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Abstract

The promise of efficacious vaccines against SARS-CoV-2 is fulfilled and vaccination campaigns
are starting worldwide. However, the fight against the pandemic is far from over. Here, we pro-
pose an age-structured compartmental model to study the interplay of disease transmission, vaccines
rollout, and behavioural dynamics. We investigate, via in-silico simulations, individual and societal
behavioural changes, possibly induced by the start of the vaccination campaigns, and manifested as
a relaxation of non-pharmaceutical interventions. We calibrate the model using real epidemiological
data for three different countries: Italy, France, and the United Kingdom. We explore different vac-
cination rollout speeds, prioritization strategies, and vaccine efficacy as well as multiple behavioural
responses. Our findings suggest that early relaxation of safe behaviours can jeopardize the benefits
brought by the vaccine in the short term: a fast vaccine distribution and policies aimed at keeping
high compliance of individual safe behaviours are key to mitigate disease resurgence.

1 Introduction

So far the war against COVID-19 has been largely fought with non-pharmaceutical interventions (NPIs).
Bans of events and social gatherings, limitations in national and international travels, school closures,
shifts towards remote working, curfews, closure of pubs and restaurants, cordon sanitaires, national and
regional lockdowns are examples of governmental interventions implemented around the world to curb
the spreading of SARS-CoV-2 [IH5]. While extremely effective, such top-down NPIs induce profound
behavioural changes, bring many social activities to a halt, and thus have huge socio-economic costs.
Hence, alongside these measures, governments nudged and/or mandated populations to adopt another
set of NPIs. Social distancing, face masks, and increased hygiene are examples [6]. Although far from
being cost-free, they are more feasible, sustainable, and allow for higher levels of socio-economic activity.
As such, they have been the leitmotif of the post first COVID-19 wave in many countries. Unfortunately,
awareness, adoption, and compliance with these NPIs have been spotty [6]. Furthermore, they have
not been complemented with sufficiently aggressive test and trace programs. As result, many countries
experienced marked disease resurgences after the summer and some had to resort to new lockdowns [7].
As we write, we are turning a crucial corner in the battle. Three vaccines have shown great results of their
phase 3 trials, two have been authorized for emergency use by several regulating agencies (three in the
UK) and several others are in the pipeline [8HI0]. We are witnessing the start of vaccination campaigns
around the world. However, the logistical issues linked to the production, delivery, and administration
of billions of doses on a global scale impose caution when evaluating the impact vaccines will have on the
pandemic in the short term. They will be a scarce resource and it will take time to vaccinate the fraction
of the population necessary for herd immunity [11, 12]. Furthermore, vaccines are not perfect and there
are many other unknowns [I3]. The results show high levels, around 95% [14] [I5], of direct protection
against the disease. However, these figures might end up to be lower, it is still unclear how they stratify
for risk-groups (i.e., age), whether vaccines limit further transmission, how long the immunity lasts, and
what is the protection offered by partial vaccination or lower doses [I3]. Finally, vaccines’ acceptance
is a complex challenge. A recent survey among 13,426 participants in 19 countries shows that, while
"Mo5Es Tofs thepsanngple tinserys ear domze vdsato lbkelye difiealty phe reatevineg shoe aaebéaree tetietoginest jeaclle].
Acceptance rates vary from 90% in China to less than 55% in Russia. They are linked to socio-economic,
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socio-demographic features, and education attainment [16]. Worryingly, participants in the 18-24 age
brackets reported being less likely to accept the vaccine. Compatible results have been reported in an-
other survey conducted among 2,006 US adults [I7]. In this case, 69% of participants declared to be
willing to take the vaccine. However, the results show dependence on political leanings, whether health
providers will recommend the vaccine, the perceived likelihood to get infected, and the perceived efficacy
of protection [I7]. Arguably, vaccines alone will not be able to contain the spreading of the virus, at
least in the short term [I8]. Social distancing, face masks, hygiene measures, and other NPIs will be still
key during the delivery of such vaccination programs.

In this context, an important question emerges. What will happen to adoption and compliance to NPIs
as vaccination campaigns progress? Their arrival might induce individual and collective behavioural
changes. Some might see this milestone as the official end of the emergency and as result relax their
COVID-safe behaviours. Somehow paradoxically, vaccines might have, at least initially, a net negative
effect. According to the health-belief model, one of the most commonly used psychological theories to
characterize health-related behaviours, beliefs, perceptions, barriers to take action, and other modifying
variables such as socio-demographic and socio-economic factors are key ingredients driving behavioural
changes [I9H2T]. Several surveys conducted during the COVID-19 pandemic, well before any concrete
hope for a vaccine, confirm this picture, provide hints of how the arrival of vaccines might corrode even
more adoption, and highlight how compliance is a complex multi-faced problem [5]. A cross-sectional
survey conducted among 3474 US adults shows that about 47% of participants perceived measures such
as social distancing, washing hands, avoid touching the face of low effectiveness [22]. Another survey con-
ducted among 1591 individuals in the United States indicates that as individuals perceived an increase
in the personal risk they increasingly engaged in risk-prevention behaviours [23]. A survey conducted
among 21,649 adults in eight countries (Austria, France, Germany, Italy, New Zealand, the UK, and the
USA) shows gender differences in risk perception. Women have been found, in all countries, more likely
to perceive COVID-19 as a serious problem, agree with NPIs, and comply with them [24]. Similar results
have been found in other studies conducted in Slovenia, Japan and Germany [25H28]. Age is also an im-
portant variable affecting adoption. Interestingly, both young and old adults, especially if male, reported
lower levels of compliance [25] 26]. Finally, a survey conducted among 401 participants in Pakistan
shows how people living in urban areas are more likely to develop higher knowledge about the current
pandemic and how the unavailability of hygienic material is the main barrier for NPIs adoption [29]. The
importance of socio-demographic and socio-economic characteristics in the adoption of NPIs has been
also reported in other studies conducted by monitoring variations to aggregate mobility patterns before
and during NPIs. Unanimously they indicate that disadvantaged groups, though less mobile before the
pandemic, were not able to reduce their mobility (i.e., stay home) during the implementation of strict
NPIs [30H37].

