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Summary 
 
Background COVID-19 is an infectious disease caused by SARS-CoV-2 that is primarily diagnosed 
using laboratory tests, which are frequently not administered until after symptom onset. However, SARS-
CoV-2 is contagious multiple days before symptom onset and diagnosis, thus enhancing its transmission 
through the population. 
 
Methods In this retrospective study, we collected 15 seconds to one-minute heart rate and steps interval 
data from Fitbit devices during the COVID-19 period (February 2020 until June 2020). Resting heart rate 
was computed by selecting the heart rate intervals where steps were zero for 12 minutes ahead of an 
interrogated time point. Data for each participant was divided into train or baseline by taking the days 
before the non-infectious period and test data by taking the days during the COVID-19 infectious period. 
Data augmentation was used to increase the size of the training days. Here, we developed a deep learning 
approach based on a Long Short-Term Memory Networks-based autoencoder, called LAAD, to predict 
COVID-19 infection by detecting abnormal resting heart rate in test data relative to the user’s baseline. 
 
Findings We detected an abnormal resting heart rate during the period of viral infection (7 days before 
the symptom onset and 21 days after) in 92% (23 out of 25 cases) of patients with laboratory-confirmed 
COVID-19. In 56% (14) of cases, LAAD detection identified cases in their pre-symptomatic phase 
whereas 36% (9 cases) were detected after the onset of symptoms with an average precision score of 0·91 
(SD 0·13, 95% CI 0·854–0·967), a recall score of 0·36 (0·295, 0·232–0·487), and a F-beta score of 0·79 
(0·226, 0·693–0·888). In COVID-19 positive patients, abnormal RHR patterns start 5 days before 
symptom onset (6·9 days in pre-symptomatic cases and 1·9 days later in post-symptomatic cases). 
COVID-19+ patients have longer abnormal resting heart rate periods (89 hours or 3·7 days) as compared 
to healthy individuals (25 hours or 1·1 days). 
 
Interpretation These findings show that deep learning neural networks and wearables data are an 
effective method for the early detection of COVID-19 infection. Additional validation data will help 
guide the use of this and similar techniques in real-world infection surveillance and isolation policies to 
reduce transmission and end the pandemic. 
 
Funding This work was supported by NIH grants and gifts from the Flu Lab, as well as departmental 
funding from the Stanford Genetics department. The Google Cloud Platform costs were covered by 
Google for Education academic research and COVID-19 grant awards. 
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Research in context 
 
Evidence before the study 
COVID-19 resulted in up to 1·7 million deaths worldwide in 2020. COVID-19 detection using laboratory 
tests is usually performed after symptom onset. This delay can allow the spread of viral infection and can 
cause outbreaks. We searched PubMed, Google, and Google Scholar for research articles published in 
English up to Dec 1, 2020, using common search terms including “COVID-19 and wearables”, “Resting 
heart rate and viral infection”, “Resting heart rate and COVID-19”, “machine learning and COVID-19” 
and “deep-learning and COVID-19”. Previous studies have attempted to use an elevated resting heart rate 
as an indicator of viral infection. Although these studies have investigated the early prediction of COVID-
19 using resting heart rate and other wearables data, studies to investigate a deep learning-based 
prediction model with performance evaluation metrics at the user level has not been reported. 
 
Added value of this study 
In this study, we created a deep-learning system that used wearables data such as abnormal resting heart 
rate to predict COVID-19 before the symptom onset. The deep-learning system was created using 
retrospective time-series datasets collected from 25 COVID-19+ patients, 11 non-COVID-19, and 70 
healthy individuals. To our knowledge, this is the first deep-learning model to identify an early viral 
infection using wearables data at the user level. This study also greatly extends our previous phase-1 
study and factors unpredictable behavior and time-series nature of the data, limited data size, and lack of 
data labels to evaluate performance metrics. The use of a real-time version of this model using more data 
along with user feedback may help to scale early detection as the number of patients with COVID-19 
continues to grow. 
 
Implications of all the available evidence 
In the future, wearable devices may provide high-resolution sleep, temperature, saturated oxygen, 
respiration rate, and electrocardiogram, which could be used to further characterize an individual’s 
baseline and improve the deep-learning model performance for infectious disease detection. Using multi-
sensor data with a real-time deep-learning model has the potential to alert individuals of illness prior to 
symptom onset and may greatly reduce the viral spread.  
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Introduction 
  
COVID-19 is a contagious respiratory disease caused by the novel coronavirus, severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2).1 As of 6 December 2020, more than 66·7 million people have 
been infected world-wide with 14·6 million in the U.S alone, and the number of cases continues to rise.4 
COVID-19 PCR and antigen testing, shelter-in-place, and social distancing are effective and 
complementary public health strategies, but in their patchwork implementation, have not been adequate to 
stop ongoing virus transmission. Viral load (number of viral particles) and duration of viral shedding 
(where the virus replicates and is released into the environment by an asymptomatic or symptomatic host) 
are important determinants for COVID-19 transmission.2,3 Based on current literature, viral shedding of 
SARS-CoV-2 may begin 5 to 6 days before the onset of symptoms and then declines 14·6 days to 17·2 
days following symptom onset, although in some cases of protracted infection, shedding may continue for 
much longer.2,3 In contrast to the etiology of related coronaviruses, such as SARS-CoV-1, where 
symptom onset was rapid and enabled swift isolation procedures, the long asymptomatic contagious 
period of COVID-19 adds urgency to the issue of early infection detection to guide testing, treatment, and 
isolation policies and reduce spread. 
 
