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ABSTRACT 1 

Background 2 

About every fourth patient with major depressive disorder (MDD) shows evidence of systemic 3 

inflammation. Previous studies have shown inflammation-depression associations of multiple 4 

serum inflammatory markers and multiple specific depressive symptoms. It remains unclear, 5 

however, if these associations extend to genetic/lifetime predisposition to higher inflammatory 6 

marker levels and what role metabolic factors such as Body Mass Index (BMI) play. It is also 7 

unclear whether inflammation-symptom associations reflect direct or indirect associations, which 8 

can be disentangled using network analysis.  9 

Methods 10 

This study examined associations of polygenic risk scores (PRSs) for immuno-metabolic markers 11 

(C-reactive protein [CRP], interleukin [IL]-6, IL-10, tumour necrosis factor [TNF]-α, BMI) with 12 

seven depressive symptoms in one general population sample, the UK Biobank study 13 

(n=110,010), and two patient samples, the Munich Antidepressant Response Signature (MARS, 14 

n=1,058) and Sequenced Treatment Alternatives to Relieve Depression (STAR*D, n=1,143) 15 

studies. Network analysis was applied jointly for these samples using fused graphical least 16 

absolute shrinkage and selection operator (FGL) estimation as primary analysis and, individually, 17 

using unregularized model search estimation. Stability of results was assessed using 18 

bootstrapping and three consistency criteria were defined to appraise robustness and replicability 19 

of results across estimation methods, network bootstrapping, and samples.  20 

Results 21 

Network analysis results displayed to-be-expected PRS-PRS and symptom-symptom associations 22 

(termed edges), respectively, that were mostly positive. Using FGL estimation, results further 23 
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suggested 28, 29, and six PRS-symptom edges in MARS, STAR*D, and UK Biobank samples, 24 

respectively. Unregularized model search estimation suggested three PRS-symptom edges in the 25 

UK Biobank sample. Applying our consistency criteria to these associations indicated that only 26 

the association of higher CRP PRS with greater changes in appetite fulfilled all three criteria. 27 

Four additional associations fulfilled at least two consistency criteria; specifically, higher CRP 28 

PRS was associated with greater fatigue and reduced anhedonia, higher TNF-α PRS was 29 

associated with greater fatigue, and higher BMI PRS with greater changes in appetite and 30 

anhedonia. Associations of the BMI PRS with anhedonia, however, showed an inconsistent 31 

valence across estimation methods.  32 

Conclusions 33 

Genetic predisposition to higher systemic inflammatory markers are primarily associated with 34 

somatic/neurovegetative symptoms of depression such as changes in appetite and fatigue, 35 

consistent with previous studies based on circulating levels of inflammatory markers. We extend 36 

these findings by providing evidence that associations are direct (using network analysis) and 37 

extend to genetic predisposition to immuno-metabolic markers (using PRSs). Our findings can 38 

inform selection of patients with inflammation-related symptoms into clinical trials of immune-39 

modulating drugs for MDD.  40 

 41 

Keywords: Depression; Depressive Symptoms; Inflammation; C-reactive protein; Body Mass 42 

Index; Interleukin 6; Interleukin 10; Tumour Necrosis Factor-α; Network Analysis43 
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INTRODUCTION 44 

Recent findings suggest that every fourth patient with Major Depressive Disorder (MDD) shows 45 

evidence of systemic, low-grade inflammation as indicated by elevated (>3mg/L) C-reactive 46 

protein (CRP) concentrations (Osimo et al., 2019). This association has been supported by cross-47 

sectional case-control studies synthesised in multiple meta-analyses (Dowlati et al., 2010; 48 

Goldsmith et al., 2016; Haapakoski et al., 2015; Howren et al., 2009; Köhler et al., 2017) as well 49 

as longitudinal studies (Khandaker et al., 2014; Lamers et al., 2020; Mac Giollabhui et al., 2020). 50 

Clinically, patients with evidence of inflammation do not respond as well to standard 51 

monoaminergic and psychotherapeutic treatments (Liu et al., 2020; Lopresti, 2017). These 52 

patients may, however, benefit from alternative treatment with immune-modulating drugs 53 

(Kappelmann et al., 2018; Köhler-Forsberg et al., 2019; Wittenberg et al., 2020). To prioritise 54 

drug and patient selection for clinical trials, it is crucial to further understand immunological and 55 

clinical complexity of inflammation-symptom associations, which may allow shortlisting of 56 

promising immunotherapeutic drug targets and could highlight patients with a profile of 57 

inflammation-related depression.   58 

Regarding immunological complexity, studies have reported various associations of serum 59 

inflammatory proteins with depression, including among others CRP, interleukin (IL)-6, IL-10, 60 

and tumour necrosis factor (TNF)-α (Goldsmith et al., 2016; Haapakoski et al., 2015; Köhler et 61 

al., 2017). Evidence from in-depth immunophenotyping further suggests that there may be 62 

distinct subgroups of inflammation-related depression as shown by immune cell count clustering 63 

and transcriptome analyses (Cattaneo et al., 2020; Lynall et al., 2020). These studies suggest that 64 

elevated serum levels of inflammatory markers are associated with depression, but associations of 65 

depression with genetic/lifetime predisposition to higher inflammatory markers has been studied 66 
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less frequently and primarily for CRP (Badini et al., 2020; Kappelmann et al., 2021; Milaneschi 67 

et al., 2017b, 2016). Elevated serum levels of inflammatory markers also conflate tonic and 68 

phasic levels of inflammatory markers while genetic/lifetime predisposition to inflammatory 69 

markers specifically maps their tonic levels. This differentiation could be relevant as highlighted 70 

by research into tonic versus phasic dopamine levels (see Bilder et al., 2004), whereby tonic 71 

levels regulate the amplitude of the phasic response, which has unique consequences for 72 

downstream signalling. Lastly, inflammatory markers such as CRP are influenced by metabolic 73 

factors (Timpson et al., 2011), which may causally underlie some inflammation-symptom 74 

associations (Kappelmann et al., 2021), so a combined investigation of immuno-metabolic factors 75 

is needed to disentangle their etiological roles. 76 

Regarding clinical complexity, most prior research has restricted its investigation of the 77 

inflammation-depression association to complexity on one side, that is focusing on multiple 78 

immune markers (e.g., cell counts/ serum cytokine levels) while studying a composite depression 79 

phenotype (Goldsmith et al., 2016; Haapakoski et al., 2015; Köhler et al., 2017) or focusing on 80 

multiple depressive symptoms or symptom groups in the context of a single inflammatory marker 81 

(mostly CRP) (Badini et al., 2020; Jokela et al., 2016; Köhler-Forsberg et al., 2017; Lamers et al., 82 

2020, 2019; White et al., 2017). Among studies focusing on individual symptoms, results have 83 

highlighted associations of inflammatory markers with specific depressive symptoms of fatigue, 84 

changes in appetite, anhedonia, and suicidality (Badini et al., 2020; Chu et al., 2019; Jokela et al., 85 

2016; Kappelmann et al., 2021; Köhler-Forsberg et al., 2017; Lamers et al., 2020, 2018; 86 

Milaneschi et al., 2017a; Simmons et al., 2018; White et al., 2017). However, most of these 87 

studies have considered associations of inflammatory markers with each depressive symptom in 88 

isolation (Chu et al., 2019; Jokela et al., 2016; Kappelmann et al., 2021; Köhler-Forsberg et al., 89 

2017; Lamers et al., 2018; White et al., 2017). Although these prior approaches have led to 90 
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important findings, they cannot address potential causal interactions between symptoms, thus 91 

conflate evidence for indirect and direct associations. For example, analyses of isolated 92 

symptoms could hypothetically provide evidence for associations of CRP with both fatigue and 93 

sleep problems even if CRP was only indirectly associated with fatigue via its effect on sleep 94 

problems. A network-based approach provides one means of disentangling such direct from 95 

indirect inflammation-symptom associations. 96 

Network theory and related analysis techniques have recently been put forward to accommodate 97 

the symptomatic complexity of mental disorders (Borsboom, 2017). Network theory proposes 98 

putative causal interactions between symptoms (e.g., fatigue causing concentration problems 99 

causing low mood), which could result in self-reinforcing vicious symptom cycles triggering and 100 

maintaining mental disorders. Such associations have been investigated in an increasing amount 101 

of studies on psychological symptom networks (Contreras et al., 2019; Robinaugh et al., 2020). 102 

To accommodate etiological factors beyond symptoms, however, recent work has proposed an 103 

expansion of symptom networks to so-called ‘multi-plane’ networks, for instance also including 104 

genetic, metabolic, immunological, or environmental variables (Guloksuz et al., 2017). To our 105 

knowledge, so far, two studies have evaluated such multi-plane networks in the context of 106 

inflammation and depression by jointly analysing serum CRP (plus IL-6 & TNF-α in the study of 107 

Fried et al., 2019), BMI, and potential covariates with individual depressive symptoms (Fried et 108 

al., 2019; Moriarity et al., 2020a). The most consistently replicated findings between these two 109 

studies suggested unique associations of CRP with fatigue and changes in appetite. A third study 110 

has recently also provided evidence that the symptom structure itself was a function of CRP 111 

levels; that is, interconnections between symptoms were moderated by CRP (Moriarity et al., 112 

2020b). All of these previous studies were based on serum markers for inflammatory proteins, 113 

however, reflective of acutely elevated inflammatory activity. Therefore, it remains unclear if 114 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


7 
 

inflammation-symptom associations generalise to genetic/lifetime predisposition to higher 115 

immuno-metabolic marker levels.  116 

In the present study, we explored associations of polygenic risk scores (PRSs) for four major pro- 117 

and anti-inflammatory markers (i.e., CRP, IL-6, IL-10, & TNF-α) and Body Mass Index (BMI), 118 

as a metabolic marker, with individual depressive symptoms using a multi-sample, multi-plane 119 

network analysis approach. We evaluated associations in three large samples including the 120 

inpatient Munich Antidepressant Response Signature (MARS) study (n=1,058), the outpatient 121 

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study (n=1,143), and the 122 

general population UK Biobank cohort (n=110,010) (Hennings et al., 2009; Rush et al., 2004; 123 

Sudlow et al., 2015). This investigation aimed to contribute to the study of inflammation and 124 

depression by simultaneously addressing (i) combined immunological and symptom complexity 125 

(using network analysis), (ii) unclarity regarding the influence of genetic/lifetime predisposition 126 

to higher immuno-metabolic marker levels on depression (defining immuno-metabolic markers 127 

using PRSs), and (iii) issues of replicability and generalisability (testing associations in one large 128 

general population and two clinical samples).  129 
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METHODS 130 

An overview of the study design and analytic procedure is presented in Figure 1. 131 

-Figure 1- 132 

Study samples    133 

The Munich Antidepressant Response Signature (MARS) study was a naturalistic, observational 134 

study of inpatients with major depressive disorder (MDD) or bipolar disorder conducted between 135 

2000 and 2015 in three Southern German hospitals (Hennings et al., 2009). Based on an original 136 

sample of 1,411 patients, the present study included 1,058 patients of European decent with an 137 

ICD diagnosis of MDD (F32 and F33 codes) and genetic and depressive symptom data. 138 

The STAR*D trial (identifier: NCT00021528) was a multisite, multistep, randomised controlled 139 

trial (RCT), conducted from 2000 to 2004, evaluating different treatment options and sequences 140 

for outpatients suffering from DSM-IV MDD without psychotic features (Rush et al., 2004). 141 

Based on an original sample of 1,953 patients who took part in the STAR*D genetics study, the 142 

present study included 1,143 individuals of European decent with genetic and depressive 143 

symptom data. 144 

The UK Biobank is a general population cohort including more than 500,000 individuals, 145 

recruited from 2006 to 2010, with genotyping and in-depth phenotyping information (Bycroft et 146 

al., 2018). More than 150,000 individuals from the initial sample took part in a follow-up mental 147 

health survey (Davis et al., 2020) and we included a subset of 110,010 individuals that were of 148 

