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Abstract In this work, an attempt is made to analyse the dynamics of COVID-19
outbreak mathematically using a modified SEIR model with additional compart-
ments and a nonlinear incidence rate with the help of bifurcation theory. Existence
of a forward bifurcation point is presented by deriving conditions in terms of pa-
rameters for the existence of disease free and endemic equilibrium points. The
significance of having two additional compartments, viz., protective and hospital
quarantine compartments, is then illustrated via numerical simulations. From the
analysis and results, it is observed that, by properly selecting transfer functions to
place exposed and infected individuals in protective and hospital quarantine com-
partments, respectively, and with apt governmental action, it is possible to contain
the COVID-19 spread effectively. Finally, the capability of the proposed model in
predicting/representing the COVID-19 dynamics is presented by comparing with
real-time data.

Keywords SEIR Model · COVID-19 · Protective quarantine · Hospital
quarantine · Bifurcation analysis · Nonlinear incidence rate

1 Introduction

The Coronavirus disease of 2019, otherwise more commonly known as COVID-
19, is caused by novel SARS-CoV-2 virus, a single stranded virus that belongs to
RNA coronaviridae family [1]. World health organization declared COVID-19 a
global pandemic on March 11, 2019 and number of people infected by this disease
is growing rapidly all around the world. In this context, researchers have been
working to have a clear understanding of the COVID-19 transmission dynamics
and devise control strategies to mitigate the spread.

Mathematical modeling based on dynamical equations has received relatively
less attention compared to statistical methods even though they can provide more
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detailed mechanism for the epidemic dynamics. Right from 1760, the study of
dynamics of epidemics started from 1760 by modelling smallpox dynamics and
since then, it has become an important tool in understanding the transmission
and control of infectious diseases [2]. In 1927, Kermack and McKendrick intro-
duced Susceptible-Infectious-Removed (SIR) compartmental modelling approach
to model the transmission of plague epidemic in India [3]. Acknowledging the suc-
cess of this approach, the use of mathematical modelling based approaches for the
study of infectious disease dynamics has been well sough-after.

Considering the latent state that exists for COVID-19 disease, model includ-
ing an additional compartment called exposed state, called Susceptible-Exposed-
Infectious-Removed (SEIR) model [4] is usually used to model COVID-19 dynam-
ics. Literature suggest widespread use of SEIR model to study the early dynamics
of COVID-19 outbreak [5–10]. Effectiveness of various mitigation strategies are
also studied. In [5,6], the COVID-19 dynamics was further generalized by intro-
ducing further sub-compartments, viz., quarantined and unquarantined, and the
effect of the same on transmission dynamics was presented. In [11], the classical
SEIR model was further extended to introduce delays to incorporate the incuba-
tion period in COVID-19 dynamics. Recently in [12], dynamics of SEIR model
with homestead-isolation was analysed by adding an additional parameter in the
incidence function. However, addition of extra compartments to address the isola-
tion/quarantine stage could serve as a better alternative. In this regard, this work
attempts to model the COVID-19 dynamics by including two additional quar-
antine compartments to forcibly curb the disease spread. Effect of an additional
control parameter, added through the selection of nonlinear incidence rate and
quarantine rate functions, has also been considered.

If one attempts to mimic the actual disease spread by choosing nonlinear rates
and additional compartments, associated complexities would also increase. Anal-
ysis and understanding of such composite dynamics require use of proper and
effective tools. Bifurcation analysis and continuation techniques are widely em-
ployed for deciphering the nonlinear dynamics associated with physical systems
[13–17]. Bifurcation techniques were widely used in analysing the dynamics of
epidemic models also [18–21]. In [18], the dynamics of SEIR model considering
double exposure dynamics was studied with the help of bifurcation analysis. Van
den Driessche and Watmough observed the existence of saddle-node, Hopf and
Bogdanov-Takens bifurcations in SIRS model, and they used bifurcation methods
for their analysis [19]. Korobeinikov analyzed the global dynamics of SIR and SIRS
models with nonlinear incidence [20] and used bifurcation analysis to establish the
endemic equilibrium stability.