Tracking biometric data from wearable devices is a promising method for detecting COVID-195–9 and 
other respiratory viral infections.10 Wearable devices contain a myriad of different sensors that collect 
distinct data types such as heart rate, steps, and sleep, which can potentially be used to track viral 
infections over time and proactively detect their onset using statistical methods like cumulative sum 
(CUSUM), RHR-Diff, and HROS-AD, as in our previous work.5 However, physiological measurements 
are often affected by external factors or variables such as environmental conditions (high temperature and 
altitude etc.), and this can lead to inherently unpredictable time-series data.11 Detecting anomalies in these 
scenarios can be challenging with standard approaches based on statistical measures that use static data or 
a pre-specified time-window to detect changes in the underlying distribution or prediction errors.11  
 
Here, we employed a deep learning framework, Long Short Term Memory Networks (LSTM)-based 
Autoencoder for Anomaly Detection (LAAD), that learns temporal dependencies from the input data 
(baseline or training data) to reconstruct ‘normal’ time-series output, calculate a threshold based on the 
reconstruction error from the baseline, and uses it to detect anomalies in the test data.11 LAAD contains an 
encoder that learns a vector representation of the input time-series data and a decoder that uses this 
representation to reconstruct the baseline data. For the implementation of both the encoder and the 
decoder, we use LSTM cells. LSTMs can learn dependencies from one instance to another while solving 
the vanishing-gradient problem that affects standard recurrent neural networks.11 This capability is due to 
a more complex cell architecture that accurately maintains a memory of important correlations. LAAD’s 
ability to learn higher-level temporal patterns without prior knowledge of the pattern duration and its 
ability to learn from ‘normal’ data makes it robust to both predictable and unpredictable time-series 
data.11 
 
 
Methods 
 
Datasets 
We used publicly shared data from a previously-published Phase-1 study.5 We selected 25 COVID-
positive, 11 non-COVID-19 illness, and 70 healthy individuals with enough data to train, test and 
evaluate metrics. It also contains metadata with self-reported symptom dates and diagnosis dates. We 
used a sample function from pandas library (https://pandas.pydata.org) to randomly assign a symptom 
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date for each healthy individual using their test data time intervals with a fixed random seed. For two 
COVID positive datasets without symptom dates, we used diagnosis dates as symptom dates. 
 
LAAD framework 
Pre-processing. For each user, we selected the heart rate data and merged the step data with the same 
exact time-stamp as heart rate. Merged data was aggregated to one-minute resolution using the resample 
function from pandas library. Next, the resting heart rate was calculated by selecting the heart rate 
intervals where steps were zero for 12 minutes ahead of a given time point. Finally, we used moving-
averages (mean = 400 hours) to smooth the time-series data with the rolling function from pandas and 
further aggregated to one-hour resolution by taking the mean.  
 
Data splitting and normalization. We labeled the data as infectious, non-infectious and recovery periods 
based on general consensus of the recent COVID-19 literature.1–3 Seven days before and 21 days after the 
symptom onset were considered as infectious, 10 to 20 days before the infectious period as non-infectious 
period and days after infectious period as a recovery period (figure 1A). Using these labels we divided 
the data into training data or baseline using the days before the non-infectious period and test data by 
taking the days during the non-infectious, infectious period and recovery periods.  
 
Training data is further divided into 95% training and 5% validation data after applying data 
augmentation (Methods). Train data and test data were standardized separately and transformed into a 
tensor format before feeding them into the LAAD framework. Data was standardized by setting the mean 
to zero and variance to one with the help of a standard scaler from sklearn library (https://scikit-
learn.org). 
 
Data windowing. We split the RHR sequence and grouped the resulting data using a fixed-length window 
(W) of size 8. The value of W defines how many time-lags are processed by the LAAD that classifies the 
input as an anomaly or not. Finally, we reshaped the data format to tensor with features: number of 
samples (batch size), number of time steps per sample (sequence length), number of features.  
 