The literature aimed at estimating the epidemiological and societal impact of COVID-19 vaccines has
been focused mainly on two very important points. The first line of research has been devoted to quanti-
fying the effects of a vaccine on the evolution of the pandemic, considering different efficacy and coverage
levels [38]. The second instead tackled the issue of vaccine allocation investigating strategies that target
first different groups (i.e., age brackets, high-risk individuals) or particular occupations (i.e., doctors,
nurses) [10, 39, 40]. To the best of our knowledge, the effects of a vaccine on the adoption of NPIs and
thus on the evolution of the pandemic have not been yet studied at the population level. The only article
in this direction we are aware of is a very recent preprint exploring this issue in the specific setting of
long-term care facilities [41].

To tackle such limitation, we introduce an age-structured epidemic model capturing the possible re-
laxation of NPIs adoption as a function of the vaccinated population. We consider the two types of
NPIs described above. The first reflects top-down measures such as school closure, remote working,
and closure of other activities. We explore two reopening scenarios implemented after the closures of
November modeling them as variations of contact matrices. The second type captures bottom-up indi-
vidual COVID-safe measures such as wearing face masks, social distancing, and increased hygiene. We
model different compliance levels as distinct compartments and consider transitions driven by the frac-
tion of the vaccinated population (contributing towards lower compliance) and by the number of deaths
(contributing towards higher compliance). We calibrate the model to the second COVID-19 wave in
Italy, France, and the UK using real contact matrices, the effects of governmental restrictions on schools,
working mode, contacts, and real epidemic data up to 2020/12/01. We then simulate a vaccination
campaign starting on 2021/01/01 and study, from a theoretical standpoint, the effects of the aforemen-
tioned behavioural changes induced by the presence of vaccines on the population. Our findings show
that an early relaxation of COVID-safe behaviours may lower, and even nullify, the advantages brought
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Figure 1: Compartmental model. We consider an extension of the classic SLIR model adding com-
partments for vaccinated (V), dead (D describes individuals that will die with a delay of A~! entering
the compartment D°), susceptible (SV¢) and vaccinated (V) individuals that do not comply with
COVID-safe behaviours. The vaccine offers a protection V E. The transmission rate for susceptible is
B and for susceptible non-compliant 73 (r > 1). The parameter « regulates the transition from compli-
ant to non-compliant behaviours, while v regulates the opposite flow. Arrows describe the transitions
between compartments. The dashed lines represent transitions mediated by interactions. For example,
individuals move from SN¢ to L by interacting with infectious individuals (I) with a transmission rate
of r3. The compartmentalization is then extended to account for empirical age-structure and contact
matrices.

by the vaccine in the short term. We find that the impact of behaviour is amplified when the vaccine
rollout is slower, when the top-down measures are less strict or when a vaccination strategy targeting
homogeneously the population is employed. Overall, the picture that emerges from the analysis of the
different countries is pretty consistent: a high level of compliance towards NPIs such as mask-wearing,
social distancing, and avoidance of large gatherings, will be needed in the next months in order to avoid
spoiling the great effort of the vaccination campaigns.

2 Results

2.1 Epidemic Model and Calibration

We consider an age-structured compartmental epidemic model extending the classic SLIR archetype with
the addition of compartments to account for deaths, vaccinations, and different adoption of NPIs. Before
time ¢y, when the vaccination rollout begins, the model dynamics follows a SLIR structure with deaths.
Susceptible individuals (S compartment), in contact with infectious (I compartment), become latent (L
compartment). The transmission rate is 8 and the force of infection is dependent on the age-stratified
contact matrix C € R¥ X whose element C;; represents the average number of contacts that an in-
dividual in age group i make with individuals in j per day. The matrix C has four location-specific
contributions: contacts at home, workplace, school, and other locations. We adopt country-specific con-
tacts matrices provided in Ref. [42]. Latent become infectious after ¢! time steps, on average. Infectious
individuals either recover (R compartment) or die (D compartment). Note how we include a delay of
A~ from the time when individuals enter the compartment D and die (D° compartment, the superscript
stands for “observed”). After ty, at each time step (i.e., day) a fraction ry of the susceptible popula-
tion receives a vaccine that reduces the probability of infection proportional to vaccine efficacy V E and
enters in the compartment V. If not specified otherwise, the fraction ry of the population is selected
in decreasing order of age. In fact, due to the stratification of mortality risks per age-structure, many
countries are prioritizing older age brackets among other groups (i.e., health care workers) [10] [43] 44].
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We investigate different values of VE. We consider VE = 0.9 which is in the range of the results from
the concluded phase 3 trials as mentioned above [I4] [I5]. We explore also a lower efficacy of VE = 0.7
in line with findings of a different vaccine trial [45]. Furthermore, we study two vaccination rates ry. A
very optimistic and fast deployment that manages to vaccinate ry = 1% of the population daily (aligned
with the preparedness plan for Influenza pandemic [46] and with modeling studies on SARS-CoV-2 [39)),
and a slower yet more realistic rollout 7y = 0.25%. For more details about the vaccination strategies and
vaccine efficacy we refer the reader to the Methods section and the Supplementary Material (SM). In
the model, as the fraction of vaccinated people grows, individuals (both vaccinated and not) may start
giving up safe behaviours therefore exposing themselves to higher infection risks. We describe these
different behavioural classes with two compartments SV (for susceptible) and VN (for vaccinated).
For convenience, we will refer to these individuals as “non-compliant” (NC) to COVID-safe behaviours.
The transition from S and V towards such riskier behavioural classes is a function of the fraction of
the vaccinated population and the parameter . The increased risk is captured by a parameter r > 1
which multiplies the transmission rate i.e., § — rB. In turn, we account for the possibility that a
worsening of the epidemiological conditions may push individuals back to safer behaviours. The number
of fatalities in the previous time step is used to control this second behavioural transition. Indeed, an
increase in deaths is frequently used - especially by media - as an indicator of the severity of the current
epidemiological situation. Existing literature suggests that risk perception (in the form of number of
infected individuals or deaths) and communication of such risk significantly affect adherence to personal
mitigation strategies such as social distancing and wearing face masks [5, 45]. We use a parameter ~
to capture the propensity of non-compliant individuals of adopting safer behaviours again. A schematic
representation of the model is provided in Fig. We refer the reader to the Methods section and the
SM for the mathematical formulation, including the derivation of the basic reproductive number Ry.
As a way to constraint the model to realistic settings, we calibrate it, via an Approximate Bayesian
Computation (ABC) technique [47], 48], separately to data from France, Italy, and the UK in the period
2020/09/01—2020/12/01. In other words, the same compartmentalization structure is used to model the
evolution of the pandemic in the three countries. Each model is fed with country-specific contact matri-
ces, epidemic and demographic indicators. The fitted parameters are the transmission rate 8 and those
defining the effects of NPIs on contacts patterns. For workplace, school, and other locations contacts
we fit a monthly varying parameter defining the extent to which contacts decreased in those contexts.
For simplicity, we assume no changes to contacts at home, though lockdowns tend to increase them [49].
Note how we let vary both the transmission rate and the contact matrix. The former describes the risk
of infection given contacts with infectious individuals. This is function of the disease (which is assumed
to be the same, we don’t consider multiple or emergent new strains possibly more transmissible) and of
the protective behaviours such as social distancing and use of face masks. The latter describes variations
to the number and types of contacts induced by top-down NPIs as for example remote working, schools
closure and lockdowns. By splitting the contributions to the force of infection of transmission rate and
contact matrix we are able to take into consideration different behavioural attitudes which, given the
same number of contacts, might lead to higher or lower risks of infection. This allows us to consider
explicitly both top-down and bottom-up NPIs. More details are reported in the Methods.