European decent and had available genetic and depressive symptom data. 149 
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Ethics approval and informed consent 150 

MARS received local ethics approval from Ludwig Maximilians University Munich (Hennings et 151 

al., 2009). STAR*D received ethics approval from 14 participating institutional review boards, a 152 

National Coordinating Center, a Data Coordinating Center, and the Data Safety and Monitoring 153 

Board at the National Institute of Mental Health (Rush et al., 2006, 2004). The UK Biobank study 154 

received ethics approval from North West Centre for Research Ethics Committee and Human 155 

Tissue Authority research tissue bank (Bycroft et al., 2018); this project was approved under 156 

project no. 26999. All three studies collected informed consent from participants prior to study 157 

participation. 158 

Depressive symptom assessment 159 

Depressive symptoms were assessed differently across the three samples. MARS and STAR*D 160 

studies used the observer-rated Hamilton Rating Scale for Depression (HAM-D) (Hamilton, 161 

1986) while the UK Biobank study used the self-report Patient Heath Questionnaire (PHQ)-9 162 

(Löwe et al., 2004). From these questionnaires, we selected seven depressive symptoms for joint 163 

analyses across samples. These symptoms included completely overlapping symptoms of 164 

depressed mood, anhedonia, fatigue, and suicidality, but also partially overlapping symptoms of 165 

sleep problems, changes in appetite, and psychomotor changes. Supplementary Table 1 provides 166 

an item-level overview of depressive symptoms and Supplementary Table 2 displays symptom 167 

coding, where this differed from original Likert scale ratings.  168 

Regarding partially overlapping symptoms of sleep problems, changes in appetite, and 169 

psychomotor changes, the PHQ-9 only assesses information on conflated symptoms (e.g., 170 

insomnia and hypersomnia are conflated to sleep problems) while the HAM-D incorporates 171 

disaggregated symptoms. To harmonise these symptom data for retention in network analyses, 172 
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we conflated HAM-D symptoms of psychomotor retardation and agitation to “psychomotor 173 

changes”. For sleep problems and changes in appetite (available in the PHQ-9), only insomnia 174 

and loss of appetite are available in the HAM-D, so we included both conflated and 175 

unidirectional symptoms in network analyses as previous studies have specifically highlighted 176 

associations of inflammation with these symptoms (Jokela et al., 2016; Milaneschi et al., 2017b). 177 

We reasoned that comparative appraisal of associations, for example with changes in appetite and 178 

loss of appetite, could give further indications on potential specificity of associations to symptom 179 

directions, as observed in previous reports (Kappelmann et al., 2021; Milaneschi et al., 2021b, 180 

2021a).  181 

We also note that we have not included items of “guilt or self-blame” from the respective studies 182 

in our analyses as we considered the item content of HAM-D and PHQ-9 too distinct. 183 

Specifically, the HAM-D conflates feelings of guilt with delusions of guilt and death, thus 184 

moving towards psychotic symptomatology. Contrary to this, the PHQ-9 also includes “feelings 185 

of inadequacy” about oneself, which are not covered by the HAM-D item.   186 

Genotyping, quality control and imputation 187 

We provide detailed information on genotyping, quality control and imputation procedures in the 188 

Supplementary Methods. Briefly, genotyping in the MARS study was conducted using three 189 

genotyping arrays across the recruitment period (see Supplementary Figure 1), the Illumina 610k 190 

(n=548), Illumina OmniExpress (n=284) and Illumina GSA (n=226) arrays. In STAR*D, 191 

genotyping was conducted using the Affymetrix Human Mapping 500K Array Set (n=979) and 192 

the Affymetrix Genome-Wide Human SNP Array 5.0 (n=969) that displayed a concordance of 193 

>99%; described in detail by Garriock and colleagues (2010). In the UK Biobank study, samples 194 

were genotyped on the UK BiLEVE Axiom Array or the Affymetrix UK Biobank Axiom Array 195 
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(Bycroft et al., 2018). Following imputation in all samples, single nucleotide polymorphisms 196 

(SNPs) with info-metric>0.6, minor allele frequency (MAF)>1%, genotyping missingness<2%, 197 

and no deviation from Hardy-Weinberg Equilibrium (MARS & STAR*D: P>1e-5; UK Biobank: 198 

P>1e-7) were retained. 199 

Polygenic risk scores 200 

Immuno-metabolic marker selection and GWAS data sources 201 

PRSs for CRP, IL-6, IL-10, TNF-α, and BMI were computed based on available summary 202 

statistics from genome-wide association studies (GWAS; Ahola-Olli et al., 2017; Ligthart et al., 203 

2018; Locke et al., 2015). These inflammatory markers were selected, because (i) they showed 204 

robust differences in case-control studies; (ii) CRP, IL-6, and TNF-α have been the most 205 

frequently investigated inflammatory markers overall in the context of depression; and (iii) IL-10 206 

was the most frequently studied anti-inflammatory cytokine, so could be informative on direction 207 

of associations between depressive symptoms and innate immune activity (Köhler et al., 2017; 208 

Osimo et al., 2019). BMI was selected as the most frequently investigated metabolic marker. 209 

GWAS data for CRP were obtained from a large GWAS of 88 studies including 204,402 210 

individuals of European decent (Ligthart et al., 2018). GWAS data for IL-6, IL-10, and TNF-α 211 

were obtained from a GWAS of 8,293 Finns (Ahola-Olli et al., 2017); of note, Finns have 212 

Siberian ancestry (Lamnidis et al., 2018), which leads to a divergence from European ancestry of 213 

our analytic samples. GWAS data for BMI were obtained from the Genetic Investigation of 214 

Anthropometric Traits (GIANT) consortium that included up to 322,154 individuals of European 215 

decent (Locke et al., 2015).  216 
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PRS computation 217 

PRSs can be computed by summing the GWAS association estimates of risk alleles for each 218 

individual. Classically, this summation is done using an approach termed “clumping and 219 

thresholding” (C+T), which first reduces summary statistics to independent SNPs and then 220 

applies one or multiple thresholds (usually based on P-values) to restrict summation to SNPs with 221 

high evidence for associations with phenotypes (Choi et al., 2020). As the optimal threshold for 222 

the C+T approach is unknown and should ideally be estimated in a separate dataset with available 223 

phenotype data, we computed PRSs using the Bayesian regression and continuous shrinkage 224 

priors (PRS-CS) approach, which has been shown to perform similar to or outperform other PRS 225 

computation approaches such as C+T (Ge et al., 2019; Ni et al., 2020).  226 

PRS-CS takes a linkage disequilibrium (LD) reference panel into account (we used European 227 

ancestry data from 1000 Genomes Project phase 3 samples) to update SNP effect sizes in a 228 

blocked fashion, thus providing accurate LD adjustment. We pre-specified the global shrinkage 229 

parameter � using suggested defaults for less polygenic (�=1e-4) and more polygenic (�=1e-2) 230 

phenotypes as �=1e-4 for CRP, IL-6, IL-10, and TNF-α, and as �=1e-2 for BMI; see details in 231 

Supplementary Methods. Following PRS computation in individual samples, polygenic scores 232 

were corrected for age, sex, and the first two genotyping principal or multidimensional scaling 233 

(MDS) components using linear regression; two genotyping principal or MDS components were 234 

selected as visual inspection of component inter-correlations did not suggest evidence for 235 

population stratification. Genotyping MDS components were computed based on raw Hamming-236 

distances in MARS and STAR*D, and using principal component analysis on high-quality, 237 

unrelated individuals in the UK Biobank sample (Bycroft et al., 2018). PRSs in MARS were 238 

additionally corrected for the genotyping array. Following computation, higher PRSs reflect 239 

higher genetic predisposition to respective immuno-metabolic phenotype levels. 240 
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PRS evaluation 241 

In Supplementary Table 3, we provide the number of SNPs included in PRS computation in each 242 

sample, which was approximately around one million SNPs for each phenotype-sample 243 

combination. The proportion of SNP overlap between samples (for the same phenotype) was 244 

>0.89 suggesting that mostly overlapping SNPs contributed to PRSs (Supplementary Table 4). 245 

Taking these overlapping SNP sets, correlations between the posterior SNP effect sizes between 246 

samples were large for CRP (Pearson’s r range: 0.69-0.76) and BMI (Pearson’s r range: 0.79-247 

0.80) and relatively smaller for IL-6, IL-10, and TNF-α (Pearson’s r range: 0.41-0.46; see 248 

Supplementary Table 5). This suggests polygenic risk was quantified more similarly across 249 

samples for CRP and BMI as compared to IL-6, IL-10, and TNF-α.  250 

We quantified the impact that pre-specification of the hyperparameter � had on resulting PRSs, 251 

which was likely small (Supplementary Table 6). Specifically, PRSs with pre-specified � 252 

exhibited large correlations with PRSs based on automatic learning of � from GWAS summary 253 

data (termed PRS-CS-auto in the literature; Pearson’s r range: 0.82-0.98). Furthermore, 254 

moderate-to-large correlations remained to PRSs based on extreme grid search boundary values 255 

of � (Pearson’s r range: 0.47-0.93).  256 

Since MARS utilised three different genotyping arrays, we verified that our approach of 257 

combining data from these arrays into one sample was justified before proceeding with the main 258 

analysis (see Supplementary Methods and Supplementary Figures 2 and 3).  259 

Network analysis 260 
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Estimation 261 

Network analysis was conducted using R software (version 4.0.3; R Core Team, 2017). In 262 

network analysis, unique associations between variables reflect partial correlations and are 263 

termed ‘edges’. Variables in the network are referred to as ‘nodes’.  264 

Network models can be broadly categorised into regularized and unregularized models, that have 265 

distinct advantages and disadvantages. Regularised models apply penalties that shrink edges 266 

towards zero. This has the advantage that it results in sparser and more parsimonious network 267 

models as small edges can be set exactly to zero. Contrary to this, non-regularized models do not 268 

apply such a penalty while still controlling the false positive rate and recent studies have 269 

suggested that unregularized models perform better in estimating psychological symptom 270 

networks and multi-plane immunopsychiatric networks than regularized network models 271 

(Moriarity et al., 2020a; Williams et al., 2019). A disadvantage of unregularized models, 272 

however, is that they are currently only suitable for network estimation of individual 273 

samples/datasets. Contrary to this, regularised models have recently been adapted for application 274 

in multi-sample contexts using so-called fused graphical LASSO (FGL) estimation. FGL 275 

estimation allows synthesising data across multiple samples, which increases statistical power. 276 

Based on these respective advantages and disadvantages, we have decided to use a regularized 277 

network model as primary analysis, which maximises statistical power due to the multi-sample 278 

design of our study. As unregularized models are preferable for estimation of individual samples 279 

and may be better suited to retrieve multi-plane edges, however, we also apply unregularized 280 

network estimation as secondary analysis. 281 

In primary analyses, networks were estimated using FGL estimation as implemented in the 282 

EstimateGroupNetwork package (version 0.2.2; Costantini et al., 2020, 2019; Danaher et al., 283 
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2014). FGL estimation relies on the two tuning parameters λ1, which penalizes network density, 284 

and λ2, which penalizes edge differences across samples. Values for these tuning parameters were 285 

selected using 10-fold cross-validation to optimise the Bayesian Information Criterion (BIC). As 286 

recommended, we set weights for the importance of each sample as ‘equal’ to ascertain that a 287 

single sample would not dominate estimation (Danaher et al., 2014). 288 

As secondary analysis, we estimated unregularized networks for each sample individually using 289 

the gaussian graphical stepwise model selection (“ggModSelect”) algorithm implemented in the 290 

qgraph package (version 1.6.5; Epskamp et al., 2012) based on Spearman correlations and 291 

starting from an empty model. Throughout results, we refer to this estimation strategy as 292 

“unregularized model search” or “model search” for simplification. 293 

Node predictability 294 

We also estimated node predictability, which describes the amount of variance in a node that is 295 

explained by all other nodes in the network, so can be interpreted akin to R2 (Haslbeck and Fried, 296 