Data augmentation. We applied seven time-series data augmentation techniques found in the 
literature.12,13 Scaling - changes the magnitude of the data in a window by multiplying by a scalar. The 
scalar was determined by a Gaussian distribution with mean 1 and standard deviation 0·1. Rotations - 
applies arbitrary rotations to the existing data. Permutation - randomly perturbs the temporal location of 
within-window events. To perturb the location of the data in a single window, we first slice the data into 
N same length segments, with N ranging from 1 to 5, and randomly permute the segments to create a new 
window. Magnitude-warping – changes the magnitude of each time series is multiplied by a curve created 
by a cubic spline with four knots at random magnitudes with a mean 1 and standard deviation 0·2. Time-
warping - perturb the temporal location using a random smooth warping curve generated by a cubic spline 
with four knots at random magnitudes with a mean 1 and standard deviation 0·2. Window-warping - 
selects a random window of 10% of the original data and either speed it up by 2 or slows it down by 0:5. 
Window-slicing - a window of 90% of the original time series is chosen at random. We created eight 
times the size of the baseline data by applying scaling on the baseline data and rotations on scaled data 
and so on.   
 
LSTM-based Autoencoder. We used a sequence-to-sequence autoencoder since our data consists of time-
series sequences (figure 1B). The objective was to reconstruct the RHR data using an encoded 
representation of the input (baseline) time-series sequences. The autoencoder consists of an encoder and 
decoder.11 An LSTM encoder learns a fixed-length vector representation of the input RHR time-series 
data and the LSTM decoder uses this representation to reconstruct the RHR time-series using the current 
hidden state and the value predicted from the previous time-step. For the implementation of both the 
encoder and the decoder, we used LSTM layers, which consider temporal dependencies from one 
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sequence to another. We trained the autoencoder using the baseline data with baseline RHR temporal 
sequences and reconstructed it with a low reconstruction error and then used it to detect anomalies in test 
data.  
 
We used Talos (https://github.com/autonomio/talos) to evaluate the algorithm performance by measuring 
the reconstruction error with a different set of hyper-parameters and considered the model that gave the 
lowest error as best. Early stopping callback was used to avoid overfitting by stopping the training at the 
optimal time.  
 
For LAAD, we used 4 LSTM layers: one RepeatVector layer, one TimeDense layer, and 128 hidden 
neurons for implementing both the encoder and decoder. The reconstruction error is calculated as an MSE 
(Mean Squared Error) and the ADAM algorithm is used to optimize the learning process. We split the 
training dataset and used 5% of that data as a validation set for evaluation and monitoring validation loss. 
We set a value (maximum value) of reconstruction error from the baseline data as a threshold and 
annotated any value in the test data that is greater than this threshold as an anomaly.  
 
Anomaly distance, signal strength  
Anomaly distance was calculated by subtracting the date and time of the first anomalous event during the 
COVID-19 infectious period from the symptom onset date. Anomaly signal strength was calculated by 
dividing the number of anomalous events in a pre-symptomatic window (7 days before the symptom 
onset) with the loss calculated by mean square error (MSE) and further divided by the length of the 
window (7 days) and multiplied by 100. In post-symptomatic cases, 21 days after the symptom onset and 
21 days window length were used. Cases that have more than 6 anomaly signal strength scores were 
grouped as strong and those with less than 6 were grouped as weak. 
 
Number of abnormal RHR hours, delta abnormal RHR 
For each user, a number of abnormal RHR hours were counted during COVID-19 infectious period. For 
each user, delta RHR was calculated by subtracting the total RHR of the anomalies in test data (COVID-
19 infectious period) from baseline/training data. Delta RHR was further grouped as elevated if the RHR 
was positive and lowered if the RHR was negative.  
 
Performance evaluation 
True positives (TP) are the number of anomalous RHR hours that are correctly identified as anomalous. 
False positives (FP) are the number of normal hours that are incorrectly identified as anomalous. True 
negatives (TN) are the number of normal hours that are correctly identified as normal. False negatives 
(FN) are the number of anomalous hours that are incorrectly identified as normal. We calculated the 
performance metrics as follows: precision-recall, where precision is defined as the ratio between true 
positives and the sum between true positives and false positives (Precision = TP / (TP + FP)) and recall 
(also known as sensitivity or true-positive rate) is defined as the ratio between the true positives and the 
sum between true positives and false negatives (Recall = TP / (TP + FN)). Precision measures the 
proportion of anomalous hours that are relevant and recall measures of how many hours are anomalous. 
Furthermore, we calculated the F-beta score, a weighted mean of both precision and recall. The F-beta 
score is a generalization of the F-score that adds a configuration parameter called beta. A default beta 
value is 1·0, which is the same as the F-score. We used a beta value, such as 0·1, that gives more weight 
to precision and less to recall, assuming false positives are more important to minimize, but false 
negatives are still important (F-beta = ((1 + beta2) x Precision x Recall) / (beta2 x Precision + Recall)). 
 
Visualization 
All the plots were generated using the following libraries - Matplotlib https://matplotlib.org/; Seaborn 
https://seaborn.pydata.org/; ggplot https://ggplot2.tidyverse.org/. 
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Role of the funding source  
 
The funders of the study had no role in study design, data collection, data analysis, data interpretation, 
writing of the report, or the decision to submit the paper for publication. GKB, and MPS had direct access 
and verified all the data in the study, and had final responsibility for the decision to submit for 
publication. 
 