In Fig. |2 we report the results of the calibration. It is important to stress how our goal is not to
develop a predictive model aimed at forecasting the pandemic trajectory. The fit is used to ground
the model and to define the epidemic conditions at the start of the vaccination campaign in the three
countries. In fact, our aim is to understand the possible interplay between behaviours and vaccine rollout
which is also function of the epidemic progression. In the Figure we report the official and simulated
weekly number of deaths. Despite its simplicity and approximations, the model is able to reproduce
the evolution of the pandemic in the three countries capturing well its resurgence and progression after
the summer. The fitted contact reductions in different contexts show similar trends across countries. A
relaxation of restrictions in September and October when schools reopened and many other activities
restarted, followed by strict NPIs (even lockdowns) in November due to a significant increase of deaths.
These observations are in line with variations of aggregated mobility traces reported by Google (see SM),
which however are not trivially linked to epidemiologically relevant contact patterns. In the inset of the
Figure we represent the posterior distribution for the transmission rate 8 obtained through calibration.
The median (8 appears to be larger for the UK, followed by Italy and France. These values correspond
to a median Ry of 1.74 for UK, 1.63 for Italy, and 1.55 for France. Not surprisingly, the values are
estimated to be larger than one for the three countries. We note how Ry is both function of # and of
the contacts matrix (and thus of the reduction parameters). These Ry are computed with respect to
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Figure 2: Calibration Results. For each country (row) we represent on the left the observed and
simulated weekly deaths. In the inset of the figure we also represent the posterior distribution of 3.
On the right, we report the fitted values of the reduction parameters for different contacts locations in
different periods (100% indicates no significant reduction from baseline).

2020/09/01 with the calibrated reduction parameters (we refer the reader to the SM for further details).
In the Figure we also report a comparison between the projected numbers of deaths obtained from the
model and the official data in December. Despite these are out of sample projections (i.e., the data is not
used for calibration) they fall within the confidence intervals of the model. The increase in the number
of deaths in the last two weekly data points in the UK is probably linked to a new SARS-CoV-2 variant
which has been reported to be more transmissible [50]. The new strain took over in the first week of
December, hence outside our calibration period.

2.2 Vaccine-behaviour Interplay

After the calibration step, each model evolves from 2020/12/01 up to 2021/01/01 with the same contacts
reduction parameters fitted for November with the addition of full school closure from December 215¢
to January 6" to account for holidays. Indeed, despite some NPIs have been relaxed at the beginning
of December, the risk of infection spikes due to Christmas break and the emergence of a new strain in
the UK, have pushed governments to reinstate strict NPIs policies. We set the start of the vaccination
rollout on 2021/01/01. Note how, in the countries under investigation, the vaccination campaigns already
started in the second half of December, though mostly symbolically for France and Italy. From this date
on we model different scenarios to account for possible NPIs strategies kept in place as the vaccination
campaign unfolds. In particular, we take into account two reopening scenarios:

e scenario 1: 75% work, 100% school, 75% other locations;
e scenario 2: 50% work, 75% school, 50% other locations.

While these numbers are hypothetical, they describe two possible strategies aimed at relaxing the NPIs
put in place to contrast the disease resurgence in November/December. By looking at the fitted param-
eters in Figure [2| we can see that scenario I is compatible with the reductions our calibration selects
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Figure 3: Behavioural parameters space exploration. For the three countries, we explore different
values of o and + in terms of observed deaths increase with respect to a baseline without behavioural
response (i.e. a,y =0). We set ry = 0.25% and VE = 90%.

for September/October. Hence, they describe a reopening of a large fraction of activities. Scenario 2
instead, models a more conservative reopening strategy which is however less strict than what observed
in November/December.