2017). Node predictability cannot be inferred from FGL or model search networks as it requires a 297 

node-wise estimation approach. Therefore, we used a mixed graphical model as a third estimation 298 

strategy as implemented in the mgm package (version 1.2-10), selecting tuning parameter λ based 299 

on BIC optimisation in 10-fold cross-validation (Haslbeck and Waldorp, 2020). Of note, this 300 

model was only used to infer node predictability, which provides additional information on 301 

network density and sample comparability. However, we do not report any individual edge 302 

estimates based on this model as FGL estimation and unregularized model search are better 303 

suited for our study aims. 304 
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Visualisation 305 

Networks were visualised with the qgraph package using an average layout estimated with the 306 

Fruchterman-Reingold algorithm for the FGL networks. This algorithm places nodes close to 307 

each other that are connected by large edges (Epskamp et al., 2012). While this simplifies 308 

network appraisal, it is important to note that nodes and edges should not be interpreted based on 309 

their relative position within the network, which can be unstable.  310 

Stability 311 

To evaluate stability of estimated networks, we assessed accuracy of edge estimates using 312 

bootstrapping strategies. Specifically, for FGL networks 500 bootstrapped samples with 313 

replacement were drawn, and FGL networks re-estimated, using the implementation in the 314 

EstimateGroupNetwork package (Costantini et al., 2020). For unregularized model search 315 

estimation, the same procedure was applied using non-parametric bootstrapping procedures 316 

implemented in the bootnet package (version 1.4.3; Epskamp et al., 2018).  317 

Interpretation 318 

We interpreted estimated networks based on the presence, stability, and replicability of edges as 319 

defined using three consistency criteria. First, we tested if edges were nonzero in FGL networks 320 

as well as nonzero and directionally consistent in >50% of bootstrapped analyses (consistency 321 

criterion 1) akin to a previous PRS-symptom network study in psychosis by Isvoranu and 322 

colleagues (2020). Second, we tested if edges between PRSs and symptoms replicated (according 323 

to criterion 1) across FGL networks of the three samples (consistency criterion 2). Third, we 324 

tested if edges were present in secondary analyses using unregularized model search estimation, 325 

again confirmed in >50% of bootstrapped estimations exhibiting directionally consistent 326 

estimates (consistency criterion 3). 327 
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Availability of data and materials 328 

Data from original studies is not openly available, but can be requested; see details in 329 

Supplementary Table 7. GWAS summary data for IL-6, IL-10, and TNF-α is openly available 330 

from the original publication by Ahola-Olli and colleagues (2017), for BMI from the GIANT 331 

consortium, and can be requested for CRP from the CHARGE inflammation working group. We 332 

provide analysis scripts and estimated network matrices (including bootstrapped network 333 

matrices) on the Open Science Platform (OSF) under https://osf.io/q4vw9/.334 
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RESULTS 335 

Baseline characteristics of study populations are displayed in Table 1. 336 

-Table 1- 337 

Network analysis 338 

We conducted network analyses of five immuno-metabolic PRSs (CRP, IL-6, IL-10, TNF-α, & 339 

BMI) and seven depressive symptoms using two estimation techniques (FGL & unregularized 340 

model search estimation) in three samples (MARS, STAR*D & UK Biobank). Bootstrap 341 

analyses were conducted to assess stability of networks and node predictability estimated using a 342 

mixed graphical model. We defined three consistency criteria to assess robustness and 343 

replicability of our results across estimation techniques, bootstrapping, and samples. Focus of this 344 

network investigation were unique associations (termed edges in network analysis) between PRSs 345 

and symptoms, which are summarised in Table 2. 346 

Fused Graphical LASSO (FGL) estimation suggests four consistent PRS-symptom edges 347 
according to criteria 1 & 2 348 

Using FGL estimation, we obtained networks that are visualised in Figure 2. PRS-symptom edge 349 

bootstrapping results are displayed in Figure 3 with PRS-PRS and symptom-symptom edge 350 

bootstrapping results shown in Supplementary Figures 4 and 5.  351 

As expected, nodes within the same plane displayed relatively stronger within-plane (i.e., 352 

symptom-symptom & PRS-PRS) than between-plane (i.e., PRS-symptom) associations. Among 353 

PRSs, CRP displayed associations with BMI (edge weight range across samples: 0.16-0.19) while 354 

IL-6, IL-10, and TNF-α (based on the same GWAS) were associated with each other (edge 355 

weight range across samples: 0.08-0.52). Associations of BMI and CRP with IL-6, IL-10, and 356 

TNF-α were largely absent or very small (edge weight range across samples: -0.02-0.01). Among 357 
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symptoms, the largest associations were present between the core symptoms depressed mood and 358 

anhedonia (edge weight range across samples: 0.14-0.55), which is to-be-expected in clinical 359 

samples where these symptoms form the basis of the MDD diagnosis. Supplementary Figure 4 360 

also illustrates interesting edge differences between samples that are likely arising from the 361 

diverging symptom definitions in individual samples. For instance, edges of fatigue with changes 362 

in appetite (edge weight=0.21) and sleep problems (edge weight=0.33) were relatively larger in 363 

the UK Biobank, assessing composite symptoms of changes in appetite and sleep problems, but 364 

substantially smaller in MARS (fatigue-changes in appetite: edge weight=0.09; fatigue-sleep 365 

problems: edge weight=0.10) and STAR*D (fatigue-changes in appetite: edge weight=-0.01; 366 

fatigue-sleep problems: edge weight=-0.01), assessing loss of appetite and insomnia. 367 

Regarding PRS-symptom edges, FGL estimation surprisingly resulted in a much larger number of 368 

PRS-symptom edges in MARS and STAR*D samples compared to the UK Biobank sample with 369 

28 (MARS), 29 (STAR*D), and 6 (UK Biobank) nonzero PRS-symptom edges. 26 (MARS), 28 370 

(STAR*D), and 5 (UK Biobank) of these edges fulfilled criterion 1 (nonzero edges are nonzero 371 

and directionally consistent in >50% of bootstraps). Although the difference between samples 372 

could have resulted from network differences of clinical versus general population-based 373 

samples, it may also reflect some degree of inconsistency or even noise as edge estimates often 374 

exhibited unstable directions of association in clinical samples (see Table 2).  375 

Applying consistency criterion 2 (consistency of results across samples), we observed replicable 376 

edges of the CRP PRS with anhedonia (negative edge weight), changes in appetite, and fatigue 377 

and of the TNF-α PRS with fatigue; these edges were manually unfaded in Figure 2. It is 378 

important to note that the edge between the CRP PRS and changes in appetite has a diverging 379 

valence in individual samples; in MARS and STAR*D (assessing loss of appetite) the edge 380 
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weight was negative and in the UK Biobank study (assessing changes in appetite) the edge 381 

weight was positive. 382 

-Figure 2- 383 

-Figure 3- 384 

Unregularized model search estimation suggests three consistent PRS-symptom edges 385 
according to criterion 3. 386 

Using unregularized model search estimation, we again observed networks with relatively larger 387 

within-plane (i.e., PRS-PRS & symptom-symptom) than between-plane (i.e., PRS-symptom) 388 

edges. Networks were comparable to FGL estimation, but generally sparser than those using FGL 389 

estimation; see network graphs in Supplementary Figure 6 and bootstrapping results in 390 

Supplementary Figures 7-9.  391 

Regarding PRS-symptom edges, only three edges were estimated, which were all observed in the 392 

UK Biobank sample and fulfilled consistency criterion 3 (nonzero edges are also nonzero and 393 

directionally consistent in >50% of bootstraps); these edges have been manually unfaded in 394 

Supplementary Figure 6. The specific PRS-symptom edges were between the BMI PRS and 395 

changes in appetite and anhedonia and between the CRP PRS and changes in appetite. 396 

Comparing these edges to FGL estimation, the edge of the CRP PRS with changes in appetite 397 

replicated one of the edges fulfilling consistency criteria 1 and 2 while the two edges observed 398 

for the BMI PRS were only fulfilling consistency criterion 1 (presence in FGL estimation and 399 

>50% of bootstraps). Moreover, the BMI PRS association with anhedonia was negative using 400 

unregularized model search estimation, but positive using FGL estimation. 401 

-Table 2- 402 
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Node predictability 403 

Average node predictability was similar across samples for PRS nodes with 16% (UK Biobank), 404 

17% (MARS), and 19% (STAR*D) of variance explained by all other nodes in the network. 405 

Contrary to this, average node predictability for symptom nodes differed with 38% of variance 406 

explained by all other nodes in the UK Biobank sample and only 9% in both clinical samples. 407 

These findings highlight differences in network density of symptoms in the UK Biobank (using 408 

the PHQ-9) and clinical samples (using the HAM-D).409 
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DISCUSSION 410 

The present study investigated associations of PRSs for immuno-metabolic markers with 411 

depressive symptoms using a multi-plane, multi-sample network analysis approach. Based on 412 

three consistency criteria emphasising robustness and replicability of network analysis results 413 

across statistical bootstraps, samples, and estimation methods, we observed a unique association 414 

between the CRP PRS and changes in appetite that met all three consistency criteria. In addition 415 

to this association, we observed five additional PRS-symptom associations that met two 416 

consistency criteria. These included edges of the CRP PRS with anhedonia (negative association) 417 

and fatigue, the TNF-α PRS with fatigue, and the BMI PRS with anhedonia and changes in 418 

appetite. However, the BMI PRS-anhedonia association switched association direction depending 419 

on the estimation method, so may not be fully consistent despite fulfilling our consistency 420 

criteria. Due to the novelty of our analysis approach, we highlight several methodological 421 

considerations below, which we hope provides a helpful framework to the discussion of our 422 

findings afterwards. 423 

Methodological challenges and opportunities 424 

Combining PRSs with psychological symptom networks is a relatively recent extension of 425 

network analysis and, to our knowledge, has only been applied in one previous investigation 426 

incorporating a schizophrenia PRS into a psychotic symptom network (Isvoranu et al., 2020). 427 

Therefore, it is important to emphasise the unique challenges and opportunities of this approach.  428 

First, as noted by Isvoranu and colleagues (2020), statistical power is potentially the greatest 429 

challenge of PRS-symptom network analysis. Network analysis itself requires relatively large 430 

sample sizes for psychological symptom networks (Epskamp et al., 2018; Fried and Cramer, 431 

2017), which should be in the hundreds or thousands depending on the number of nodes in the 432 
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network. Inclusion of PRSs into psychological symptom networks, and especially of potential 433 

pathomechanistic (e.g., inflammatory) rather than main illness (e.g., depression/schizophrenia) 434 

scores into these networks, aggravates the sample size requirements for network analysis as PRSs 435 

only explain a fraction of variance in the heritable component of their target phenotypes (Choi et 436 

al., 2020; Wray et al., 2020).  437 

Second, and because PRSs only measure a fraction of variance in their target phenotype, unique 438 

associations observed in network analyses are inevitably smaller than actual target phenotype-439 

symptom associations. Taking this study as an example, absolute sizes of CRP PRS-symptom 440 

associations were 5- to 10-fold smaller than those from a prior network investigation using serum 441 

CRP concentrations by Moriarity and colleagues (2020a). Therefore, PRS-symptom associations 442 

are unlikely to give meaningful insights into size of association with the target phenotype, but 443 

should, in our opinion, be interpreted based on robust presence/absence of specific associations. 444 

Third, the large statistical power requirements and difficulty quantifying such power for a given 445 

study may lead to biased result interpretations. Absence of PRS-symptom associations could be 446 

interpreted as false negatives while presence of association may be interpreted as true positives. 447 

Such divergence in interpretation necessarily biases the literature towards hypothesis 448 

confirmation. Consequently, any associations observed in PRS-symptom network analyses 449 

should be followed up by- and interpreted in line with- evidence from other studies, thus adhering 450 

to the recommended triangulation of evidence approach (Lawlor et al., 2017; Ohlsson and 451 