This work proposes a Susceptible − Exposed − Protective − Infectious − Hos-
pitalized − Removed (SEPIHR) model with protective and hospital quarantine
compartments as additions to conventional SEIR model. The protective and hos-
pital quarantine rate functions determine the potency of the added compartments.
An external control input is introduced as the governmental control parameter to
control the spread. To convincingly simulate the COVID-19 transmission, a non-
linear incidence rate is selected. Effect of a constant and adaptive quarantine rate
is also studied. Dynamic analysis of the nonlinear model incorporating all the
aforesaid dynamics is performed mathematically and using bifurcation techniques.
The effects of control parameter on the epidemic dynamics is then studied using
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both bifurcation analysis and via numerical simulations. The proposed model is
then compared with actual COVID-19 data to show its adequacy.

The paper is organized as follows. Section 2 presents the proposed SEPIHR
model in detail. Section 3 and 4 presents the dynamic analysis and bifurcation
analysis of the proposed model.Section 5 presents the numerical simulation results
along with real-time data comparison. Section 6 concludes the paper.

2 SEPIHR Model Description

The SEPIHR model is obtained by adding additional compartments to basic SEIR
model as,

Ṡ = µ− β(I)S − µS,
Ė = β(I)S − (σ + µ+Kq)E,

Ṗ = KqE − (γ + φ)P

İ = σE − (γ +KI + µ)I,

Ḣ = KII + φP − γH
Ṙ = γ(I + P +H)− µ(R+ E + I).

(1)

where, the state variables [S,E, P, I,H,R] are the fractions of total population rep-
resented in different compartments. The different compartments of the proposed
model are formulated as below:

– Susceptible (S): The fraction of total population susceptible to the disease, but
not yet infected.

– Exposed (E): The fraction of total population exposed to the disease, but not
yet infected. They are in a latent state, after which they could show symptoms
and become infective. There are chances for people in this compartment to
recover without being transferred to the infective state.

– Infected (I): The fraction of total population who are infected and infective.
After the latency period, the exposed persons are transferred to this compart-
ment. They could be showing symptoms and mostly need hospital treatment.

– Recovered/Removed (R): This compartment denotes fraction of population
that are either recovered from the disease or dead.

– Protective Quarantine (P ): This is the first additional compartment in the pro-
posed model. Since the infected compartment (I) dynamics is mostly governed
by the fraction of exposed population, it is logical to limit the transfer from
exposed to infected compartments. So, the people in the Exposed compartment
(E) are placed under protective quarantine to limit this transmission dynamics.
If the people under protective quarantine become infected, they are directly
moved to hospital quarantine (second additionally added compartment, ex-
plained next), thus preventing them from being infecting others.

– Hospital Quarantine (H): This compartment introduces the fraction of people
under treatment/quarantine in hospitals. If a person under protective quaran-
tine is found infective (after detection tests/showing symptoms) he/she could
be moved directly to hospital there by further preventing transmission.

– Birth/death rate is represented by µ and γ represents the recovery rate. Param-
eter σ is the measure of rate at which the exposed individuals become infected,
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in other words, 1/σ represents the mean latent period. Coefficients Kq and
KI represent the transfer rates of exposed individuals to protective quarantine
and infected people to hospital quarantine, respectively, and φ represents the
rate at which the protective quarantined people gets hospitalized. Generally,
the term incidence rate or force of infection is used to model the mechanics of
transmission of an epidemic. To model the complex COVID-19 transmission
dynamics more precisely, a nonlinear incidence rate is used in the model.
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Fig. 1 Variation of nonlinear incidence rate for different values of α.

It is normal to represent the incidence rate as a linear function of infectious
class, β(I) = β0I. Here, β(I) represents the incidence rate and β0 denotes the
per capita contact rate [18]. But, modelling the transmission dynamics/force of
infection as a linear process might not be exact considering the complexities asso-
ciated with it. This was first addressed in [22], where the authors used a saturated
incidence rate to model cholera transmission. Since then, it became a usual prac-
tice to model the disease spread rate using nonlinear incidence functions [23]. In
this paper, to represent the COVID-19 force of infection, the following nonlinear
incidence rate function is used.