 
Results 
 
We collected heart rate and steps wearable data from 106 individuals, including 25 COVID-19+, 11 non-
COVID-19 illness with self-reported symptoms, and 70 healthy individuals with no symptoms or illness 
(table 1; appendix 2 pp 1) during the COVID-19 period (February 2020 until June 2020) to examine 
whether there is any consistent anomalous signal during the COVID-19 infectious period (defined as 7 
days prior and 21 days after symptom onset) (figure 1A). Before applying the deep learning framework, 
we inferred resting heart rate (RHR) from heart rate and steps data and then aggregated resulting RHR 
data to one-hour resolution. We defined the anomalous signal or abnormal RHR based on its deviations 
(either elevated or lowered) from the baseline (figure 1A). We then divided the wearable data into 
baseline or training data using the days before the non-infectious period and test data using the days 
during the non-infectious and the infectious period (figure 1A; appendix 2 pp 2). Next, we transformed 
univariate RHR data into sub-sequences by combining time steps contiguous data values using a data 
windowing method. 
 
Deep learning models typically require large datasets for training. Otherwise, the model is prone to 
overfitting. In our case, we only have a limited number of days available for training (appendix 2 pp 2). 
Augmented data can cover unexplored input space, prevent overfitting, and improve the generalization 
ability of a deep learning model.12,13 To do this, we applied different data augmentation techniques12,13 on 
our limited training data by transforming each user’s training data into approximately eight times the size. 
 
Next, we built an LAAD model that takes input with a specific shape (batch size, sequence length, 
number of features) and learns the structure by reconstructing an output of the same shape (figure 1B). 
We used augmented training data as the input to the LAAD model. We further split training data into 95% 
training and 5% validation sets and used these to train the LAAD model. To get optimal performance, we 
used tuned hyper-parameters (hidden layers = 6, number of neurons = 128, batch size = 64, number of 
epochs = 1200 with early stopping callbacks, learning rate = 0·0001, optimizer = adam). Using a 
reconstruction loss technique, mean square error (MSE), we built a threshold where, if the MSE for a test 
sample is greater than this threshold, that sample is labeled as an anomaly or abnormal RHR (appendix 1 
pp 4,5; appendix 2 pp 3-5).  
 
Using LAAD and data from the COVID-19 patients, we detected an abnormal RHR signal in 14 
individuals during pre-symptomatic (early), in 9 individuals during post-symptomatic periods (late), and 
failed to detect a signal in two individuals (missed) (figure 2A; appendix 1 pp 6, appendix 2 pp 6). As 
an example, in the COVID-19 positive individual, ASFODQR, the anomaly score representing the level 
of abnormal RHR starts before symptom onset and increases during the COVID-19 infectious period as 
compared to the baseline, non-infectious or recovery periods (figure 2B). Abnormal RHR starts 5·04 days 
before symptom onset, comprising 6·94 days early in pre-symptomatic cases and 1·92 days late in the 
post-symptomatic cases (figure 2C; appendix 2 pp 6). Of 14 pre-symptomatic cases, 7 had strong and 7 
had weak abnormal RHR signals during the pre-symptomatic period, and of the 9 post-symptomatic 
cases, 4 had strong and 5 had weak abnormal RHR signals during the post-symptomatic period 
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(figure2A; appendix 2 pp 6). This indicates that not all COVID-19 positive individuals have similar 
levels of abnormal RHR and also suggests that LAAD can successfully detect cases where the signal is 
not strong.  
 
To measure the performance of this model, we further divided test data into a) test-normal by analyzing 
the days during the non-infectious period and b) test-anomaly by examining the infectious period, and 
evaluated predictions against each other (figure 1A; table 1; appendix 2 pp 2). On average, the anomaly 
detection model had a precision of 0·91 (SD 0·13, 95% CI 0·854–0·967), a recall of 0·36 (0·295, 0·232–
0·487), and a F-beta score of 0·79 (0·226, 0·693–0·888) (appendix 2 pp 9). Precision, P, was defined as 
the ratio between true positives, TP (the number of samples or RHR hours belonging to the anomaly class 
that are correctly classified as anomalous) and the sum of TP and false positives, FP, where FP represents 
the number of samples belonging to the normal class that are incorrectly classified as anomalous. Recall, 
R, was defined as the ratio between the TP and the sum of TPs and false negatives FN, which are the 
number of samples belonging to the anomaly class that are incorrectly classified as normal. Finally, the F-
beta score is defined as the weighted mean of P and R. This allows a model to be evaluated by using a 
single score that accounts for both precision and recall performance. 
 