Kendler, 2019). 452 

Despite these challenges, PRS-symptom networks also provide multiple opportunities. First, 453 

PRSs reflect estimates of genetic liability to phenotype expression, so can give an indication on 454 

the influence of lifelong predisposition to higher phenotype levels on the symptom level. In this 455 
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way, PRS-symptom associations also provide an indication regarding temporality of association, 456 

which Bradford-Hill defined as one of the viewpoints for causality (Bradford Hill, 1965). It is 457 

important to note, however, that evidence for a unidirectional temporal association does not 458 

preclude bi-directionality. Moreover, PRSs combine information from a multitude of genetic 459 

variants (in our case from ~1 million SNPs) that are not restricted to functional SNPs, can include 460 

false positive associations (i.e., noise), and can also tag information of pleiotropic environmental 461 

confounding factors. Therefore, causal inferences should rely on separate evidence from clinical 462 

trials and/or more focused genetic approaches such as Mendelian Randomisation studies (Lawlor 463 

et al., 2008).  464 

Second, the PRS-symptom network analysis approach allows the concurrent investigation of 465 

multiple immuno-metabolic markers with multiple symptoms. Thereby, immunological and 466 

clinical complexity is addressed concurrently, which is an advantage to previous investigations. 467 

Furthermore, network analyses usually estimate partial/unique associations, so any emerging 468 

associations could suggest direct causal paths from PRS phenotypes to individual symptoms, so 469 

may pinpoint so-called ‘bridge symptoms’ that act as etiological docking sites of risk effects on 470 

the symptom plane. 471 

Third, large-scale population-based or patient cohort studies, commonly used in network 472 

analysis, often do not have detailed immunophenotyping data available. If at all, studies mostly 473 

have data available for serum CRP, but rarely for more specific cytokines. Conversely, the advent 474 

of large GWAS investigations has produced a substantial amount of large cohort databases with 475 

in-depth genotyping and phenotyping information. Combining such databases with GWAS 476 

summary statistics from more focused investigations, such as on individual cytokines (Ahola-Olli 477 
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et al., 2017), enables the investigation of a diverse range of immunopsychiatric research 478 

questions. 479 

Fourth, PRS-symptom networks could be extended, for instance, by adding serum inflammatory 480 

markers to these networks, which could provide additional insights into associations between 481 

genetic/lifelong predisposition to, and acute levels of, immuno-metabolic markers with individual 482 

symptoms.  483 

Associations of immuno-metabolic markers with depressive symptoms 484 

Network analysis results showed consistent associations of the CRP PRS with changes in 485 

appetite, which was the only association that fulfilled all of our quality criteria. The BMI PRS 486 

showed similar associations with changes in appetite, but only fulfilled two quality criteria. 487 

Importantly, both of these associations were positive in the UK Biobank sample, which assessed 488 

changes in appetite, and negative in MARS and STAR*D samples, which assessed loss of 489 

appetite. Previous studies reporting results from cross-sectional, longitudinal, genetic correlation, 490 

PRS, and Mendelian randomisation analyses have also consistently reported associations of 491 

CRP/BMI with changes in appetite (Fried et al., 2019; Jokela et al., 2016; Kappelmann et al., 492 

2021; Moriarity et al., 2020a). Importantly, whenever studies disaggregated appetite symptoms 493 

into decreased versus increased appetite, associations of CRP/BMI were specific to increased 494 

appetite (Lamers et al., 2018; Milaneschi et al., 2021b, 2021a, 2017b; Pistis et al., 2021; 495 

Simmons et al., 2018). In light of these findings, our results provide indirect support for an 496 

immune-metabolic contribution to increased appetite specifically.   497 

In addition to these PRS associations with changes in appetite, we also observed associations of 498 

higher CRP PRS with lower anhedonia and greater fatigue and of higher TNF-α PRS with greater 499 

fatigue. Fatigue in particular has long been considered to have a neuroimmune basis (Dantzer et 500 
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al., 2014), is common across other medical illnesses characterised by chronic inflammation, and 501 

has been reliably associated with inflammatory markers in previous studies including two 502 

network investigations (Fried et al., 2019; Jokela et al., 2016; Lamers et al., 2020; Moriarity et 503 

al., 2020a; van Eeden et al., 2020; White et al., 2017). While there have also been some studies 504 

suggesting associations of inflammatory markers with anhedonia (Köhler-Forsberg et al., 2017; 505 

van Eeden et al., 2020), it is important to note that associations of the CRP PRS with anhedonia 506 

observed in the present report were negative, so do not offer straightforward replication of these 507 

findings. Nonetheless, we have recently shown in Mendelian randomisation analyses that BMI 508 

could be a potential causal factor for both fatigue and anhedonia (Kappelmann et al., 2021), so 509 

continued investigation of these symptoms is warranted.  510 

Together, our findings add to the notion of an immuno-metabolic subtype of depression 511 

characterised by neurovegetative symptoms of changes in appetite and fatigue (Dantzer et al., 512 

2008; Milaneschi et al., 2020). We also expand upon previous work by showing that 513 

genetic/lifetime predisposition to higher inflammation and metabolic dysregulation increases risk 514 

for depression and, based on network analysis results, these etiological factors may specifically 515 

confer their risk on the broader depression syndrome through symptoms such as changes in 516 

appetite and fatigue. These results can inform the design of clinical trials of anti-inflammatory 517 

approaches and metabolic interventions by specifically selecting patients with an atypical, 518 

neurovegetative symptom presentation. As clinical trials for immune-modulating drugs are 519 

currently still characterised by relatively small sample sizes (Husain et al., 2020; Khandaker et 520 

al., 2018; McIntyre et al., 2019; Nettis et al., 2021; Raison et al., 2013), it may be worthwhile to 521 

pilot new interventions with neurovegetative symptoms/phenotypes as outcome variables. This 522 

might increase statistical power and sensitivity to detect effects for these proof-of-concept trials 523 

and could then be followed up by larger trials testing broader clinical efficacy measures. 524 
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Strengths and limitations 525 

Strength of this study include availability of large general population-based and patient samples 526 

(maximising replicability and generalisability), polygenic definition of immuno-metabolic risk 527 

variables (indexing lifetime predisposition to higher immuno-metabolic marker levels), and 528 

application of network analysis (addressing immunological and clinical complexity 529 

concurrently). We have addressed some of the more general limitations of combined PRS-530 

symptom network analysis above, but there are three more specific limitations that warrant 531 

mentioning. 532 

First, data used in the current study included inpatients, outpatients, and individuals from the 533 

general population and was based on different scales to measure depressive symptoms. 534 

Depressive symptom structure varies between acutely ill patients versus those in remission (van 535 

Borkulo et al., 2015), which may have influenced PRS-symptom associations. Moreover, two of 536 

the seven symptoms used in the present report only overlap partially; the UK Biobank study 537 

includes conflated items on sleep problems and changes in appetite while MARS and STAR*D 538 

include items on insomnia and loss of appetite, respectively. This difference may explain some of 539 

the inconsistencies observed in the current report such as the diverging valence of edge estimates 540 

between CRP and changes in appetite. However, this may have also reduced statistical power to 541 

detect associations. Study questionnaires also differed regarding the method of assessment as the 542 

HAM-D is observer-rated and the PHQ-9 self-reported. By definition, inflammation-symptom 543 

research is affected from modality-specific measurement variability (Moriarity and Alloy, 2021) 544 

and in our study this is aggravated through the added variability unique to the method of 545 

symptom assessment (Möller, 2000). Future studies would benefit from inclusion of studies with 546 

the same questionnaire and disaggregated symptom measures.  547 
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Second, the combination of clinical and general population samples poses unique challenges. The 548 

application of a clinical depression measure in the UK Biobank study could have resulted in 549 

potential floor effects for some symptoms while specific selection of MDD patients into MARS 550 

and STAR*D studies could have resulted in ceiling effects for core symptoms of depressed mood 551 

and anhedonia as these are required for a diagnosis. Selection of clinical populations in network 552 

studies can also result in Berkson/collider bias (de Ron et al., 2019), which can induce negative 553 

correlations. This again warrants replication of our results in independent samples. 554 

Third, PRSs are based on GWAS with highly diverging samples sizes as a large number of 555 

individuals were included in the GWAS for BMI and CRP (>200 thousand individuals) and 556 

smaller numbers of individuals (~8 thousand individuals) for IL-6, IL-10, and TNF-α. 557 

Consistency of effect sizes following the PRS-CS approach was also larger for CRP and BMI as 558 

compared to IL-6, IL-10, and TNF-α. This is likely to have shifted the balance of statistical 559 

power towards detection of PRS-symptom associations to BMI and CRP rather than IL-6, IL-10, 560 

and TNF-α. Therefore, our findings require replication once larger individual cytokine GWAS 561 

become available.   562 

Conclusion 563 

The present investigation studied associations between four major pro- and anti-inflammatory 564 

markers, BMI, and depressive symptoms by applying network analysis across one large general 565 

population and two patient samples. Defining immuno-metabolic markers using polygenic risk 566 

scores expanded previous reports by suggesting direct associations of genetic/lifetime 567 

predisposition to immune-metabolic markers with depressive symptoms and provided evidence 568 

for temporality of association. Despite methodological restrictions of the presented approach, we 569 

observed associations of polygenic risk for CRP with changes in appetite and fatigue, for TNF-α 570 
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with fatigue, and similar associations for BMI. These findings align with recent 571 

conceptualisations of an immuno-metabolic subgroup of depressed patients characterised by 572 

atypical, neurovegetative symptom profiles. Results can inform future clinical trials of anti-573 

inflammatory approaches by prioritising these patients for selection into clinical trials. 574 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


30 
 

DECLARATION OF INTERESTS 

The authors do not have any competing interests. 

FUNDING 

This study is funded by the Max Planck Institute of Psychiatry. NK, NR, and SM are supported 

by the International Max Planck Research School of Translational Psychiatry (IMPRS-TP). NR 

received funding from the Bavarian Ministry of Economic Affairs, Regional Development and 

Energy (BayMED, PBN_MED-1711-0003). GMK acknowledges funding support from the 

Wellcome Trust (grant code: 201486/Z/16/Z), the MQ: Transforming Mental Health (grant code: 

MQDS17/40), the Medical Research Council, UK (grant code: MC_PC_17213 and grant code: 

MR/S037675/1), and the BMA Foundation (J Moulton grant 2019). JA received support by a 

NARSAD Young Investigator Grant from Brain and Behavior Research Foundation. 

ACKNOWLEDGMENTS 

We are grateful to all original authors, technical assistants and patients who contributed to the 

MARS study. We are grateful for the National Institute of Mental Health (NIMH) and the NIMH 

Repository and Genomics Resource (NRGR) for the possibility of analysing the STAR*D data. 

We are also grateful to the original STAR*D authors, and particularly for the contributions of all 

patients and families who participated in the study. Data were obtained from the limited access 

datasets distributed from the NIH-supported ‘Sequenced Treatment Alternatives to Relieve 

Depression’ (STAR*D). The study was supported by NIMH Contract No. N01MH90003 to the 

University of Texas Southwestern Medical Center. The ClinicalTrials.gov identifier is 

NCT00021528. This research has been conducted using the UK Biobank Resource. We are 

grateful for all scientists and participants who made this large-scale effort and resource possible.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


31 
 

REFERENCES 

Ahola-Olli, A. V, Würtz, P., Havulinna, A.S., Aalto, K., Pitkänen, N., Lehtimäki, T., Kähönen, 

M., Lyytikäinen, L.-P., Raitoharju, E., Seppälä, I., Sarin, A.-P., Ripatti, S., Jalkanen, S., 

Maksimow, M., Salomaa, V., Salmi, M., Kettunen, J., Raitakari, O.T., 2017. Genome-wide 

Association Study Identifies 27 Loci Influencing Concentrations of Circulating Cytokines 

and Growth Factors. Am. J. Hum. Genet. 100, 40–50. 

https://doi.org/10.1016/j.ajhg.2016.11.007 

Badini, I., Coleman, J.R., Hagenaars, S.P., Hotopf, M., Breen, G., Lewis, C.M., Fabbri, C., 2020. 