In Figure [3] we start exploring the phase space of parameters regulating the behavioural transitions, «
and . We run the model from 2021/01/01 up to 2021/05/31 over a grid and compute, for each pair, the
ratio between the observed deaths and those obtained in case of a vaccination campaign that does not
trigger behavioural responses (i.e. «,y = 0). Therefore, this quantity can be considered as the variation
in deaths only attributable to an early relaxation of COVID-safe behaviours. For the three countries,
we consider the two reopening scenarios and two different values of the parameter r (r = 1.3, 1.5) which
defines the increase in infection risk for individuals relaxing preventive behaviours. We set rollout speed
ry = 0.25% and vaccine efficacy VE = 90%. The obtained variation in deaths varies from a minimum
of around 1 (which indicates a negligible net effect of behaviour) to a maximum increase of around 8 in
the most extreme case. Across the different settings considered, a common pattern emerges. For a fixed
(especially for values larger than one), as v grows we observe progressively smaller variation in deaths.
Indeed, if the population reacts promptly to the new deaths, non-compliant individuals turn back to
COVID-safe behaviours. On contrary, for a fixed 7 (especially for values equal or smaller than 10~3)
an increase of o induces a stronger behavioural response causing more deaths. In the following, we will
keep v = 10~2 and we will let vary . In the three countries considered, the maximum number of deaths
reported on a single day is around 1,000. Therefore, this value of v is such that, in a similar situation,
non-compliant individuals would likely return to COVID-safe behaviours. As described in the Methods,
we model the transition rate as Ax~e_,x = 1 —exp 7Pi-1 (X =[S, V]) hence at the peak of deaths the
transition rate towards compliance is Axy~xc_, x ~ 0.6. The sensitivity to this choice is discussed in the
SM.

In Figure 4] we explore the effects of different behavioural responses on the effective reproductive
number R; (estimated via EpiEstim [5I]) for the three countries in scenario 1 and 2. In particular, in
the case a = 0 individuals do not react to the presence of a vaccine and continue adopting COVID-safe
behaviours. Therefore, this represents a baseline case where no behavioural response is triggered by the
vaccination campaign. It is interesting to notice that, for all the three countries, even in the absence of
non-compliant individuals, R; slightly grows at the reopening in January '21. Reasonably, in the more
permissive scenario (left), the jump of R; is higher, but in both scenarios - and for all countries - it
remains far from the level that led to the November lockdowns (indicated in figure as a dashed grey
horizontal line). When behavioural responses to the presence of a vaccine (i.e., « > 0) are considered,
R; grows more consistently and in some cases overcomes the maximum level observed during the second
wave. For scenario 1, this is the case for France when o = 10°, 10!, while for Italy and UK the 95% CI
cross such critical value when a = 10'. When we consider the stricter scenario 2, instead, R; almost
reaches such levels only in France for a = 10'. Nonetheless, in all the other cases, behavioural responses
affect R; causing a non-negligible increase. In the SM we report this analysis also for ry = 1%.

In Figure [5| we show the relative deaths difference in the three countries considering the reopening
scenario 1. This is computed as the fraction of deaths avoided in presence of a vaccine with respect
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Figure 4: Non-compliance to NPIs affects the evolution of R;. Median and 95% CI for effective
reproductive number (R;) with different behavioural responses for the three countries in scenario 1 (left)
and scenario 2 (right). The grey dashed line indicates the maximum R; observed before 2021/01/01.
Model parameters: v = 1073, » = 1.5, ry = 0.25%, VE = 90%.

to the scenario without vaccination. We display the quantity for two different rollout speeds, vaccine
efficacy and for different behavioural responses (i.e., varying « and r). For all the three countries, we
observe that, in the absence of a behavioural reaction (i.e., « = 0) and a fast rollout ry = 1%, a vaccine
would reduce the number of deaths in the first five months of 2021 by about 80% — 90% and 75% — 85%
for VE = 0.9 and VE = 0.7 respectively. When a slower and more realistic rollout speed is considered
(ry = 0.25%), such effectiveness drops to 50% for the case with VE = 0.9 and to 40% with VE = 0.7.
For strongest behavioural responses (i.e., « = 103) we observe that the fraction of avoided deaths be-
comes smaller: when ry = 1%, the 80% reduction shifts to around 60 — 70% with larger fluctuations for
the three countries. When a lower vaccine efficacy is considered (V E = 0.7), the reduction is amplified.
When we consider instead the slower rollout ry = 0.25% a concerning effect consistently emerges: as
non-compliance becomes larger, the benefit brought by the vaccine is nullified and the number of observed
deaths even increases with respect to the no-vaccine (and thus no-behaviour change) scenario. This is
solely attributable to the behavioural reaction to the vaccination campaign which in turn is not fast
enough to balance behaviour relaxation. This phenomenon is even more pronounced when the vaccine
efficacy is lower. We would like to stress once again this difference: while in the case of a faster rollout
(rv = 1%) behavioural changes impact the number of avoided deaths, with a 4 times slower rollout
(ry = 0.25%) the number of deaths increases exclusively due to an early relaxation of COVID-safe be-
haviours. This finding is consistent across the three countries considered. Indeed, while we note a higher
variability of results for France when ry = 0.25%, the obtained medians are comparable. For lower r we
observe a weaker impact on vaccine effectiveness in reducing mortality.

In Fig. [6] we report the same analysis considering scenario 2. The overall patterns and observations are
confirmed also in the case of such more prudent reopening. However, across the board, the positive
relative differences are smaller. Hence, the relative reduction induced by the presence of a vaccine is
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Figure 5: Giving up NPIs during rollout may nullify the benefits brought by the vaccine
(scenario 1). Relative deaths difference is computed as the fraction of deaths that are avoided with a
vaccine with respect to a baseline simulation without vaccine (and thus no behavioural response). We
run the model over the period 2021/01/01-2021/05/31. Results for two different rollout speeds, vaccine
efficacy and for different behavioural responses are shown (y = 1073).

smaller in scenario 2 with respect to scenario 1. Furthermore, some extreme scenarios in France suggest
that the number of deaths might even increase with ry = 1%. While this might seem counter-intuitive
at first, it is important to remember how, in scenario 2, the baseline features already a smaller number
of deaths. In fact, the implementation of stricter NPIs reduces the transmission routes of the virus even
in absence of a vaccine, though at much high societal costs.