β(I) =
β0I

1 + αI2
. (2)

In Eq. (2), the term, β0I represents the bilinear force of infection and the term,
1 + αI2 represents the inhibition effect, where α represents the (governmental)
control variable. Mathematically, Eq. (2) represents a non-monotonous function
whose value increases for smaller values of I, and decreases for higher rates of
infection (for α 6= 0). This is usually interpreted as a ‘psychological’ effect, and
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is usually triggered via measures like isolation, quarantine, restriction of public
movement, aggressive sanitation etc., [24]. It is also intuitive to model the incidence
rate in this form. For instance, during initial phases, when the infection values are
low, the public does not perceive the situation threatening, and the response could
be frivolous, causing the disease to spread in a faster rate. As infection spreads, the
public would start acknowledging the gravity of the issue and could start behaving
positively to protection measures. This behavioural change is usually interpreted
as a ‘psychological’ one and hence modelled as a non-monotonous function as
presented in Eq.(2). In this work, α is represented as the percentage of total effort
required to contain/mitigate the epidemic spread.

Figure 1 presents the variation of incidence rate function for different values
of the (Government) control variable, α. For α = 0, indicating no governmental
control, the infection could persist till the whole population is infected (Fig. 1(a)).
This corresponds to bilinear incidence rate function, β(I) = β0I. Figures 1(b),
(c) and (d) represent the incidence rate variation for different values of α, with
magnitudes α1,α2, and α3, respectively. One could notice for α1 < α2 < α3,
the incidence rate tends to fall after reaching different peak values, depending on
the magnitude of α, signifying the importance of adequate government control in
curbing the epidemic spread.

A similar approach is considered for defining the protective quarantine gain
Kq. Most often, setting the quarantine rate to a constant value would not suffice
when there are large number of infective individuals. This could cause an increase
in exposed cases, which in turn cause a surge in infective cases. So, an adaptive
mechanism to determine Kq value as a function of I could solve this problem. In
this regard, Kq is chosen as,

Kq(I) = Kq0 + αI2. (3)

where, Kq0 represents the static part of the function indicating the initial quaran-
tine rate, as determined by government during the initial phase of the epidemic.

Figure 2 shows adaptive variation of Kq values for different magnitudes of
governmental control parameters. Figure 2(a) depicts a constant Kq value of 0.5
for α = 0, or one could interpret this as a scenario where constant Kq value is
considered, irrespective of the state of infection. Figures 1(b), (c), and (d) represent
the adaptive variation of Kq with respect to I for different values of α. Selection
of a proper α magnitude could depend on several other factors, and are explained
in later sections.

An overall schematic for the proposed SEPIHR model, augmenting P and H
compartments along with other dependencies are explicitly demonstrated in fig. 3.

3 Dynamic Analysis

For the set of equations presented in Eq.(1), it is possible to write,

Σ = {(S,E, P, I,H,R) ∈ <6
+ : S + E + P + I +H +R = 1}. (4)

For simplicity, if one were to consider a constant value for Kq, then the Ṗ and Ḣ
equations are now decoupled, and the system dynamics is now governed by only
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Fig. 2 Variation of Kq for different values of α.
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Fig. 3 Schematic for the proposed SEPIHR model.

Ṡ, Ė and İ expressions in Eq.(1). Considering this, the new set of equations can
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be presented as,
Ṡ = µ− β(I)S − µS,
Ė = β(I)S − (σ + µ+Kq0)E,

İ = σE − (γ +KI + µ)I.

(5)

Also,

Ṡ + Ė + İ = µ− µS − (µ+Kq0)E − (γ +KI + µ)I ≤ µ− µ(S + E + I), (6)

indicating the fact that, limt→∞(S+E+ I) ≤ 1 and the feasible region for Eq.(5)
can be represented as,

Γ = {(S,E, I) ∈ <3
+ : 0 ≤ S + E + I ≤ 1}. (7)

The basic reproduction number, R0, indicating the the number of secondary in-
fections an infected individual would produce in a susceptible population, is the
most important parameter that determines the epidemic outbreak. This can be
obtained by solving the characteristic equation of the Jacobian of Eq.(5) about its
disease free equilibrium point, E∗DFE . By solving Eq.(5) for I∗ = 0, E∗DFE can be
obtained as, (1, 0, 0). Now the Jacobian matrix for Eq.(5) is given by,

J(S,E, I) =

 −µ 0 −(1+αI2)β0S−β0S(2αI)
(1+αI2)2

β0I
1+αI2 −(µ+ σ +Kq0) (1+αI2)β0S−β0S(2αI)