Depression with atypical neurovegetative symptoms shares genetic predisposition with 

immuno-metabolic traits and alcohol consumption. Psychol. Med. 1–11. 

https://doi.org/10.1017/S0033291720002342 

Bilder, R.M., Volavka, J., Lachman, H.M., Grace, A.A., 2004. The Catechol-O-

Methyltransferase Polymorphism: Relations to the Tonic–Phasic Dopamine Hypothesis and 

Neuropsychiatric Phenotypes. Neuropsychopharmacology 29, 1943–1961. 

https://doi.org/10.1038/sj.npp.1300542 

Borsboom, D., 2017. A network theory of mental disorders. World Psychiatry 16, 5–13. 

https://doi.org/10.1002/wps.20375 

Bradford Hill, A., 1965. The environment and disease: association or causation? Proc. R. Soc. 

Med. 58, 295. 

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T., Sharp, K., Motyer, A., Vukcevic, 

D., Delaneau, O., O’Connell, J., Cortes, A., Welsh, S., Young, A., Effingham, M., McVean, 

G., Leslie, S., Allen, N., Donnelly, P., Marchini, J., 2018. The UK Biobank resource with 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


32 
 

deep phenotyping and genomic data. Nature 562, 203–209. https://doi.org/10.1038/s41586-

018-0579-z 

Cattaneo, A., Ferrari, C., Turner, L., Mariani, N., Enache, D., Hastings, C., Kose, M., Lombardo, 

G., McLaughlin, A.P., Nettis, M.A., Nikkheslat, N., Sforzini, L., Worrell, C., Zajkowska, Z., 

Cattane, N., Lopizzo, N., Mazzelli, M., Pointon, L., Cowen, P.J., Cavanagh, J., Harrison, 

N.A., de Boer, P., Jones, D., Drevets, W.C., Mondelli, V., Bullmore, E.T., Pariante, C.M., 

2020. Whole-blood expression of inflammasome- and glucocorticoid-related mRNAs 

correctly separates treatment-resistant depressed patients from drug-free and responsive 

patients in the BIODEP study. Transl. Psychiatry 10, 232. https://doi.org/10.1038/s41398-

020-00874-7 

Choi, S.W., Mak, T.S.-H., O’Reilly, P.F., 2020. Tutorial: a guide to performing polygenic risk 

score analyses. Nat. Protoc. 15, 2759–2772. https://doi.org/10.1038/s41596-020-0353-1 

Chu, A.L., Stochl, J., Lewis, G., Zammit, S., Jones, P.B., Khandaker, G.M., 2019. Longitudinal 

association between inflammatory markers and specific symptoms of depression in a 

prospective birth cohort. Brain. Behav. Immun. 76, 74–81. 

https://doi.org/10.1016/j.bbi.2018.11.007 

Contreras, A., Nieto, I., Valiente, C., Espinosa, R., Vazquez, C., 2019. The Study of 

Psychopathology from the Network Analysis Perspective: A Systematic Review. 

Psychother. Psychosom. 88, 71–83. https://doi.org/10.1159/000497425 

Costantini, G., Kappelmann, N., Epskamp, S., 2020. EstimateGroupNetwork: Perform the Joint 

Graphical Lasso and Selects Tuning Parameters. 

Costantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., Perugini, M., 2019. Stability and 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


33 
 

variability of personality networks. A tutorial on recent developments in network 

psychometrics. Pers. Individ. Dif. 136, 68–78. https://doi.org/10.1016/j.paid.2017.06.011 

Danaher, P., Wang, P., Witten, D.M., 2014. The joint graphical lasso for inverse covariance 

estimation across multiple classes. J. R. Stat. Soc. Ser. B (Statistical Methodol. 76, 373–397. 

https://doi.org/10.1111/rssb.12033 

Dantzer, R., Heijnen, C.J., Kavelaars, A., Laye, S., Capuron, L., 2014. The neuroimmune basis of 

fatigue. Trends Neurosci. 37, 39–46. https://doi.org/10.1016/j.tins.2013.10.003 

Dantzer, R., O’Connor, J.C., Freund, G.G., Johnson, R.W., Kelley, K.W., 2008. From 

inflammation to sickness and depression: when the immune system subjugates the brain. 

Nat. Rev. Neurosci. 9, 46–56. https://doi.org/10.1038/nrn2297 

Davis, K.A.S., Coleman, J.R.I., Adams, M., Allen, N., Breen, G., Cullen, B., Dickens, C., Fox, 

E., Graham, N., Holliday, J., Howard, L.M., John, A., Lee, W., McCabe, R., McIntosh, A., 

Pearsall, R., Smith, D.J., Sudlow, C., Ward, J., Zammit, S., Hotopf, M., 2020. Mental health 

in UK Biobank – development, implementation and results from an online questionnaire 

completed by 157 366 participants: a reanalysis. BJPsych Open 6, e18. 

https://doi.org/10.1192/bjo.2019.100 

de Ron, J., Fried, E.I., Epskamp, S., 2019. Psychological networks in clinical populations: 

investigating the consequences of Berkson’s bias. Psychol. Med. 1–9. 

https://doi.org/10.1017/S0033291719003209 

Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E.K., Lanctôt, K.L., 2010. 

A Meta-Analysis of Cytokines in Major Depression. Biol. Psychiatry 67, 446–457. 

https://doi.org/10.1016/j.biopsych.2009.09.033 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


34 
 

Epskamp, S., Borsboom, D., Fried, E.I., 2018. Estimating psychological networks and their 

accuracy: A tutorial paper. Behav. Res. Methods 50, 195–212. 

https://doi.org/10.3758/s13428-017-0862-1 

Epskamp, S., Cramer, A.O.J., Waldorp, L.J., Schmittmann, V.D., Borsboom, D., 2012. qgraph�: 

Network Visualizations of Relationships in Psychometric Data. J. Stat. Softw. 48, 1–18. 

https://doi.org/10.18637/jss.v048.i04 

Fried, E.I., Cramer, A.O.J., 2017. Moving forward: Challenges and direction for 

psychopathological network theory and methodology. Perspect. Psychol. Sci. 12, 999–1020. 

https://doi.org/10.1177/1745691617705892 

Fried, E.I., von Stockert, S., Haslbeck, J.M.B., Lamers, F., Schoevers, R.A., Penninx, B.W.J.H., 

2019. Using network analysis to examine links between individual depressive symptoms, 

inflammatory markers, and covariates. Psychol. Med. 1–9. 

https://doi.org/10.1017/S0033291719002770 

Garriock, H.A., Kraft, J.B., Shyn, S.I., Peters, E.J., Yokoyama, J.S., Jenkins, G.D., Reinalda, 

M.S., Slager, S.L., McGrath, P.J., Hamilton, S.P., 2010. A Genomewide Association Study 

of Citalopram Response in Major Depressive Disorder. Biol. Psychiatry 67, 133–138. 

https://doi.org/10.1016/j.biopsych.2009.08.029 

Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C.A., Smoller, J.W., 2019. Polygenic prediction via 

Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776. 

https://doi.org/10.1038/s41467-019-09718-5 

Goldsmith, D.R., Rapaport, M.H., Miller, B.J., 2016. A meta-analysis of blood cytokine network 

alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


35 
 

depression. Mol. Psychiatry 21, 1696–1709. https://doi.org/10.1038/mp.2016.3 

Guloksuz, S., Pries, L.-K., van Os, J., 2017. Application of network methods for understanding 

mental disorders: pitfalls and promise. Psychol. Med. 47, 2743–2752. 

https://doi.org/10.1017/S0033291717001350 

Haapakoski, R., Mathieu, J., Ebmeier, K.P., Alenius, H., Kivimäki, M., 2015. Cumulative meta-

analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients 

with major depressive disorder. Brain. Behav. Immun. 49, 206–215. 

https://doi.org/10.1016/j.bbi.2015.06.001 

Hamilton, M., 1986. The Hamilton Rating Scale for Depression, in: Sartorius, N., Ban, T.A. 

(Eds.), Assessment of Depression. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 143–

152. https://doi.org/10.1007/978-3-642-70486-4_14 

Haslbeck, J.M.B., Fried, E.I., 2017. How predictable are symptoms in psychopathological 

networks? A reanalysis of 18 published datasets. Psychol. Med. 47, 2767–2776. 

https://doi.org/10.1017/S0033291717001258 

Haslbeck, J.M.B., Waldorp, L.J., 2020. mgm�: Estimating Time-Varying Mixed Graphical 

Models in High-Dimensional Data. J. Stat. Softw. 93. https://doi.org/10.18637/jss.v093.i08 

Hennings, J.M., Owashi, T., Binder, E.B., Horstmann, S., Menke, A., Kloiber, S., Dose, T., 

Wollweber, B., Spieler, D., Messer, T., Lutz, R., Kü Nzel, H., Bierner, T., Pollmächer, T., 

Pfister, H., Nickel, T., Sonntag, A., Uhr, M., Ising, M., Holsboer, F., Lucae, S., 2009. 

Clinical characteristics and treatment outcome in a representative sample of depressed 

inpatients – Findings from the Munich Antidepressant Response Signature (MARS) project. 

J. Psychiatr. Res. 43, 215–229. https://doi.org/10.1016/j.jpsychires.2008.05.002 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


36 
 

Howren, M.B., Lamkin, D.M., Suls, J., 2009. Associations of depression with C-reactive protein, 

IL-1, and IL-6: a meta-analysis. Psychosom. Med. 71, 171–186. 

https://doi.org/10.1097/PSY.0b013e3181907c1b 

Husain, M.I., Chaudhry, I.B., Khoso, A.B., Husain, M.O., Hodsoll, J., Ansari, M.A., Naqvi, H.A., 

Minhas, F.A., Carvalho, A.F., Meyer, J.H., Deakin, B., Mulsant, B.H., Husain, N., Young, 

A.H., 2020. Minocycline and celecoxib as adjunctive treatments for bipolar depression: a 

multicentre, factorial design randomised controlled trial. The Lancet Psychiatry 7, 515–527. 

https://doi.org/10.1016/S2215-0366(20)30138-3 

Isvoranu, A.-M., Guloksuz, S., Epskamp, S., van Os, J., Borsboom, D., 2020. Toward 

incorporating genetic risk scores into symptom networks of psychosis. Psychol. Med. 50, 

636–643. https://doi.org/10.1017/S003329171900045X 

Jokela, M., Virtanen, M., Batty, G., Kivimäki, M., 2016. Inflammation and specific symptoms of 

depression. JAMA Psychiatry 73, 87–88. https://doi.org/10.1001/jamapsychiatry.2015.1977 

Kappelmann, N., Arloth, J., Georgakis, M.K., Czamara, D., Rost, N., Ligthart, S., Khandaker, 

G.M., Binder, E.B., 2021. Dissecting the Association Between Inflammation, Metabolic 

Dysregulation, and Specific Depressive Symptoms. JAMA Psychiatry 78, 161–170. 

https://doi.org/10.1001/jamapsychiatry.2020.3436 

Kappelmann, N., Lewis, G., Dantzer, R., Jones, P.B., Khandaker, G.M., 2018. Antidepressant 

activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of 

chronic inflammatory conditions. Mol. Psychiatry 23, 335–343. 

https://doi.org/10.1038/mp.2016.167 

Khandaker, G.M., Oltean, B.P., Kaser, M., Dibben, C.R.M., Ramana, R., Jadon, D.R., Dantzer, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


37 
 

R., Coles, A.J., Lewis, G., Jones, P.B., 2018. Protocol for the insight study: a randomised 

controlled trial of single-dose tocilizumab in patients with depression and low-grade 

inflammation. BMJ Open 8, e025333. https://doi.org/10.1136/bmjopen-2018-025333 

Khandaker, G.M., Pearson, R.M., Zammit, S., Lewis, G., Jones, P.B., 2014. Association of serum 

interleukin 6 and C-reactive protein in childhood with depression and psychosis in young 

adult life: a population-based longitudinal study. JAMA Psychiatry 71, 1121–1128. 