We test also a different vaccination strategy in which the vaccine is distributed homogeneously among
people, irrespective of their age (see SM). We find that this strategy has generally a worse performance
with respect to the one prioritizing the elderly in terms of avoided deaths. We note how this has been
already observed in other modeling papers specifically addressing prioritization strategies [39, [52]. Fur-
thermore, with our model we are also able to observe how the behavioural response amplifies differences
in the effectiveness of vaccination strategies. For the sake of simplicity let’s focus on a specific scenario
reported in Figure [5; fast rollout, Italy, VE = 0.9, » = 1.5 (the trend holds also for slower rollout and
different countries). The fraction of averted deaths ranges from 81% when a = 0 to 76% when o = 10°
dropping to 66% when o = 103. When a homogeneous vaccination strategy is implemented (see SM), the
fraction of averted deaths goes from 78% when o = 0 to 72% with o = 10°, and finally drops to 54% with
a = 103, Thus, the drop when a strong behavioural response is in place is three-fold the one observed
with a milder one when priority is given to elder population, and it becomes about four-fold larger when
vaccine is administered homogeneously. Interestingly, while age-dependent vaccination performs slightly
better when mild behavioural responses are in place, it appears to perform even better when strong
behavioural responses are considered.
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Figure 6: Giving up NPIs during rollout may nullify the benefits brought by the vaccine
(scenario 2). Relative deaths difference is computed as the fraction of deaths that are avoided with a
vaccine with respect to a baseline simulation without vaccine (and thus no behavioural response). We
run the model over the period 2021/01/01-2021/05/31. Results for two different rollout speeds, vaccine
efficacy and for different behavioural responses are shown (y = 1073).

3 Discussion

For almost a year, in the midst of a global pandemic, policymakers struggled to implement sustainable
restrictions to slow SARS-CoV-2 spreading. Every non-pharmaceutical intervention was aimed at flat-
tening the incidence curve and buying time for the development, test, production and distribution of a
vaccine that might ultimately protect the population. With an impressive scientific endeavor, several
vaccines have been developed and an early distribution campaign was rolled out by the last days of
December 2020. Besides the potential novel threats emerging from new virus strains [50], the upcoming
vaccination campaign represents the beginning of a new normal and a gigantic step towards complete
virus suppression. However, in the present paper we demonstrated that if the growth in vaccination
uptake would lead to overconfident conducts inducing relaxation of COVID-safe behaviours, additional
avoidable deaths will occur. We proposed a novel mechanistic compartmental model able to simulate
the unfolding of COVID-19, the vaccination dynamics and the compliance/non-compliance transition
modulated by the deaths increase and vaccination uptake. As a way to ground the model we calibrated
it using data and observations from France, Italy and the UK and simulate the unfolding of the first
months of the vaccination campaign in the three countries. Performing in-silico simulations allowed us
to explore several scenarios, where both top-down policies were implemented (e.g., reductions in schools
and work mixing patterns) and bottom-up (e.g., face masks, increased hygiene) behaviours dynamically
emerged. Worryingly, in the three countries, even in a scenario with several restrictions and a successful
vaccination campaign in place, it is possible to witness an increase of R; at the levels observed in October
2020 when lockdowns were devised and finally implemented in November. In such scenarios, the number
of deaths would increase by a factor 2 to 8, and would be purely attributable to non-compliance to safe
behaviours.

Our results show that when behaviours come into play, vaccine effectiveness is non-linearly impacted
by several factors besides the vaccine efficacy itself. Firstly, the vaccination rollout speed would impact
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tremendously the number of averted deaths: even in the extreme scenario where people started acting
over-confidently boosting the spreading of the virus, a fast daily vaccination rate of 1% of the population
would still avoid between 40% to 70% of deaths (yet wasting a potential 60% to 90% reduction due to
the vaccine itself). On the other hand, a slower rollout with a daily vaccination rate of 0.25% of the
population might even lead to detrimental effects. In fact, a relaxation of protective behaviors not backed
by a fast enough rollout in this case might induce an increase of deaths with respect to scenarios without
vaccines. Finally, if the vaccination campaign would target uniformly the population irrespective of their
age, more people would die and overconfident behaviours would further increase such death toll.

The findings are pretty consistent across the three countries considered although a greater variability
(and generally worse trends) are observed for France. Since the vaccination rate is assumed to be the
same, these differences are possibly due to the progression of the pandemic. From model’s projections
presented in Figure [2] we see that France has the smaller number of weekly deaths projected by January
2021, and is also the country where deaths are expected to decrease more rapidly. Indeed, the deaths
curve for France has peaked and has started to consistently decrease after mid-November. Arguably,
since the transition towards COVID-safe behaviours is catalyzed by the number of deaths, such trend and
lower level of mortality may facilitate non-compliance making individuals less prone to follow NPIs again
after having relaxed their behaviour. Another possible explanation relies on the different age distribu-
tion. In fact, a higher number of deaths reduces the non-compliant population, and an older population
is associated with higher number of deaths. However, as shown in the SM, though the demographics
of the three countries considered are quite similar there are some important differences. For example,
11.7% of the population is in the 75+ class in Italy with respect to the 9.4% in France. Finally, since
our findings are computed with respect to country-specific baseline, a relative higher increase in deaths
does not necessarily correspond to an absolute higher increase.

We acknowledge some limitations in the present study. First, the vaccine is modeled as protective
towards infection, without modeling the protection against severe COVID-19 complications and potential
reduction of viral shedding in infected vaccinated individuals. At the time of writing, such information
are still matters of study even for the vaccines already approved by regulators. For the sake of simplicity,
we also considered the vaccines fully working immediately after the first dose. We have also considered
two simple vaccination strategies that neglect the complexities of an unprecedented mass vaccination.
As result, both the vaccination priorities and rates are an approximation of reality. While the model
calibration suggests that our approach can nicely capture the national trend, our model is not meant to
provide accurate forecasts of the local unfolding of the disease, but rather to test what-if scenarios in
a comparative fashion. We have considered a simple age-structure compartmental model that does not
capture spatio-temporal heterogeneity both in terms of spreading and of NPIs implementation which
have instead been observed in the countries under investigation. Our model does not include the emer-
gence of a new, more transmissible, strain in the UK. The variant took over in December and led to a
significant spike of cases, hospitalizations and deaths. As result, the government imposed a third lock-
down in the first days of 2021 which is more restrictive than our scenario number 2. Finally, we propose
and model a potential mechanism leading to behavioural changes, but data are not available to perform
a quantitative validation of the behavioural components of the model.