(1+αI2)2

0 σ −(µ+ γ +KI)

 . (8)

Now, to find R0, the characteristic equation |λI − J | = 0 is given as,

(λ+ µ)
[
λ2 + (2µ+ γ + σ)λ+ (µ+ σ +Kq0)(µ+ γ +KI)− σβ0

]
= 0. (9)

Since E∗DFE is stable, all the coefficients of Eq.(9) should be positive and all roots
should have negative real parts. This implies,

(µ+ σ +Kq0)(µ+ γ +KI)− σβ0 > 0, (10)

and the basic reproduction number, R0 is given by,

R0 =
σβ0

(µ+ σ +Kq0)(µ+ γ +KI)
. (11)

Theorem 1 For positive parameters, the disease free equilibrium point E∗DFE =
(1, 0, 0) is locally stable if R0< 1 and unstable if R0> 1.

Proof From Eq.(8), the characteristic equation can be written as,

(λ+ µ)
[
λ2 + (2µ+ γ + σ)λ+ (µ+ σ +Kq0)(µ+ γ +KI)(1−R0)

]
= 0. (12)

If R0< 1, all the coefficients of the characteristic equation are positive and all
three eigenvalues are negative, indicating a stable equilibrium. For R0> 1, there
exist a positive eigenvalue for Eq.(12) and the equilibrium solution is unstable.

Theorem 2 For positive parameters, there exist an endemic equilibrium (S∗, E∗, I∗)
for R0> 1 and no unique endemic equilibrium for R0< 1.
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Proof To find the endemic equilibrium (S∗, E∗, I∗), system presented in Eq.(5) is
equated to zero,

µ− β0S
∗I∗

1 + αI∗2
− µS∗ = 0, (13a)

β0S
∗I∗

1 + αI∗2
− (σ + µ+Kq0)E∗ = 0, (13b)

σE∗ − (γ + µ+KI)I
∗ = 0. (13c)

Now, from Eq.(13c),

E∗ =
(γ + µ+KI)I

∗

σ
. (14)

Substituting E∗ in Eq.(13b),

β0S
∗I∗

1 + αI∗2
− (σ + µ+Kq0)(

(γ + µ+KI)I
∗

σ
) = 0

β0S
∗I∗

1 + αI∗2
=

(σ + µ+Kq0)(γ + µ+KI)I
∗

σ

S∗ =
(σ + µ+Kq0)(γ + µ+KI)

β0σ
(1 + αI∗2).

Now, S∗ can be represented in terms of basic reproduction number as,

S∗ =
1 + αI∗2

R0
. (15)

Now, one could find I∗ as the positive solution of

Θ = AI∗2 + BI∗ + C = 0,

where,

A =
µα

R0
,B =

β0
R0

,C = (
1

R0
− 1)µ.

Since µ, α, and R0 are greater than zero, A > 0 and B > 0. For R0 > 1, C < 0,
and there exists a positive solution for Θ, and hence a unique endemic equilibrium.
For R0 < 1, C > 0 and there exists no endemic equilibrium for this condition.

From the above analysis, it is evident that the critical point for the model consid-
ered is at R0 = 1. These results are corroborated by performing the bifurcation
analysis of the SEIR model presented in Eq.(1). A short introduction to the bifur-
cation and procedure adopted is presented next.
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4 Bifurcation and Continuation Analysis

Through bifurcation analysis and continuation methodology, it is possible to com-
pute all possible steady states of a parameterized nonlinear dynamical system (as
function of a bifurcation parameter) along with local stability information of the
steady states. Bifurcation diagrams present the qualitative global dynamics of non-
linear systems. In order to perform the bifurcation analysis, the set of nonlinear
ordinary differential equations of the form [25]:

Ẋ = H(X,U), (16)

are considered, where, X and U are the state vector (X ∈ <n) and the control
vector (U ∈ <m), respectively, and function H(X,U) defines the mapping such
that, <n ×<m → <n.