https://doi.org/10.1001/jamapsychiatry.2014.1332 

Köhler-Forsberg, O., Buttenschøn, H.N., Tansey, K.E., Maier, W., Hauser, J., Dernovsek, M.Z., 

Henigsberg, N., Souery, D., Farmer, A., Rietschel, M., McGuffin, P., Aitchison, K.J., Uher, 

R., Mors, O., 2017. Association between C-reactive protein (CRP) with depression symptom 

severity and specific depressive symptoms in major depression. Brain. Behav. Immun. 62, 

344–350. https://doi.org/10.1016/j.bbi.2017.02.020 

Köhler-Forsberg, O., Nicolaisen Lydholm, C., Hjorthøj, C., Nordentoft, M., Mors, O., Benros, 

M.E., 2019. Efficacy of anti-inflammatory treatment on major depressive disorder or 

depressive symptoms: Meta-analysis of clinical trials. Acta Psychiatr. Scand. 0–2. 

https://doi.org/10.1111/acps.13016 

Köhler, C.A., Freitas, T.H., Maes, M., de Andrade, N.Q., Liu, C.S., Fernandes, B.S., Stubbs, B., 

Solmi, M., Veronese, N., Herrmann, N., Raison, C.L., Miller, B.J., Lanctôt, K.L., Carvalho, 

A.F., 2017. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 

82 studies. Acta Psychiatr. Scand. 135, 373–387. https://doi.org/10.1111/acps.12698 

Lamers, F., Milaneschi, Y., de Jonge, P., Giltay, E.J., Penninx, B.W.J.H., 2018. Metabolic and 

inflammatory markers: associations with individual depressive symptoms. Psychol. Med. 48, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


38 
 

1102–1110. https://doi.org/10.1017/S0033291717002483 

Lamers, F., Milaneschi, Y., Smit, J.H., Schoevers, R.A., Wittenberg, G., Penninx, B.W.J.H., 

2019. Longitudinal Association Between Depression and Inflammatory Markers: Results 

From the Netherlands Study of Depression and Anxiety. Biol. Psychiatry 85, 829–837. 

https://doi.org/10.1016/j.biopsych.2018.12.020 

Lamers, F., Milaneschi, Y., Vinkers, C.H., Schoevers, R.A., Giltay, E.J., Penninx, B.W.J.H., 

2020. Depression profilers and immuno-metabolic dysregulation: Longitudinal results from 

the NESDA study. Brain. Behav. Immun. 88, 174–183. 

https://doi.org/10.1016/j.bbi.2020.04.002 

Lamnidis, T.C., Majander, K., Jeong, C., Salmela, E., Wessman, A., Moiseyev, V., Khartanovich, 

V., Balanovsky, O., Ongyerth, M., Weihmann, A., Sajantila, A., Kelso, J., Pääbo, S., 

Onkamo, P., Haak, W., Krause, J., Schiffels, S., 2018. Ancient Fennoscandian genomes 

reveal origin and spread of Siberian ancestry in Europe. Nat. Commun. 9, 5018. 

https://doi.org/10.1038/s41467-018-07483-5 

Lawlor, D.A., Harbord, R.M., Sterne, J.A.C., Timpson, N., Davey Smith, G., 2008. Mendelian 

randomization: Using genes as instruments for making causal inferences in epidemiology. 

Stat. Med. 27, 1133–1163. https://doi.org/10.1002/sim.3034 

Lawlor, D.A., Tilling, K., Davey Smith, G., 2017. Triangulation in aetiological epidemiology. 

Int. J. Epidemiol. 45, dyw314. https://doi.org/10.1093/ije/dyw314 

Ligthart, S., Vaez, A., Võsa, U., Stathopoulou, M.G., de Vries, P.S., Prins, B.P., Van der Most, 

P.J., Tanaka, T., Naderi, E., Rose, L.M., Wu, Y., Karlsson, R., Barbalic, M., Lin, H., Pool, 

R., Zhu, G., Macé, A., Sidore, C., Trompet, S., Mangino, M., Sabater-Lleal, M., Kemp, J.P., 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


39 
 

Abbasi, A., Kacprowski, T., Verweij, N., Smith, A. V, Huang, T., Marzi, C., Feitosa, M.F., 

Lohman, K.K., Kleber, M.E., Milaneschi, Y., Mueller, C., Huq, M., Vlachopoulou, E., 

Lyytikäinen, L.-P., Oldmeadow, C., Deelen, J., Perola, M., Zhao, J.H., Feenstra, B., Amini, 

M., Lahti, J., Schraut, K.E., Fornage, M., Suktitipat, B., Chen, W.-M., Li, X., Nutile, T., 

Malerba, G., Luan, J., Bak, T., Schork, N., Del Greco M., F., Thiering, E., Mahajan, A., 

Marioni, R.E., Mihailov, E., Eriksson, Joel, Ozel, A.B., Zhang, W., Nethander, M., Cheng, 

Y.-C., Aslibekyan, S., Ang, W., Gandin, I., Yengo, L., Portas, L., Kooperberg, C., Hofer, E., 

Rajan, K.B., Schurmann, C., den Hollander, W., Ahluwalia, Tarunveer S., Zhao, J., 

Draisma, H.H.M., Ford, I., Timpson, N., Teumer, A., Huang, H., Wahl, S., Liu, Y., Huang, 

J., Uh, H.-W., Geller, F., Joshi, P.K., Yanek, L.R., Trabetti, E., Lehne, B., Vozzi, D., 

Verbanck, M., Biino, G., Saba, Y., Meulenbelt, I., O’Connell, J.R., Laakso, M., Giulianini, 

F., Magnusson, P.K.E., Ballantyne, C.M., Hottenga, J.J., Montgomery, G.W., Rivadineira, 

F., Rueedi, R., Steri, M., Herzig, K.-H., Stott, D.J., Menni, C., Frånberg, M., St. Pourcain, 

B., Felix, S.B., Pers, T.H., Bakker, S.J.L., Kraft, P., Peters, A., Vaidya, D., Delgado, G., 

Smit, J.H., Großmann, V., Sinisalo, J., Seppälä, I., Williams, S.R., Holliday, E.G., Moed, 

M., Langenberg, C., Räikkönen, K., Ding, J., Campbell, H., Sale, M.M., Chen, Y.-D.I., 

James, A.L., Ruggiero, D., Soranzo, N., Hartman, C.A., Smith, E.N., Berenson, G.S., 

Fuchsberger, C., Hernandez, D., Tiesler, C.M.T., Giedraitis, V., Liewald, D., Fischer, K., 

Mellström, D., Larsson, A., Wang, Y., Scott, W.R., Lorentzon, M., Beilby, J., Ryan, K.A., 

Pennell, C.E., Vuckovic, D., Balkau, B., Concas, M.P., Schmidt, R., Mendes de Leon, C.F., 

Bottinger, E.P., Kloppenburg, M., Paternoster, L., Boehnke, M., Musk, A.W., Willemsen, 

G., Evans, D.M., Madden, P.A.F., Kähönen, M., Kutalik, Z., Zoledziewska, M., Karhunen, 

V., Kritchevsky, S.B., Sattar, N., Lachance, G., Clarke, R., Harris, T.B., Raitakari, O.T., 

Attia, J.R., van Heemst, D., Kajantie, E., Sorice, R., Gambaro, G., Scott, R.A., Hicks, A.A., 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


40 
 

Ferrucci, L., Standl, M., Lindgren, C.M., Starr, J.M., Karlsson, M., Lind, L., Li, J.Z., 

Chambers, J.C., Mori, T.A., de Geus, E.J.C.N., Heath, A.C., Martin, N.G., Auvinen, J., 

Buckley, B.M., de Craen, A.J.M., Waldenberger, M., Strauch, K., Meitinger, T., Scott, R.J., 

McEvoy, M., Beekman, M., Bombieri, C., Ridker, P.M., Mohlke, K.L., Pedersen, N.L., 

Morrison, A.C., Boomsma, D.I., Whitfield, J.B., Strachan, D.P., Hofman, A., Vollenweider, 

P., Cucca, F., Jarvelin, M.-R., Jukema, J.W., Spector, T.D., Hamsten, A., Zeller, T., 

Uitterlinden, André G., Nauck, M., Gudnason, V., Qi, L., Grallert, H., Borecki, I.B., Rotter, 

J.I., März, W., Wild, P.S., Lokki, M.-L., Boyle, M., Salomaa, V., Melbye, M., Eriksson, 

J.G., Wilson, J.F., Penninx, B.W.J.H., Becker, D.M., Worrall, B.B., Gibson, G., Krauss, 

R.M., Ciullo, M., Zaza, G., Wareham, N.J., Oldehinkel, A.J., Palmer, L.J., Murray, S.S., 

Pramstaller, P.P., Bandinelli, S., Heinrich, J., Ingelsson, E., Deary, I.J., Mägi, R., 

Vandenput, L., van der Harst, P., Desch, K.C., Kooner, J.S., Ohlsson, C., Hayward, C., 

Lehtimäki, T., Shuldiner, A.R., Arnett, D.K., Beilin, L.J., Robino, A., Froguel, P., Pirastu, 

M., Jess, T., Koenig, W., Loos, R.J.F., Evans, D.A., Schmidt, H., Davey Smith, G., 

Slagboom, P.E., Eiriksdottir, G., Morris, A.P., Psaty, B.M., Tracy, R.P., Nolte, I.M., 

Boerwinkle, E., Visvikis-Siest, S., Reiner, A.P., Gross, M., Bis, J.C., Franke, L., Franco, 

O.H., Benjamin, E.J., Chasman, D.I., Dupuis, Josée, Snieder, H., Dehghan, A., Alizadeh, 

B.Z., Alizadeh, B.Z., Boezen, H.M., Franke, L., van der Harst, P., Navis, G., Rots, M., 

Snieder, H., Swertz, M., Wolffenbuttel, B.H.R., Wijmenga, C., Benjamin, E., Chasman, 

D.I., Dehghan, A., Ahluwalia, Tarunveer Singh, Meigs, J., Tracy, R., Alizadeh, B.Z., 

Ligthart, S., Bis, J., Eiriksdottir, G., Pankratz, N., Gross, M., Rainer, A., Snieder, H., 

Wilson, J.G., Psaty, B.M., Dupuis, Josee, Prins, B., Vaso, U., Stathopoulou, M., Franke, L., 

Lehtimaki, T., Koenig, W., Jamshidi, Y., Siest, S., Abbasi, A., Uitterlinden, Andre G., 

Abdollahi, M., Schnabel, R., Schick, U.M., Nolte, I.M., Kraja, A., Hsu, Y.-H., Tylee, D.S., 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


41 
 

Zwicker, A., Uher, R., Davey Smith, G., Morrison, A.C., Hicks, A., van Duijn, C.M., Ward-

Caviness, C., Boerwinkle, E., Rotter, J., Rice, K., Lange, L., Perola, M., de Geus, E., Morris, 

A.P., Makela, K.M., Stacey, D., Eriksson, Johan, Frayling, T.M., Slagboom, E.P., 2018. 

Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and 

Highlight Pathways that Link Inflammation and Complex Disorders. Am. J. Hum. Genet. 