Implementation of individual protective behaviours and adherence to NPIs have been vital in order
to reduce the transmission of SARS-CoV-2 leading to substantial population-level effects [5, [49] (3}
63]. Behavioural science can provide valuable insights for managing policies, incentives, communication
strategies and can help coordinate efforts to control threats and evaluate such interventions [64]. As was
the case for the first waves of COVID-19, when NPIs were the only available mitigation measures [65], the
results of our paper call for adequate strategies to keep high the attention and compliance towards individ-
ual COVID-safe behaviours, such as mask-wearing, social distancing, and avoidance of large gatherings
now that vaccines are finally available. Communication strategies and policies should keep targeting such
non-pharmaceutical intervention to avoid frustrating the immense effort of the vaccination campaigns.
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4 Materials and Methods
4.1 Epidemic Model

We propose a compartmental model that incorporates both the vaccination process and the behaviour
dynamics possibly linked to it. The virus transmission is modeled using the following approach. Healthy
and susceptible individuals are in the compartment S. Interacting with infectious, they become infected
and transit to the compartment of the latent (L). The force of infection is split into two contributions:
the transmission rate 3 and the contact matrix C € IR**¥ whose element C;; represents the average
number of contacts that an individual in age group 7 make with individuals in j per day. As detailed
below, the matrix C has four location-specific contributions: contacts at home, workplace, school, and
other locations. We adopt country-specific contacts matrices provided in Ref. [42]. After the latency
period (e71), L become infectious and transit to the compartment I. After the infectious period (pu~1),
individuals transit either to the compartment of recovered (R) or dead (D). The fraction of individu-
als transiting towards these last two compartments is regulated by the age-stratified Infection Fatality
Rate [66]. Finally, to account for delays between actual death and the transition to D, we consider
an additional compartment D° (deaths “observed”), towards which D individuals transit at rate A~?.
The model described is a modification of the well-known SLIR compartmental model to account for the
specific mortality dynamics linked to COVID-19. Similar approaches have been used in several modeling
studies in the context of the current pandemic [67HGY).

On top of the disease dynamics, we model both the vaccination process and the behavioural change
that is possibly coupled to the vaccination. More in detail, after the start of the vaccination campaign
at ty, at each time step, a fraction 7y of the susceptible population receive a vaccine and transit
to compartment V. As mentioned above, we consider two vaccination strategies: one in which the
vaccine is given in decreasing order of age and one in which it is given homogeneously to the population.
For convenience, we derive the model’s equations in the homogeneous case, we refer the reader to the
following sections for more details. We consider a “leaky” vaccine that reduces susceptibility with a
certain efficacy VE. In other words, the infection rate for V individuals is (1 — VE). In parallel, we
imagine a behavioural dynamics triggered by the presence of the vaccine. Indeed, susceptible individuals
(both vaccinated and not) may start adopting less safe behaviours because reassured by the presence of
an effective vaccine. This is encoded in the model with a transition from the compartment S (V') to a
new compartment S™V¢ (V) of individuals that protect less themselves and as a result get infected at a
higher rate (rf3, with r > 1). Note that NC stands for non-compliant. This transition happens at a rate
« and it is catalyzed by the cumulative fraction of vaccinated individuals v¢. Note that in order to avoid
issues with transition probabilities large than one we model the rate as Ax_,x~ve = 1 — exp™ Yt with
X =[S, V]. Note how for small values of av; the rate converges to the usual mass-action law. In turn,
we assume that a strong resurgence of the epidemic would push individuals towards safer behaviours.
Therefore, we consider also an opposite transition from S™V¢ (VN) to S (V) that happens at rate v and
is catalyzed by the number of observed deaths in the previous time step Dy ;. Also for this transition
we use the exponential form Ayvc_,y = 1 —exp 77— with X = [S,V]. The model can be written
down as the following system of differential equations for individuals in age group k:
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Where 6]t — ty] is a step function which is equal to 1 if ¢ > ¢ty and to 0 otherwise. The basic
reproduction number is Ry = g p(é’), where C is the contacts matrix weighted by the relative population
in different age groups. In the SM we provide details on its derivation. We adopt the model integrating
numerically the equation, thus it is deterministic. However, it is worth stressing that the model is
calibrated in a probabilistic framework through the ABC-SMC technique. Said differently, the free
parameters are characterized by posterior probability distributions rather than exact values. For this
reason, the results presented (for example median and confidence intervals of model’s projections) are to
be intended as an ensemble of multiple trajectories generated sampling from the posterior distribution
of the fitted parameters. We used N = 20 samples to generate trajectories.

4.2 Modeling the Effects of NPIs on Contact Matrices

We implement top-down NPIs changing the contacts patterns defined by the contacts matrix C. As
mentioned, we use the country-specific contacts matrices provided in Ref. [42]. These are made up by
four contributions: contacts that happen at school, workplace, home, and other locations. In a baseline
scenario, the overall contacts matrix C is simply the sum of these four contributions. Here, we implement
the reductions in contacts, due to the restrictions, multiplying the single contribution by a reduction
factor n;(t). Thus, in general the overall contacts matrix at time ¢ become:

C(t) = home + 1y, (t) - work 4+ ns(t) - school + 1y (t) - other locations (2)

Here, for the contacts locations work, school, and other locations we adopt a reduction parameter that
varies monthly and can assume the values [0.25,0.50,0.75, 1.0]. Since we consider the period 2020/09/01—
2020/12/01 for calibration, this implies that we fit three reduction parameters (September, October, and
November) for each of these contacts locations.