Bifurcation parameter is chosen to be varying step-wise while fixing other pa-
rameters to their constant values. At each step, fixed points are computed by
solving

Ẋ∗ = H(X∗, u∗,P∗) = 0, (17)

where, u ∈ U and P ∈ U represent the bifurcation parameter and the set of fixed
parameters, respectively. Once a fixed point ((X∗, u∗)) is known, in a continuation,
the next point (X1, u1) is predicted by solving:

∂H
∂X
|(X∗, u∗)∆X +

∂H
∂u
|(X∗, u∗)∆u = 0. (18)

Correction step is then performed to satisfy Eq. (17) to get the next fixed point
(X∗1, u1). It is also possible to compute the eigenvalues (from Jacobian matrix) to
determine the stability and these stability information are usually marked in the
bifurcation curve.

5 Numerical Simulations

To corroborate the analysis presented above, bifurcation analysis is performed on
the proposed model. The basic reproduction number, R0 is chosen as the bifurca-
tion parameter to perform the analysis. The bifurcation plots presented in fig. 4
also corroborate the value of bifurcation point as R0 = 1. In order to conduct the
analysis, the parameter values corresponding to COVID-19 are adapted from the
literature [26–30]. For R0 < 1, the disease free equilibrium point is stable for all
values of R0 (fig.4). For R0 > 1, the disease free equilibrium losses its stability
and a stable equilibrium solution branch emerges, indicating endemic equilibrium
solutions.

When control parameter α = 0, bifurcation occurs at exactly at R0 = 1 (fig.4).
But, if α > 0, the non-monotonicity in the incidence function dominates the dy-
namics and pushes the bifurcation point further towards the right, indicating more
stability for the disease free equilibrium branch and a delayed outbreak, as pre-
sented in fig.5. This indicates the fact that by proper selection of α, it is possible
to prevent the a breakout even for R0 > 1 scenario. This is corroborated using
numerical simulation results as shown in figs. 6 and 7.
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Fig. 4 Bifurcation diagram of I∗ versus R0 — for µ = 0.1, σ = 1/5, γ = 1/5, Kq = 0, KI = 0
for α = 0 (solid lines—stable trims; dashed lines—unstable trims; hexagram - bifurcation
point).
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Fig. 5 Bifurcation diagram of I∗ versus R0 — for µ = 0.1, σ = 1/7, γ = 1/5, Kq = 0, KI = 0
for α > 0 (solid lines—stable trims; dashed lines—unstable trims; hexagram - bifurcation
point).

In order to conduct the time simulation, a city with 5 million population, out
of which 90% susceptible to COVID-19 and 500 individuals exposed to the virus
is considered. From fig.6, it is evident that for R0 = 1.25, endemic equilibrium
exist for α = 0, and the stable equilibrium value corresponds to that of presented
in fig.4. Since R0 value is less, it takes more time for the curves to settle to their
equilibrium values, same as those suggested by the bifurcation plots. From figure
fig.5, the bifurcation happens at R0 = 1.3, and for R0 = 1.25, there exist a stable
disease free equilibrium solution. This could be verified from fig.7. Starting from
the aforementioned initial condition, both the exposed and infected levels fall to
near-zero values indicating a disease free condition. The interesting point to note
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Fig. 6 Numerical simulation results at R0 = 1.25 for fig.4 (for α = 0).
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Fig. 7 Numerical simulation results at R0 = 1.25 for fig.5 (for α > 0).

here is the fact that this happens at R0 = 1.25, which usually represents an
endemic state, as suggested by fig.6.

The results presented above are obtained for Kq = 0 and KI = 0, indicating
the classical SEIR model. For this set of values, R0 = 1 corresponds to a trans-
mission rate of β0 = 0.45 (calculated using Eq.(11)). For nonzero values of Kq and
KI , the two quarantine compartments become active and this affect the disease
spread significantly. From Eq.(11), one could easily notice that in order to have
R0 = 1, for non zero Kq and KI values, β0 magnitude should be much higher
compared to the previous case. This can be interpreted in two distinct ways. 1).
For same transmission rate magnitude, the basic reproduction number will be less
than that of classical SEIR model without quarantine compartments and this can
reduce/stop the disease spread, depending on the value of R0. 2). With regard to
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Fig. 8 Values of β0 at different values of Kq and KI for R0 = 1.

SEPIHR model, it would require a higher transmission rate to sustain the disease
spread compared to classical SEIR model without quarantine stages.