103, 691–706. https://doi.org/10.1016/j.ajhg.2018.09.009 

Liu, J.J., Wei, Y. Bin, Strawbridge, R., Bao, Y., Chang, S., Shi, L., Que, J., Gadad, B.S., Trivedi, 

M.H., Kelsoe, J.R., Lu, L., 2020. Peripheral cytokine levels and response to antidepressant 

treatment in depression: a systematic review and meta-analysis. Mol. Psychiatry 25, 339–

350. https://doi.org/10.1038/s41380-019-0474-5 

Locke, A.E., Kahali, B., Berndt, S.I., Justice, A.E., Pers, T.H., Day, F.R., Powell, C., Vedantam, 

S., Buchkovich, M.L., Yang, J., Croteau-Chonka, D.C., Esko, T., Fall, T., Ferreira, T., 

Gustafsson, S., Kutalik, Z., Luan, J., Mägi, R., Randall, J.C., Winkler, T.W., Wood, A.R., 

Workalemahu, T., Faul, J.D., Smith, J.A., Hua Zhao, J., Zhao, W., Chen, J., Fehrmann, R., 

Hedman, Å.K., Karjalainen, J., Schmidt, E.M., Absher, D., Amin, N., Anderson, D., 

Beekman, M., Bolton, J.L., Bragg-Gresham, J.L., Buyske, S., Demirkan, A., Deng, G., 

Ehret, G.B., Feenstra, B., Feitosa, M.F., Fischer, K., Goel, A., Gong, J., Jackson, A.U., 

Kanoni, S., Kleber, M.E., Kristiansson, K., Lim, U., Lotay, V., Mangino, M., Mateo Leach, 

I., Medina-Gomez, C., Medland, S.E., Nalls, M.A., Palmer, C.D., Pasko, D., Pechlivanis, S., 

Peters, M.J., Prokopenko, I., Shungin, D., Stančáková, A., Strawbridge, R.J., Ju Sung, Y., 

Tanaka, Toshiko, Teumer, A., Trompet, S., van der Laan, S.W., van Setten, J., Van Vliet-

Ostaptchouk, J. V., Wang, Z., Yengo, L., Zhang, W., Isaacs, A., Albrecht, E., Ärnlöv, J., 

Arscott, G.M., Attwood, A.P., Bandinelli, S., Barrett, A., Bas, I.N., Bellis, C., Bennett, A.J., 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


42 
 

Berne, C., Blagieva, R., Blüher, M., Böhringer, S., Bonnycastle, L.L., Böttcher, Y., Boyd, 

H.A., Bruinenberg, M., Caspersen, I.H., Ida Chen, Y.-D., Clarke, R., Warwick Daw, E., de 

Craen, A.J.M., Delgado, G., Dimitriou, M., Doney, A.S.F., Eklund, N., Estrada, K., Eury, 

E., Folkersen, L., Fraser, R.M., Garcia, M.E., Geller, F., Giedraitis, V., Gigante, B., Go, 

A.S., Golay, A., Goodall, A.H., Gordon, S.D., Gorski, M., Grabe, H.-J., Grallert, H., 

Grammer, T.B., Gräßler, J., Grönberg, H., Groves, C.J., Gusto, G., Haessler, J., Hall, P., 

Haller, T., Hallmans, G., Hartman, C.A., Hassinen, M., Hayward, C., Heard-Costa, N.L., 

Helmer, Q., Hengstenberg, C., Holmen, O., Hottenga, J.-J., James, A.L., Jeff, J.M., 

Johansson, Å., Jolley, J., Juliusdottir, T., Kinnunen, L., Koenig, W., Koskenvuo, M., 

Kratzer, W., Laitinen, J., Lamina, C., Leander, K., Lee, N.R., Lichtner, P., Lind, L., 

Lindström, J., Sin Lo, K., Lobbens, S., Lorbeer, R., Lu, Y., Mach, F., Magnusson, P.K.E., 

Mahajan, A., McArdle, W.L., McLachlan, S., Menni, C., Merger, S., Mihailov, E., Milani, 

L., Moayyeri, A., Monda, K.L., Morken, M.A., Mulas, A., Müller, G., Müller-Nurasyid, M., 

Musk, A.W., Nagaraja, R., Nöthen, M.M., Nolte, I.M., Pilz, S., Rayner, N.W., Renstrom, F., 

Rettig, R., Ried, J.S., Ripke, S., Robertson, N.R., Rose, L.M., Sanna, S., Scharnagl, H., 

Scholtens, S., Schumacher, F.R., Scott, W.R., Seufferlein, T., Shi, J., Vernon Smith, A., 

Smolonska, J., Stanton, A. V., Steinthorsdottir, V., Stirrups, K., Stringham, H.M., 

Sundström, J., Swertz, M.A., Swift, A.J., Syvänen, A.-C., Tan, S.-T., Tayo, B.O., Thorand, 

B., Thorleifsson, G., Tyrer, J.P., Uh, H.-W., Vandenput, L., Verhulst, F.C., Vermeulen, 

S.H., Verweij, N., Vonk, J.M., Waite, L.L., Warren, H.R., Waterworth, D., Weedon, M.N., 

Wilkens, L.R., Willenborg, C., Wilsgaard, T., Wojczynski, M.K., Wong, A., Wright, A.F., 

Zhang, Q., Brennan, E.P., Choi, M., Dastani, Z., Drong, A.W., Eriksson, P., Franco-

Cereceda, A., Gådin, J.R., Gharavi, A.G., Goddard, M.E., Handsaker, R.E., Huang, J., 

Karpe, F., Kathiresan, S., Keildson, S., Kiryluk, K., Kubo, M., Lee, J.-Y., Liang, L., Lifton, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


43 
 

R.P., Ma, B., McCarroll, S.A., McKnight, A.J., Min, J.L., Moffatt, M.F., Montgomery, 

G.W., Murabito, J.M., Nicholson, G., Nyholt, D.R., Okada, Y., Perry, J.R.B., Dorajoo, R., 

Reinmaa, E., Salem, R.M., Sandholm, N., Scott, R.A., Stolk, L., Takahashi, A., Tanaka, 

Toshihiro, van’t Hooft, F.M., Vinkhuyzen, A.A.E., Westra, H.-J., Zheng, W., Zondervan, 

K.T., Heath, A.C., Arveiler, D., Bakker, S.J.L., Beilby, J., Bergman, R.N., Blangero, J., 

Bovet, P., Campbell, H., Caulfield, M.J., Cesana, G., Chakravarti, A., Chasman, D.I., 

Chines, P.S., Collins, F.S., Crawford, D.C., Adrienne Cupples, L., Cusi, D., Danesh, J., de 

Faire, U., den Ruijter, H.M., Dominiczak, A.F., Erbel, R., Erdmann, J., Eriksson, J.G., 

Farrall, M., Felix, S.B., Ferrannini, E., Ferrières, J., Ford, I., Forouhi, N.G., Forrester, T., 

Franco, O.H., Gansevoort, R.T., Gejman, P. V., Gieger, C., Gottesman, O., Gudnason, V., 

Gyllensten, U., Hall, A.S., Harris, T.B., Hattersley, A.T., Hicks, A.A., Hindorff, L.A., 

Hingorani, A.D., Hofman, A., Homuth, G., Kees Hovingh, G., Humphries, S.E., Hunt, S.C., 

Hyppönen, E., Illig, T., Jacobs, K.B., Jarvelin, M.-R., Jöckel, K.-H., Johansen, B., Jousilahti, 

P., Wouter Jukema, J., Jula, A.M., Kaprio, J., Kastelein, J.J.P., Keinanen-Kiukaanniemi, 

S.M., Kiemeney, L.A., Knekt, P., Kooner, J.S., Kooperberg, C., Kovacs, P., Kraja, A.T., 

Kumari, M., Kuusisto, J., Lakka, T.A., Langenberg, C., Le Marchand, L., Lehtimäki, T., 

Lyssenko, V., Männistö, S., Marette, A., Matise, T.C., McKenzie, C.A., McKnight, B., 

Moll, F.L., Morris, A.D., Morris, A.P., Murray, J.C., Nelis, M., Ohlsson, C., Oldehinkel, 

A.J., Ong, K.K., Madden, P.A.F., Pasterkamp, G., Peden, J.F., Peters, A., Postma, D.S., 

Pramstaller, P.P., Price, J.F., Qi, L., Raitakari, O.T., Rankinen, T., Rao, D.C., Rice, T.K., 

Ridker, P.M., Rioux, J.D., Ritchie, M.D., Rudan, I., Salomaa, V., Samani, N.J., Saramies, J., 

Sarzynski, M.A., Schunkert, H., Schwarz, P.E.H., Sever, P., Shuldiner, A.R., Sinisalo, J., 

Stolk, R.P., Strauch, K., Tönjes, A., Trégouët, D.-A., Tremblay, A., Tremoli, E., Virtamo, J., 

Vohl, M.-C., Völker, U., Waeber, G., Willemsen, G., Witteman, J.C., Carola Zillikens, M., 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


44 
 

Adair, L.S., Amouyel, P., Asselbergs, F.W., Assimes, T.L., Bochud, M., Boehm, B.O., 

Boerwinkle, E., Bornstein, S.R., Bottinger, E.P., Bouchard, C., Cauchi, S., Chambers, J.C., 

Chanock, S.J., Cooper, R.S., de Bakker, P.I.W., Dedoussis, G., Ferrucci, L., Franks, P.W., 

Froguel, P., Groop, L.C., Haiman, C.A., Hamsten, A., Hui, J., Hunter, D.J., Hveem, K., 

Kaplan, R.C., Kivimaki, M., Kuh, D., Laakso, M., Liu, Y., Martin, N.G., März, W., Melbye, 

M., Metspalu, A., Moebus, S., Munroe, P.B., Njølstad, I., Oostra, B.A., Palmer, C.N.A., 

Pedersen, N.L., Perola, M., Pérusse, L., Peters, U., Power, C., Quertermous, T., Rauramaa, 

R., Rivadeneira, F., Saaristo, T.E., Saleheen, D., Sattar, N., Schadt, E.E., Schlessinger, D., 

Eline Slagboom, P., Snieder, H., Spector, T.D., Thorsteinsdottir, U., Stumvoll, M., 

Tuomilehto, J., Uitterlinden, A.G., Uusitupa, M., van der Harst, P., Walker, M., 

Wallaschofski, H., Wareham, N.J., Watkins, H., Weir, D.R., Wichmann, H.-E., Wilson, J.F., 

Zanen, P., Borecki, I.B., Deloukas, P., Fox, C.S., Heid, I.M., O’Connell, J.R., Strachan, 

D.P., Stefansson, K., van Duijn, C.M., Abecasis, G.R., Franke, L., Frayling, T.M., 

McCarthy, M.I., Visscher, P.M., Scherag, A., Willer, C.J., Boehnke, M., Mohlke, K.L., 

Lindgren, C.M., Beckmann, J.S., Barroso, I., North, K.E., Ingelsson, E., Hirschhorn, J.N., 

Loos, R.J.F., Speliotes, E.K., 2015. Genetic studies of body mass index yield new insights 

for obesity biology. Nature 518, 197–206. https://doi.org/10.1038/nature14177 

Lopresti, A.L., 2017. Cognitive behaviour therapy and inflammation: A systematic review of its 

relationship and the potential implications for the treatment of depression. Aust. New Zeal. 

J. Psychiatry 51, 565–582. https://doi.org/10.1177/0004867417701996 

Löwe, B., Unützer, J., Callahan, C.M., Perkins, A.J., Kroenke, K., 2004. Monitoring Depression 

Treatment Outcomes With the Patient Health Questionnaire-9. Med. Care 42, 1194–1201. 

https://doi.org/10.1097/00005650-200412000-00006 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


45 
 

Lynall, M.-E., Turner, L., Bhatti, J., Cavanagh, J., de Boer, P., Mondelli, V., Jones, D., Drevets, 

W.C., Cowen, P., Harrison, N.A., Pariante, C.M., Pointon, L., Clatworthy, M.R., Bullmore, 

E., 2020. Peripheral Blood Cell–Stratified Subgroups of Inflamed Depression. Biol. 