4.3 Model Initialization

The number of individuals in different age groups is initialized considering the 2019 United Nation World
Population Prospects [70, [71]. We consider 16 age brackets of five-years, except for the last one that
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includes 75+ individuals. The initial number of infected individuals is given by the total number of con-
firmed cases in the week before the start of the simulation according to the data issued from the European
Centre for Disease Prevention and Control [72]. To initialize the number of non-susceptible individuals
(placed in the R compartment) we compute the average of several publicly available projections of total
COVID-19 infections up to 2020/09/01 (start of the simulation) from different modeling approaches [73].
Both the initial number of infected and of non-susceptibles is assigned homogeneously across age groups.
Other parameters used are e ! = 4 days, p~! = 2.5 days (i.e. generation time Tg = 6.5 days), A = 18
days, in line with current estimates of COVID-19 infection dynamics parameters [74], [75]. We use the
age-stratified Infection Fatality Rate (IFR) from Ref. [66]. In the SM, we provide sensitivity analysis on
the parameters choice and initialization. We see that Ry obtained through calibration is not significantly
affected.

4.4 Model Calibration

We calibrate the model for each country using an Approximate Bayesian Computation (ABC) method
based on Sequential Monte Carlo (ABC-SMC) [47], 48]. The ABC-SMC approach is based on the ABC
rejection method. At each step of the rejection algorithm, a set of parameters 6 is sampled from a
prior distribution and an instance of the model is generated using 6. Then, an output quantity E’ of
the model is compared to the corresponding real quantity E using a distance measure s(E’, E). If this
distance is greater (smaller) than a predefined tolerance €, then the sampled set of parameters is discarded
(retained). After accepting N sets, the iteration stops and the distribution of accepted parameters is
an approximation of the real posterior distribution P(0, E). The ABC-SMC algorithm implements this
procedure sequentially, decreasing at each generation the tolerance e. This generally allows for faster
and more precise computation. The free parameters of our model and the related prior distributions are:

e the transmission rate 5. We explore uniformly values of 5 such that the related Ry is between 1.1
and 2.0;

e the monthly contacts reduction parameters for work, school and other locations contributions to C.
For September and October we consider a uniform discrete prior on the values [0.25,0.50,0.75, 1.0];
for November we consider a uniform discrete prior on the values [0.25,0.50,0.75]. Indeed, Italy,
France, and United Kingdom all issued in late October/early November tougher restrictions to
curb the second wave.

The model is calibrated on the period 2020/09/01 — 2020/12/01 using the following distance metric:
s=(1— p(Inc.,Inc.')) 4+ |Diot — Dyoi|/Diot (3)

Where p(Inc.,Inc.’) is the Pearson correlation coefficient between the real and simulated weekly in-
cidence, while D,y and Dj,, are respectively the total number of real and projected deaths in the
calibration period.

We implement the ABC-SMC calibration using the python library pyabc [76]. The epidemic model
is implemented using the python library scipy [(7] and optimized with numba [78]. Visualizations are
realized with the python library matplotlib [79].

4.5 Vaccination Strategies

We consider two vaccination strategies. In the first one, the vaccine is given in decreasing order of age.
Since the IFR of COVID-19 strongly correlates with age, many countries worldwide are adopting similar
strategies prioritizing the vaccination among the elderly. In practice, this means that in our simulations
we start giving the vaccine to the 75+ age bracket and we proceed in decreasing order only when everyone
in this group is vaccinated. If, on a given time step, the number of people remained in the age group is
smaller than the total number of vaccines available, the exceeding part is given to the next age group.
This implies that the number of vaccines given in different time steps is always constant. In the second
strategy, the vaccine is given homogeneously to the population respecting the age distribution. This
means that, of the X vaccines available at step ¢, the fraction Ny /N is given to age group k (where Ny
is the number of susceptible individuals in age bracket k). If note specified differently, in the main text
we consider the first strategy.
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A Supplementary Material

A.1 Sensitivity Analysis

We run sensitivity analysis on the epidemiological parameters considered. In Figure [7] we represent
median and 95% CI of the basic reproduction number R, for:

e different combinations of €, p. In particular, we compare the values used in the main text (e~! =
4 days, p=! = 2.5 days) to both a longer infectious period (u=! = 3 days, which implies a
Te = 7 days) and a longer latent period (! = 5 days, which implies a T = 7.5 days);

o different initial number of infected (I(¢ = 0)). In the main text, we used the total number of
confirmed cases in the week before the start of the simulation according to the data issued from
the European Centre for Disease Prevention and Control [72]. Here we consider an initial number
of infected which is —50%/ + 50% of this value;

e different initial number of non-susceptibles (R(¢t = 0)). In the main text we used the average
cumulative number of infections at the start of the simulation estimated by different epidemic
models [73]. Here we consider the maximum and minimum of these projections, rather than the
average;

e different values of A, which is the delay between the transition from the D to the D° compartment.
We test both a shorter (A = 14days), and a longer (A = 22days) period (in the main text we used
A = 18days).

In Figure, the grey dashed line indicates the median Ry related to the combination of parameters
used in the main text. As we can see, this value falls within the 95% CI obtained for all the other
parameters, except for one case in France, when we consider 50% more initial infected. In this case, we
obtain a slightly lower Ry (median of 1.44 versus 1.55 used in the main text).

Furthermore, in Figure [8| we present the relative deaths difference (scenario 1) for a different be-
havioural parameter v = 5 x 10~ (in the main text we used v = 1073). As we can see, results are not
particularly affected by this change. For example, for Italy, VE = 90%, ry = 1%, r = 1.5, when a = 10
we obtain a relative deaths difference of about 72% with respect to 69% obtained with v = 1073.
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Figure 7: Sensitivity analysis on latent and infectious periods. We represent R, (median and
95% CI) for different pairs of €, u, different values of I(t = 0) and R(t = 0)
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Figure 8: v =5 x 1073, Giving up safe behaviours during rollout may nullify the benefits brought
by the vaccine (scenario 1). Relative deaths difference is computed as the fraction of deaths that are
avoided with a vaccine with respect to a baseline simulation without vaccine (and thus no behavioural
response). Results for two different rollout speeds and for different behavioural responses are shown.
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A.2 Additional Figures
We report here additional Figures that are mentioned in the main text. In particular:

e in Figure [0] we represent the posterior distribution of the basic reproduction number R, obtained
through the ABC calibration for the three countries considered;

e in Figurewe present the behavioural parameters space exploration for a rollout speed of ry = 1%
(in the main text we showed results for 7y = 0.25%);

e in Figure[l1ljwe present the evolution of R; under different behavioural responses for a rollout speed
of ry = 1% (in the main text we showed results for ry = 0.25%);

e in Figure[12|we present the relative deaths difference for scenario 1, V. E = 90%, and a homogeneous
vaccination strategy (in the main text we showed results for vaccination strategy prioritizing the

elderly);

e in Figure [13| we represent the mobility changes from the COVID-19 community mobility report
published by Google [80] for the countries considered. We report this to provide a qualitative
comparison with the contacts reductions parameters obtained in the main text. Similarly to the
results of our calibration, we observe, in different contexts (e.g. workplaces), the resurgence in
mobility after the first wave during summer 2020. We then observe a sharp drop around the
beginning of November 2020, concurrently with the second wave and new restrictions.

7 ) 1.63 1.74
10— ltaly
] France
87| — United_Kingdom
- ]
O 6
- 4
(O] ]
— ]
S 41
o ]
2
0 -
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
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Figure 9: Posterior distribution for Rjy. Dashed vertical lines indicate the median.
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Figure 10: Behavioural parameters space exploration. For the three countries, we explore different
values of a and 7 in terms of observed deaths increase with respect to a baseline without behavioural
response (i.e. o,y =0). We set ry = 1.0% and VE = 90%.
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Figure 11: Non-compliance to COVID-safe behaviours affects the evolution of R;. Median
and 95% CI for effective reproductive number (R;) with different behavioural responses for the three
countries in scenario 1 (left) and scenario 2 (right). The grey dashed line indicates the maximum R,
observed before 2021/01/01. Model parameters: v = 1073, r = 1.5, 7y = 1%, VE = 90%.
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Figure 12: Homogeneous vaccination strategy. Giving up safe behaviours during rollout may nullify
the benefits brought by the vaccine (scenario 1). Relative deaths difference is computed as the fraction
of deaths that are avoided with a vaccine with respect to a baseline simulation without vaccine (and thus
no behavioural response). Results for two different rollout speeds and for different behavioural responses
are shown (y = 1073).
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Figure 13: Mobility Changes form Google Mobility Report. We display smoothed time series
(two-weeks moving average) of mobility changes in different contexts according to the data provided by
Google in the COVID-19 Community Mobility Report.
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A.3 Ry calculation

We compute the basic reproduction number Ry of the model proposed using the Next Generation Matrix
method [8I]. We consider the 2K equations that describe the evolution in time of the number of infected
individuals:

dL
—E =15 Z Cklc’ 519 +rB Z Clck’ “+8(1-VE) Z Clck’ Vk+
k./ 1 k:l 1
S Iy o ne
+78(1=VE) Y Cr N Ve el (4)
k=1
dl
CT: =eLy, — (1 — IFRy) I, — pIF R, I,
=eLy — ply
In matrix notation:
r4e 7 [ (B8 +rBSYC + B~ VEWA + 181~ VEWVNO) K Civats | T ely ]
i = (BSK+TﬂSI]¥C+6(17VE)VK+T’ﬂ(17VE) )Zk, 1CKk’N/ _ eLx
£ - I — €L
@t 0 pi et
L4 L 0 | Lk —elk]
Y TR T v
dﬁ—f _ | x| | Vk
Lc’l‘jl 0 Vi1
LGl Lol [hax

(5)

Then, we define the disease free equilibrium (DFE) for age group k as (S, S]ivc, Vi, VkNC, Ly, I, Ry, Dy, DY) =
(N, 0,0,0,0,0,0,0,0). Indeed, the vaccination (and thus the behavioural dynamics) starts only after
time ¢y and we suppose that the R << Ni. We also define the two matrices F' and V as follows:

Fy; = %|DFE and V;; = 42 . These can be written as:
M --- 0 5N1011 5N101K- (e - 0 0 --- 0]
: : : ; . 0 0
I S S i PO LA S A B
FEE T S S N A S

The basic reproduction number is defined as Ry = p(FV 1), where p(-) indicates the spectral radius.

First, we compute V~!. We recognize that V and F can be written in blocks as: V = B[// g], with

W,Y, Z diagonal, and F = {8 ](;
W 0.|. Since the i f a diagonal matrix is obtained by replaci

_gz-lyp-1 z-1|- Since the inverse of a diagonal matrix is obtained by replacing

} . Thanks to the properties of block matrices, the inverse of V' can be

written as V1 =
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each element in the diagonal with its reciprocal, we obtain:

L 0 0 --- 0]
0 1 0 W 0

v-1= € o 7
P ol [y g "
0 ... 1 0 .. 1
L N p,_

The product FV~! can be easily computed thanks to the blocks structure of the matrices:

(®)

e 1Y -1 4

We are left with finding the spectral radius (i.e. largest eigenvalue) of FV ~!. Using the property of
block matrix determinants, the eigenvalue problem can be written as:
IRV AN
det [ 0 N I} =0
det(FY — X)det(—\I) = 0 )
det(FY —AI) =0

Where, 1n the last passage, we are neglecting the solution A = 0. Therefore, finding the spectral radius
of FV~! reduces to finding the largest eigenvalue of FY. Making explicit the form of FY:

Mon ... Ny i
5 ﬂ Nk " 0
EY = . : :
NKCK1 NKCKK l
BNKCia ... pNsCix| | 1
Flnges .. NkCrx
N1 NK
_Ba
1

Where C is the contacts matrix weighted by the relative population in different age groups. Finally, we

obtain Ry = gp(C).
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A.4 Population demographic

In Figure [14] we represent the fraction and the number of individuals (in millions) in different age brackets

for the three countries considered, Italy, France, and United Kingdom.
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Figure 14: Population distribution in different age groups.
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