Next, we investigated 11 non-COVID-19 individuals and found abnormal RHR signals in seven 
individuals during the pre-symptomatic period and two individuals during the post-symptomatic period 
but failed to detect a signal in two individuals (appendix 1 pp 1; appendix 2 pp 4,7). On average, the 
anomaly detection model had a precision of 0·803 (0·262, 0·602–1), a recall of 0·472 (0·405, 0·16–
0·783), and an F-beta score of 0·771 (0·252, 0·577–0·965) (appendix 2 pp 10). We further investigated 
70 healthy individuals by randomly assigning a symptom date for the test data and detected abnormal 
RHR signal in 44 individuals during the randomly selected pre-symptomatic period and 15 individuals 
during the randomly selected post-symptomatic period and failed to detect a signal in 11 individuals 
(appendix 1 pp 2; appendix 2 pp 5,8). On average, the anomaly detection model had a precision of 
0·803 (0·262, 0·726–0·88), a recall of 0·289 (0·336, 0·19–0·387), and a F-beta score of 0·703 (0·259, 
0·627–0·78) (appendix 2 pp 9-11). Overall, LAAD performed well across all three groups with an 
average F-beta score of 0·75 (SD 0.04) (figure 2D). 
 
COVID-19+ cases showed longer hours of abnormal RHR (89 hours or 3·7 days) during the infectious 
period as compared to non-COVID-19 (87·5 hours, 3·65 days) and healthy (25 hours, 1·04 days) cases, 
suggesting that COVID-19 infection lasts longer than anomalous periods for healthy cases and slightly 
longer than other types of infections (figure 2E; appendix 1 pp 3; appendix 2 pp 12). In total, 78·3% 
(18 of 23 cases) of COVID-19+ cases had more than one day of abnormal RHR signal compared to 70% 
(7 of 10 cases) of non-COVID19 and 51·56% (33 of 64 cases) of healthy cases (appendix 1 pp 3). These 
results suggest that the duration of abnormal RHR can predict COVID-19 and discriminate from healthy 
cases but not from non-COVID-19 cases. Abnormal RHR levels during the infectious period were 
elevated by 5·1 days and lowered by 3·9 days compared to the baseline (Delta RHR) (figure 2F; 
appendix 1 pp 3; appendix 2 pp 13). In non-COVID-19 cases and healthy individuals, abnormal RHR 
was elevated for 4·1 days and 6·4 days and lowered by 5·7 days and 6·5 days, respectively (figure 2F; 
appendix 2 pp 13). These results suggest that the levels of abnormal RHR can predict COVID-19 but 
cannot discriminate from non-COVID-19 cases and healthy cases. 
 
 
Discussion 
 
We demonstrate that deep learning can identify periods of COVID-19 and is more sensitive than 
approaches used in other previously reported studies.5,10 However, our study  has several limitations. 
First, all symptom onset dates were self-reported by the patients, usually after diagnostic confirmation of 
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COVID-19. Since the data was divided into training and test sets and all metrics calculations were based 
on the self-reported symptom onset date, errors in self-reporting can introduce bias in our results and 
model performance. Second, we divided the symptomatic period into pre-symptomatic and post-
symptomatic periods using recent studies on the viral infectiousness period. However, the length of these 
periods could vary substantially from one patient to another and thus introduce bias in our results. Third, 
none of the healthy patients had COVID-19 tests, and it is therefore possible that some of them had 
asymptomatic infections. Indeed, we found 11 healthy cases where abnormal RHR was detected for 3·7 
days (89 hours) more during the infectious period, similar to COVID-19 patients (appendix 2 pp 12). 
Fourth, on average only approximately 3 months of data was collected per user and thus deriving training, 
validation and test data from such limited data may be a limiting factor for the model performance. Fifth, 
we did not test any confirmed COVID19 negative cases, which limits the potential of our study. Sixth, 
only 25 COVID-19 cases were used in the analysis. Adding more samples will improve our 
understanding of wearable data performance in detecting COVID-19. Seventh, all data used in this study 
were collected from Fitbit smartwatch heart rate and activity data. Adding other data types like 
temperature, saturated oxygen, sleep, and data from other devices such as the Apple watch or Garmin 
watch could potentially improve COVID-19 detection. Eighth, choosing a correct baseline with enough 
data size to train the model has a major impact on predictions. For example, A7EM0B6 with only 4 days 
of training data showed severe underfitting of the model (appendix 2 pp 4). Ninth, sleep data was 
inconsistent and not the same resolution as heart rate and activity data, which limited the inclusion of 
sleep data in our model. Tenth, no cross-validation was performed to test the performance of the deep 
learning model on unseen datasets. Testing new COVID-19+ patients data with LAAD could validate and 
potentially improve the model. Finally, this deep learning framework uses retrospective data and is 
designed as a proof-of-concept. It has yet to be tested in a prospective real-time fashion using pre-
annotated labels from users. 
 
