Z|θ) defines the statistical model of the mortality measure given the components and parameters θ and
the hyperparameters α defining the distribution over θ. For example, if Z is the value of the IFR, θ = {De, f,N}
and α = {(D̄e,Σe), (b̄,FPR,FNR, σb, σI, σII), (N̄ ,ΣN )} are the mean and standard deviation of excess deaths, testing
parameters, and the total population, respectively.

A simpler way to incorporate uncertainty in the infected fraction f is to assume a Gaussian approximation for all
distributions and propagate the uncertainty in testing parameters. The squared coefficient of variation CV2

f is then
decomposed into the parameter variances according to

σ2
f

f̂2
≈ (1− (1− eb)f̂)2

X2Q
f̃b(1− f̃b) +

(1− f̂)2

X2
σ2
I +

e2bf̂2

X2
σ2
II +

f̂2(1− f̂)2

X2
σ2
b , (A6)

where X ≡ f̃b − FPR. The values of b, FPR, FNR above are mean or maximum likelihood estimates of the bias and
testing errors, and σ2

b , σ2
I , and σ2

II are their associated uncertainties. The means and variances {b̄,FPR,FNR, σ2
b , σ

2
I , σ

2
II}

represent hyperparameters associated with testing (see SI). Our result for σ2
f in Eq. (A6) assumes {b,FPR,FNR} are

uncorrelated. Since Q � 1 is typically large, we expect the first contribution to the uncertainty, arising from
stochasticity in the sampling and proportional to f̃b(1− f̃b)/Q to be negligible. Uncertainties in other quantities will
ultimately contribute to uncertainty in the mortalities Z, as listed in Table II.

Modeling of resolved mortality

In Fig. A3, we show the evolution of M for Spain and Lombardia, using different effective recovery rates of
unreported cases γ. We compute M according to Eq. (8) and use excess mortality data of Fig. A1 to determine D̄e.
The corresponding data for confirmed recovered and deceased individuals, Rc and Dc, is taken from Ref. [26]. Current
estimates of the IFR are 0.1− 1.5% [31–33]. To obtain a value of M in a similar range, we vary γ from 1− 1000 and
find that M≈ 0.1− 1% is consistent with γ = 100− 1000.
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FIG. A3: Evolution of resolved mortality. We show the evolution ofM(t) for different values of effective recovery rates of
unreported cases γ. The data are derived from Refs. [22, 25].
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