Figure 8 presents different β0 values required to have an R0 value of 1, to force
an outbreak for different values of Kq and KI . For this set of results, the magnitude
of Kq is fixed at different constant values rather than that of presented by Eq.(3).
KI values are varied in steps of 0.1 to analyze the effect. Plots are generated such
that β0 values are calculated using Eq.(11) for R0 = 1 and plotted in fig. 8. One
can clearly notice as values of Kq and KI increase, the magnitude of transmission
rate increases drastically. This simply means that the ‘effort’ required to curb the
disease becomes lesser, or in other words, it is easier to contain the disease than
using an approach without quarantine measures. For instance, for Kq = 0.5 and
KI = 0.5, disease free equilibrium exists (R0 < 1) up to β0 = 4.16 as opposed to
β0 = 0.45 for Kq = 0, KI = 0. This also shows the importance of adopting proper
quarantine procedures.

Figure 9 presents numerical results for R0 = 2 using the classical SEIR model.
Without any quarantine measures, the number of exposed, infected and recovered
cases are 1 million, 0.5 million and 0.2 million, respectively. Now, assuming the
government could successfully track down and place 50% of the total exposed
population in protective quarantine (Kq = 0.5), could hospitalize only 50% of the
total number of infected persons (KI = 0.5), and assuming a best case scenario
of only 10% of total number of people in protective quarantine become infected
(φ = 0.1), the two additional quarantine compartments in Eq.(1) become active
and the number of exposed and infected cases come down to 0.32 million and 0.057
million, respectively. Number of recovered cases doubles to 0.4 million. There are
0.54 million people in protective quarantine and 0.41 million people in hospital
quarantine compartments, and this additional compartments have reduced the
disease spread considerably. These results are graphically presented in fig. 10,
where the solid lines represent the aforementioned scenario.

In this work, as proposed in Eq.(3), an adaptive variation of Kq with respect to
the rise in infections is also studied. In this regard, numerical simulations have been
conducted to study the effect of such a variation in Kq and is presented in fig. 10
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Fig. 9 Numerical simulation results at R0 = 2 without quarantine compartments (β0 = 1,
Kq = 0, KI = 0).

Fig. 10 Numerical simulation results at R0 = 2 with quarantine compartments (Solid lines:
for constant quarantine rate (β0 = 8.3, Kq0 = 0.5, and KI = 0.5); dotted lines adaptive
quarantine rate (β0 = 8.3, Kq0 = Kq0 + α ∗ I2, Kq0 = 0.5, and KI = 0.5)).

(represented as dotted lines). An initial Kq0 value of 0.5 is chosen. As infection
increases, Kq value also increases, depending on the value of α (Kq = Kq0 +
αI2). By using adaptive quarantine strategy, compared to constant quarantine
strategy, the E, I, P and H levels to 0.125 million, 0.022 million, 0.29 million,
and 0.2 million, respectively. Since Kq is increasing, one would expect P to be
higher than that of previous case, and this could be true also, but for same E
levels. But, as Kq increases, correspondingly R0 decreases according to the relation
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R0 = σβ0

(µ+σ+Kq)(µ+γ+KI)
. This minimizes the disease spread, lowering exposed and

infected levels, causing reduced quarantine levels.

Fig. 11 Adaptive variation of Kq and R0 for varying I, (a). variation of Kq with respect to
I, (b). Change in R0 for varying Kq .

Figure 11(a) presents variation of Kq for I variation as presented in fig. 10.
Curve starts from an initial value of Kq0 = 0.5 for I = 0. Since Kq ∝ I2, the
curve follows a parabolic path, depending on the magnitude of α. The Kq value
peaks around 0.75, corresponding to peak I value and then finally settles at 0.7.
This increase in Kq aids in arresting the disease spread by forcing R0 value down
to a smaller value. Realistically, if more people are put under protective quaran-
tine/isolation, then the chances of disease spread come down. This is evident from
the R0 plot presented in fig. 11(b). Starting from an initial value of 2, the basic
reproduction number gradually drops down to a lower value of 1.55. This causes
the reduction in exposed and infective levels in fig. 10 compared to a constant
Kq scenario, where the basic reproduction number value also remains constant at
R0 = 2.