Overall, our work suggests that wearable sensor data could be used as a marker for early prediction of 
COVID-19. This study also greatly extends our previous phase-1 study5 and factors unpredictable 
behavior and time-series nature of the data, limited data size, and lack of data labels to evaluate 
performance metrics. A detailed real-time wearable study on the COVID-19 patients with symptoms 
annotated by users and confirmed by laboratory tests will further our understanding about tracking, 
modeling, and detecting outbreaks of SARS-CoV-2. 
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Table 1  

 
Group Number of 

individuals 
Train Test Testn Testa 

COV19-positive 25 333 (233) 713 (350) 124 (52.1) 336 (159) 

Non-COVID-19 11 266 (171) 578 (399) 105 (53.1) 273 (152) 

Healthy 70 211 (81.9) 575 (340) 81 (57.4) 235 (137) 

 
Table 1. Data summary. In total, 106 datasets and 3 groups. Data was split between training and test (Testn – test-
normal or data during the non-infectious period, Testa – test-anomaly or data during the infectious period) using 
symptom onset day as a reference and the values are shown were the average number of hours (standard deviation) 
per group. 
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Figures  

 
Figure 1 

 
A 

 
 

B 

 
 
Figure 1 Data design and LAAD framework (LSTM Encoder-Decoder inference steps for input to 
reconstruct the output). (A) To detect abnormal RHR (resting heart rate) data was split into baseline (train) and 
test sign symptom onset day as a reference. First, test data was set by taking 20 days prior to symptom onset and 21 
days after. Second, test data was split into infectious period (7 days prior symptom onset and 21 days after) and non-
infectious period (20 to 10 days before infectious period), and recovery period (days after infectious period). If the 
RHR during the infectious period is changed (elevated or lowered) from its user’s baseline, it would be classified as 
“abnormal RHR”. Further, to evaluate the model performance, predictions in the infectious period were compared 
against the non-infectious period. (B) LAAD takes baseline standardized RHR data of shape (BS, SL, NF), where BS 
is batch size, NF is the number of features and SL is sequence length or time steps and passes it to the first layer. The 
input data has 8 timesteps and one feature. First layer has as many LSTM cells as the SL and makes each cell per 
timestep emit a signal to a second layer. Layer 1, LSTM(128), reads the input data and outputs 128 features with 8 
timesteps. Second layer has half the size of LSTM cells than the previous and only the last cell emits an output. 
Layer 2, LSTM(64), takes the 8x128 input from Layer 1 and reduces the feature size to 64. The output of this layer 
is the encoded feature vector of the input data. Third layer uses a Repeat Vector that replicates the feature vector 3 
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times and gets a 2D array for the fourth layer (1st LSTM layer in Decoder) and acts as a bridge between encoder and 
decoder. The decoder layers unfold the encoding by stacking LSTM layers in the. reverse order of the encoder. 
Layer 4, LSTM (64), and Layer 5, LSTM (128), are the mirror images of Layer 2 and Layer 1, respectively. Layer 6, 
TimeDistributed (Dense(1)), is added in the end to get the reconstructed output, where “1” is the number of features 
in the input data.  
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Figure 2 
 
A 

 
B 

 
 
C             D    E                  F 

 
 
Figure 2 LAAD predictions, Summary of detection timing, Evaluation metrics, Comparison of abnormal 
RHR between COVID-19, healthy and non-COVID-19 groups. (A) On the left, bar plots showing anomaly 
scores obtained from reconstruction error or mean squared error (MSE) and timings of infection detection from the 
LAAD model with respect to the different periods of SARS-CoV-2 infection for COVID-19+ participants. Based on 
the time of detection, participants were grouped into early and late groups. Based on anomaly signal strength, these 
groups were further sub-grouped into strong and weak. Participants were ordered based on early and strong to weak 
and late grouping order. One participant, whose LAAD failed to detect anomaly during infectious period was 
annotated as “missed”. The x-axis shows days before, during and after the infection and the y axis shows loss values 
from LAAD (green bars). On the right, a table showing performance metrics (TP - true positives, FP - false 
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positives, TN – true negatives, FN -  false negatives, precision, recall and F-beta score) for each participant. The 
self-reported symptom onset date was shown as a red dotted line, a pre-symptomatic window as a gold dotted line 
and a post-symptomatic window as a purple dotted line. (B) Scatter plot showing the distribution of anomaly score 
(MSE loss) of COVID-19+ individual (ASFODQR) highlighting the baseline (first 10 days), non-infectious (10 days 
prior to the infectious period, -20 to -10), infectious (-7 to -21) and recovery periods (days after the infectious 
period). Abnormal RHR was shown in red and normal RHR in blue color. Self-reported symptom onset date was 
shown as a red dotted line, a pre-symptomatic window as a gold dotted line and a post-symptomatic window as a 
purple dotted line, and anomaly threshold was shown as a horizontal grey dotted line. (C) Bar plot showing the 
distribution of detection timing during the infectious period (blue = early or pre-symptomatic, gold =  late or post-
symptomatic) in COVID-19+ patients. (D) Bar plots showing the number of individuals who had more than 3 days 
of abnormal RHR signals during the infectious period (green = COVID-19, grey = healthy, blue = non-COVID-19). 
(E) Boxplots showing the distribution of the number of abnormal hours during infectious period in COVID-19, 
healthy and non-COVID-19 groups. P-values were shown on top of the boxplot. A Wilcoxon test was used to 
calculate the p-value between the groups. (F), Bar plots showing delta RHR during infectious period in COVID-19, 
healthy and non-COVID-19 groups. Delta RHR of elevated RHR regions were shown in gold and lowered RHR 
regions shown in blue. 
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Supplemental Materials 
 
Supplemental appendix 1 
 
Section 1: LAAD predictions for the non-COVID-19 group. 

 
 

 
 
Figure S.1- LAAD predictions for the non-COVID-19 group. The x-axis shows days before, during and after the 
infection and the y axis shows loss values from LAAD (blue bars). The self-reported symptom onset date was shown 
as a red dotted line, a pre-symptomatic window as a gold dotted line and a post-symptomatic window as a purple 
dotted line. 
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Section 2: LAAD predictions for a healthy group 
 

 
 
Figure S.2- LAAD predictions for a healthy group with randomly chosen symptom onset date. The x-axis shows 
days before, during and after the infection and the y axis shows loss values from LAAD (blue bars). The self-
reported symptom onset date was shown as a red dotted line, a pre-symptomatic window as a gold dotted line and a 
post-symptomatic window as a purple dotted line. 
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Section 3: Number of abnormal RHR hours, and median RHR differences from the baseline in each user 
during the infectious period. 

 
 

Figure S.3- Number of abnormal RHR hours (left) and median RHR differences (right) from the baseline in each 
user during the infectious period separated by COVID-19, non-COVID-19 and healthy groups. On the left, COVID-
19 is shown in green, healthy in grey and non-COVID-19 in blue color. On the right, elevated abnormal RHR during 
infectious period shown in gold (positive direction) and lowered shown in blue (negative direction). 
 
 
 
 
 
 
 
Section 4: Training and validation losses in COVID-19+  patients 

144

0

246

2

15363 34123 31854 176174 197

8

59
62

88 177

1

43

94 11543
9

26124
6

0
34

8
3

77
66

68 23516 13030
51

1

11120
8

18 19642

1
0

0

403

6
25

0

113

0

167

4
18

55

11
0

59

18
7

3
6

37
52

64

5
8

125

4
34 24687

76

19
49

0
14

3

45
53 23736

24

96
67 15687

98

3

12614
0

86

C
O

VID
−19

H
ealthy

N
on−C

O
VID

−19

A0NVTRV
A0VFT1N
A1K5DRI
A3OU183
A4E0D03
A4G0044
A7EM0B6
AA2KP1S
AAXAA7Z
AHYIJDV
AIFDJZB
AJWW3IY
AKXN5ZZ
AOYM4KG
APGIB2T
AQC0L71
AS2MVDL
ASFODQR
AURCTAK
AUY8KYW
AV2GF3B
AX6281V
AYWIEKR

A06L7KF
A0822M0
A0L9BM2
A11SQQN
A11V1FH
A17YCA2
A2D7K4A
A2P3LTM
A2XFW2N
A45F9E6
A4H7SNF
A5XL2IC

A65HVGP
A6BUI4N
A6GEBIK
A7EAWA7
A8CBEJZ
A91HEZV
A99ZKKW
A9ZG5GR
AAF9ACE
AAGTWZK
AE0MQ94
AE2B3RH
AEOHH30
AF3MXM1
AFEFA29
AFVAEC7
AFYLHG4
AGA8XUN
AGKI03N
AGYQJEL
AHP25OJ
AJ0DKQ3
AKTGD8X
AKV66US
AL3KT5B
AL48GP3
ALZDAVZ

AMQUHOQ
AO20DS4
AOB9SON
AOQA85X
AOS4BSJ
APDJ1QP
AQ25Y0L
AQ4TMLV
AQR8ZSS
ARFYLMK
ARR2IKE
ARYB2QO
ATT9RR1
AW4EXXK
AWA2KJK
AWRBUQZ
AX3KEW9
AXCO7I9

AXD3W8O
AXDWDEA
AY8TPMP
AYVQUF1
AZ2RYW7
AZ35PI5
AZKZ0AI

A0KX894
A35BJNV

AA0HAI1_1
AA0HAI1_2
AA0HAI1_3
AD77K91
AEOBCFJ
AK7YRBU
AOGFRXL
AR4FPCC

0

100

200

300

400

Duration of 
 abnormal RHR (hours)