5.1 Performance Evaluation of the Proposed SEPIHR Model

The efficacy of the proposed model in simulating the actual COVID-19 dynamics
is verified by comparing with real-time data. Data from Kerala, one of the 28
states with 35 million population from India is considered. Kerala, famous for its
‘Kerala Model of development’ [31] is one of the developed states in India with a
Human Development Index (HDI) value of 0.779 [32], highest in the country and
always considered as an anomaly among developing countries. Kerala is a pioneer
in implementing universal healthcare programs with a well developed healthcare
system and have a literacy rate of 94% [32]. Kerala has already reached 2030
sustainable development goals in neonatal mortality rate, under five mortality
rate, etc. [32]. In fact, the healthcare system is widely recognized globally, and it
was named as “World’s First WHO-UNICEF Baby-Friendly State” [33].
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Fig. 12 Comparison of I predicted using SEPIHR model with actual infected data.
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Fig. 13 Comparison of P predicted using SEPIHR model with actual protective quarantined
data.

Kerala accounts for a huge percentage of Indian diaspora and the first case
of COVID-19 in India was reported in Kerala on 30/01/2020 [34]. As more and
more people returned from foreign countries, the number of COVID-19 cases was
on the rise. Government approached this problem via aggressive testing, contract
tracing and aggressive isolation policies [35]. Efficacy of these measures helped the
state in ‘flattening’ the disease curve in a much faster rate than other areas. These
efforts were widely recognized globally [35–37]. They achieved this through proper
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Fig. 14 Comparison of H predicted using SEPIHR model with actual hospital quarantined
data.
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Fig. 15 Comparison of R predicted using SEPIHR model with actual recovery data.

contact tracing and quarantining the exposed/infected persons with the help of
well developed healthcare system.

Figures 12,13,14, and 15 present the comparison of projections of I, P,H, and R
states with actual data [34]. Model parameters are estimated from the data [34] and
numerical simulations have been conducted to check the adequacy of the model.
The estimated parameters values are given by σ = 1/7, γ = 1/12, φ = 0.125, and
µ = 0.001. It was assumed that 80% of the exposed people are put under protec-
tive quarantine by efficient contact tracing and testing (Kq = 0.8) and KI was
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estimated to be 0.45. From fig. 12, the proposed SEPIHR model predicted a peak
number of 263 on 03/04/2020 compared to 262 on 05/04/2020, indicating good
enough accuracy, and most importantly, the model predicted similar trend as pre-
sented by data. Figures 13 and 14 present the protective and hospital quarantine
data and the trend predicted by the model. For fig. 13, like the previous case, the
model predicts near accurate predictions on each days, except after 15/04/2020.
After this date, the model overestimated the number of people to be under protec-
tive quarantine compared to actual data. This reduction in actual numbers could
also be due to shift government policy in determining the quarantine norms.

Regarding the hospital quarantine data, even though the model correctly pre-
dicts the trend, there is a mismatch in the actual predicted values (fig. 14). The
model seems to be underestimating during initial phases and slightly overestimat-
ing during last phase. Again, this could be attributed to the change government
norms adopted. During the initial phase of the spread, the government could have
decided to place more people under hospital, fearing the spread and gradually
eased the norms as things got under control. Regarding the recovery data pre-
sented in fig. 13, for the estimated parameters, even though the recovery profile
overestimates the actual data by an average factor of 10%, the trend remains the
same, indicating the adequacy of the proposed SEPIHR model.

6 Conclusions

A systematic method for the analysis and control of COVID-19 pandemic has
been presented through the proposal of a new ‘SEPIHR’ model. The additional
compartments, adding the dynamics of protective and hospital quarantine stages
could better represent/predict the actual COVID-19 dynamics. The dynamics of
government interventions in addressing the pandemic, viz., lockdown, restriction
of public movement, awareness campaigns, testing, etc. is included in the model
by means of nonlinear incidence function. By proper selection of Kq, KI and α
parameters, it is possible to bring R0 below the bifurcation point or could push the
bifurcation point further to higher values, thus shifting the system away from the
endemic equilibrium solution branch, and preventing an outbreak. By including the
protective and hospital quarantine compartments, the proposed SEPIHR model
could be utilized for the prediction and performance evaluation of actual gov-
ernmental quarantine efforts and could serve as a viable alternative to statistical
methods in predicting and controlling the COVID-19 transmission. By comparing
the predictions of the proposed SEPIHR model with actual data, the sufficiency of
using a model based approach to depict/predict the COVID-19 dynamics is also
emphasized.
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