5−5
0

7−7
4

3−1

9−3
3−3

8
4−1

4−1
2−2

10−4
50

7−4
5−3

5

20−9

8−3
3−1

−2

60−3
2−4

6−1

7−5
−8

−4
−1

−3
1−4

5
−2

4−8
−3

−4
−3

2−1
2

3
0−4

1
0−3

−7
4−1

0−1
5

10−7
1

−6
0−5

6−4
5
−14

−2

27−5
−5

10
4−4
−12

20
10

2

9−2
4

6−3
2−2

4−4
4

3
4

−9
−5

5−5
−5

−5
3

3
6−1

10−3
2

50
−5

−3
−10

9
6

−9
−5

2−2
6

1−3
2−3

C
O

VID
−19

H
ealthy

N
on−C

O
VID

−19

A0NVTRV

A0VFT1N

A1K5DRI

A3OU183

A4E0D03

A4G0044

A7EM0B6

AA2KP1S

AAXAA7Z

AHYIJDV

AIFDJZB

AJWW3IY

AKXN5ZZ

AOYM4KG

APGIB2T

AQC0L71

AS2MVDL

ASFODQR

AURCTAK

AUY8KYW

AV2GF3B

AX6281V

AYWIEKR

A06L7KF

A0822M0

A0L9BM2

A11SQQN

A11V1FH

A17YCA2

A2D7K4A

A2P3LTM

A2XFW2N

A45F9E6

A4H7SNF

A5XL2IC

A65HVGP

A6BUI4N

A6GEBIK

A7EAWA7

A8CBEJZ

A91HEZV

A99ZKKW

A9ZG5GR

AAF9ACE

AAGTWZK

AE0MQ94

AE2B3RH

AFEFA29

AFVAEC7

AFYLHG4

AGKI03N

AHP25OJ

AJ0DKQ3

AKTGD8X

AKV66US

AL3KT5B

ALZDAVZ

AMQUHOQ

AO20DS4

AOB9SON

AOQA85X

AOS4BSJ

APDJ1QP

AQ25Y0L

AQ4TMLV

AQR8ZSS

ARFYLMK

ARR2IKE

ARYB2QO

ATT9RR1

AW4EXXK

AWA2KJK

AWRBUQZ

AX3KEW9

AXCO7I9

AXD3W8O

AXDWDEA

AY8TPMP

AYVQUF1

AZ2RYW7

AZ35PI5

AZKZ0AI

A0KX894

A35BJNV

AA0HAI1_1

AA0HAI1_2

AA0HAI1_3

AD77K91

AEOBCFJ

AK7YRBU

AR4FPCC

0 20 40 60

Delta RHR (Median)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.21249474doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.08.21249474
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

 
 

 
 

 
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.21249474doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.08.21249474
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

 
 

 
 

 
 
Figure S.4- Training (blue) and validation (purple) losses in COVID-19+  patients. Training data were augmented 
into around eight times the size and used 95% of this augmented data as training and 5% as validation to train the 
model and plotted reconstruction loss over several epochs using early callbacks. A7EM0B6 had only 4 days of 
training data before augmentation and showed severe underfitting of the model. 
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Section 5: Distributions of training 
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Figure S.5- Distributions of training loss (Reconstruction error or Mean Squared Error) used to select the anomaly 
threshold in COVID-19+  patients. 
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Section 6: LAAD predictions in COVID-19+ patients 
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Figure S.6- LAAD predictions in COVID-19+ patients (normal – blue, anomaly – red). The red dotted line is the 
symptom onset date, gold line represents the pre-symptomatic window (7 days before symptom onset) and purple 
line represents the post-symptomatic window (21 days after symptom onset), and the grey horizontal dotted line 
represents the selected threshold. 
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Supplemental appendix 2 
 
Section 1 - Supplemental Table 1. Symptom and diagnosis dates of COVID-19, non-COVID-19 and randomly 
chosen symptom dates of healthy participants. 
Section 2 - Supplemental Table 2. Data sizes of COVID-19, non-COVID-19 and healthy participants. 
Section 3 - Supplemental Table 3. Anomalies predicted by LAAD in COVID-19 patients. 
Section 4 - Supplemental Table 4. Anomalies predicted by LAAD in non-COVID-19 participants. 
Section 5 - Supplemental Table 5. Anomalies predicted by LAAD in healthy participants. 
Section 6 - Supplemental Table 6. COVID-19 patients grouped into early, late depending on time of detection and 
number of anomalies (signal), strong and weak groups depending on signal strength during the infectious period. 
Section 7 - Supplemental Table 7. Non-COVID-19 participants grouped into early, late depending on the time of 
detection and number of anomalies (signal), strong and weak groups depending on signal strength during the 
infectious period. 
Section 8 - Supplemental Table 8. Healthy participants grouped into early, late depending on time of detection and 
number of anomalies (signal), strong and weak groups depending on signal strength during infectious periods. 
Section 9 - Supplemental Table 9. Evaluation metrics (precision, recall, F-beta score) in COVID-19 patients. 
Section 10 - Supplemental Table 10. Evaluation metrics (precision, recall, F-beta score) in non-COVID-19 
participants. 
Section 11 - Supplemental Table 11. Evaluation metrics (precision, recall, F-beta score) in healthy participants.  
Section 12 - Supplemental Table 12. Duration of the abnormal RHR during infectious period in COVID-19 
patients, non-COVID-19 and healthy participants. 11 users listed as possible asymptomatic based on more than 89 
hours of abnormal RHR during the infectious period.  
Section 13 - Supplemental Table 13. Delta RHR (the median difference between abnormal RHR from the 
infectious period and RHR from baseline) in COVID-19 patients, non-COVID-19 and healthy participants. TRUE in 
the positive column indicates increased RHR and FALSE indicates lowered RHR. 
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