Psychiatry 88, 185–196. https://doi.org/10.1016/j.biopsych.2019.11.017 

Mac Giollabhui, N., Ng, T.H., Ellman, L.M., Alloy, L.B., 2020. The longitudinal associations of 

inflammatory biomarkers and depression revisited: systematic review, meta-analysis, and 

meta-regression. Mol. Psychiatry. https://doi.org/10.1038/s41380-020-00867-4 

McIntyre, R.S., Subramaniapillai, M., Lee, Y., Pan, Z., Carmona, N.E., Shekotikhina, M., 

Rosenblat, J.D., Brietzke, E., Soczynska, J.K., Cosgrove, V.E., Miller, S., Fischer, E.G., 

Kramer, N.E., Dunlap, K., Suppes, T., Mansur, R.B., 2019. Efficacy of Adjunctive 

Infliximab vs Placebo in the Treatment of Adults With Bipolar I/II Depression. JAMA 

Psychiatry 1–8. https://doi.org/10.1001/jamapsychiatry.2019.0779 

Milaneschi, Y., Kappelmann, N., Ye, Z., Lamers, F., Moser, S., Jones, P.B., Burgess, S., Penninx, 

B.W.J.H., Khandaker, G.M., 2021a. Association of Inflammation with Depression and 

Anxiety: Evidence for Symptom-Specificity and Potential Causality from UK Biobank and 

NESDA Cohorts. medRxiv. https://doi.org/10.1101/2021.01.08.20248710 

Milaneschi, Y., Lamers, F., Berk, M., Penninx, B.W.J.H., 2020. Depression Heterogeneity and Its 

Biological Underpinnings: Toward Immunometabolic Depression. Biol. Psychiatry 88, 369–

380. https://doi.org/10.1016/j.biopsych.2020.01.014 

Milaneschi, Y., Lamers, F., Bot, M., Drent, M.L., Penninx, B.W.J.H., 2017a. Leptin 

Dysregulation Is Specifically Associated With Major Depression With Atypical Features: 

Evidence for a Mechanism Connecting Obesity and Depression. Biol. Psychiatry 81, 807–

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


46 
 

814. https://doi.org/10.1016/j.biopsych.2015.10.023 

Milaneschi, Y., Lamers, F., Penninx, B.W.J.H., 2021b. Dissecting Depression Biological and 

Clinical Heterogeneity—The Importance of Symptom Assessment Resolution. JAMA 

Psychiatry 362, 2021. https://doi.org/10.1001/jamapsychiatry.2020.4373 

Milaneschi, Y., Lamers, F., Peyrot, W., Abdellaoui, A., Willemsen, G., Hottenga, J.-J., Jansen, 

R., Mbarek, H., Dehghan, A., Lu, C., 2016. Polygenic dissection of major depression 

clinical heterogeneity. Mol. Psychiatry 21, 516–522. https://doi.org/10.1038/mp.2015.86 

Milaneschi, Y., Lamers, F., Peyrot, W.J., Baune, B.T., Breen, G., Dehghan, A., Forstner, A.J., 

Grabe, H.J., Homuth, G., Kan, C., Lewis, C., Mullins, N., Nauck, M., Pistis, G., Preisig, M., 

Rivera, M., Rietschel, M., Streit, F., Strohmaier, J., Teumer, A., Van der Auwera, S., Wray, 

N.R., Boomsma, D.I., Penninx, B.W.J.H., 2017b. Genetic Association of Major Depression 

With Atypical Features and Obesity-Related Immunometabolic Dysregulations. JAMA 

Psychiatry 74, 1214. https://doi.org/10.1001/jamapsychiatry.2017.3016 

Möller, H.., 2000. Rating depressed patients: observer- vs self-assessment. Eur. Psychiatry 15, 

160–172. https://doi.org/10.1016/S0924-9338(00)00229-7 

Moriarity, D.P., Alloy, L.B., 2021. Back to Basics: The Importance of Measurement Properties in 

Biological Psychiatry. Neurosci. Biobehav. Rev. 123, 72–82. 

https://doi.org/10.1016/j.neubiorev.2021.01.008 

Moriarity, D.P., Horn, S.R., Kautz, M.M., Haslbeck, J.M.B., Alloy, L.B., 2020a. How handling 

extreme C-reactive protein (CRP) values and regularization influences CRP and depression 

criteria associations in network analyses. Brain. Behav. Immun. 

https://doi.org/10.1016/j.bbi.2020.10.020 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


47 
 

Moriarity, D.P., van Borkulo, C., Alloy, L.B., 2020b. Inflammatory phenotype of depression 

symptom structure: A network perspective. Brain. Behav. Immun. 87, S48. 

https://doi.org/10.1016/j.bbi.2020.12.005 

Nettis, M.A., Lombardo, G., Hastings, C., Zajkowska, Z., Mariani, N., Nikkheslat, N., Worrell, 

C., Enache, D., McLaughlin, A., Kose, M., Sforzini, L., Bogdanova, A., Cleare, A., Young, 

A.H., Pariante, C.M., Mondelli, V., 2021. Augmentation therapy with minocycline in 

treatment-resistant depression patients with low-grade peripheral inflammation: results from 

a double-blind randomised clinical trial. Neuropsychopharmacology 1–10. 

https://doi.org/10.1038/s41386-020-00948-6 

Ni, G., Zeng, J., Revez, J.A., Wang, Y., Ge, T., Restaudi, R., Kiewa, J., Nyholt, D.R., Coleman, 

J.R.I., Smoller, J.W., Consortium, S.W.G. of the P.G., Yang, J., Visscher, P.M., Wray, N.R., 

2020. A comprehensive evaluation of polygenic score methods across cohorts in psychiatric 

disorders. medRxiv 1–31. 

Ohlsson, H., Kendler, K.S., 2019. Applying Causal Inference Methods in Psychiatric 

Epidemiology. JAMA Psychiatry 1–8. https://doi.org/10.1001/jamapsychiatry.2019.3758 

Osimo, E.F., Baxter, L.J., Lewis, G., Jones, P.B., Khandaker, G.M., 2019. Prevalence of low-

grade inflammation in depression: a systematic review and meta-analysis of CRP levels. 

Psychol. Med. 49, 1958–1970. https://doi.org/10.1017/S0033291719001454 

Pistis, G., Milaneschi, Y., Vandeleur, C.L., Lasserre, A.M., Penninx, B.W.J.H., Lamers, F., 

Boomsma, D.I., Hottenga, J., Marques-Vidal, P., Vollenweider, P., Waeber, G., Aubry, J., 

Preisig, M., Kutalik, Z., 2021. Obesity and atypical depression symptoms: findings from 

Mendelian randomization in two European cohorts. Transl. Psychiatry 11, 96. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


48 
 

https://doi.org/10.1038/s41398-021-01236-7 

R Core Team, 2017. R: A language and environment for statistical computing. 

Raison, C.L., Rutherford, R.E., Woolwine, B.J., Shuo, C., Schettler, P., Drake, D.F., Haroon, E., 

Miller, A.H., 2013. A randomized controlled trial of the tumor necrosis factor antagonist 

infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. 

JAMA Psychiatry 70, 31–41. https://doi.org/10.1001/2013.jamapsychiatry.4 

Robinaugh, D.J., Hoekstra, R.H.A., Toner, E.R., Borsboom, D., 2020. The network approach to 

psychopathology: a review of the literature 2008–2018 and an agenda for future research. 

Psychol. Med. 50, 353–366. https://doi.org/10.1017/S0033291719003404 

Rush, A.J., Fava, M., Wisniewski, S.R., Lavori, P.W., Trivedi, M.H., Sackeim, H.A., Thase, 

M.E., Nierenberg, A.A., Quitkin, F.M., Kashner, T.M., Kupfer, D.J., Rosenbaum, J.F., 

Alpert, J., Stewart, J.W., McGrath, P.J., Biggs, M.M., Shores-Wilson, K., Lebowitz, B.D., 

Ritz, L., Niederehe, G., for the STAR*D Investigators Group, 2004. Sequenced treatment 

alternatives to relieve depression (STAR*D): rationale and design. Control. Clin. Trials 25, 

119–142. https://doi.org/10.1016/S0197-2456(03)00112-0 

Rush, A.J., Trivedi, M.H., Wisniewski, S.R., Nierenberg, A.A., Stewart, J.W., Warden, D., 

Niederehe, G., Thase, M.E., Lavori, P.W., Lebowitz, B.D., McGrath, P.J., Rosenbaum, J.F., 

Sackeim, H.A., Kupfer, D.J., Luther, J., Fava, M., 2006. Acute and Longer-Term Outcomes 

in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. 

Am. J. Psychiatry 163, 1905–1917. https://doi.org/10.1176/appi.ajp.163.11.1905 

Simmons, W.K., Burrows, K., Avery, J.A., Kerr, K.L., Taylor, A., Bodurka, J., Potter, W., 

Teague, T.K., Drevets, W.C., 2018. Appetite changes reveal depression subgroups with 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


49 
 

distinct endocrine, metabolic, and immune states. Mol. Psychiatry 1–12. 

https://doi.org/10.1038/s41380-018-0093-6 

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., 

Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., 

Sprosen, T., Peakman, T., Collins, R., 2015. UK Biobank: An Open Access Resource for 

Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. 

PLOS Med. 12, e1001779. https://doi.org/10.1371/journal.pmed.1001779 

Timpson, N.J., Nordestgaard, B.G., Harbord, R.M., Zacho, J., Frayling, T.M., Tybjærg-Hansen, 

A., Davey Smith, G., 2011. C-reactive protein levels and body mass index: elucidating 

direction of causation through reciprocal Mendelian randomization. Int. J. Obes. 35, 300–

308. https://doi.org/10.1038/ijo.2010.137 

van Borkulo, C., Boschloo, L., Borsboom, D., Penninx, B.W.J.H., Waldorp, L.J., Schoevers, 

R.A., 2015. Association of Symptom Network Structure With the Course of Depression. 

JAMA Psychiatry 72, 1219–1226. https://doi.org/10.1001/jamapsychiatry.2015.2079 

van Eeden, W.A., van Hemert, A.M., Carlier, I.V.E., Penninx, B.W.J.H., Lamers, F., Fried, E.I., 

Schoevers, R., Giltay, E.J., 2020. Basal and LPS-stimulated inflammatory markers and the 

course of individual symptoms of depression. Transl. Psychiatry 10, 235. 

https://doi.org/10.1038/s41398-020-00920-4 

White, J., Kivimäki, M., Jokela, M., Batty, G.D., 2017. Association of inflammation with specific 

symptoms of depression in a general population of older people: The English Longitudinal 

Study of Ageing. Brain. Behav. Immun. 61, 27–30. 

https://doi.org/10.1016/j.bbi.2016.08.012 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


50 
 

Williams, D.R., Rhemtulla, M., Wysocki, A.C., Rast, P., 2019. On Nonregularized Estimation of 

Psychological Networks. Multivariate Behav. Res. 0, 1–23. 

https://doi.org/10.1080/00273171.2019.1575716 

Wittenberg, G.M., Stylianou, A., Zhang, Y., Sun, Y., Gupta, A., Jagannatha, P.S., Wang, D., Hsu, 

B., Curran, M.E., Khan, S., Chen, G., Bullmore, E.T., Drevets, W.C., 2020. Effects of 

immunomodulatory drugs on depressive symptoms: A mega-analysis of randomized, 

placebo-controlled clinical trials in inflammatory disorders. Mol. Psychiatry 25, 1275–1285. 

https://doi.org/10.1038/s41380-019-0471-8 

Wray, N.R., Lin, T., Austin, J., McGrath, J.J., Hickie, I.B., Murray, G.K., Visscher, P.M., 2020. 

From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer. JAMA 

Psychiatry. https://doi.org/10.1001/jamapsychiatry.2020.3049 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2021. ; https://doi.org/10.1101/2021.01.07.20248981doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.20248981
http://creativecommons.org/licenses/by/4.0/


51 
 

TABLES & FIGURES 

Tables 

Table 1. Baseline characteristics of MARS, STAR*D, and UK Biobank samples 

 MARS STAR*D UK Biobank 
N 1,058 1,143 110,010 

Sex    

   Women, N (%) 563 (53.2%) 676 (59.1%) 61,212 (55.6%) 

   Men, N (%) 495 (46.8%) 467 (40.9%) 48,798 (44.4%) 

Age in years    

   Mean (SD) 47.8 (14.4) 43.2 (13.6) 56.2 (7.7) 

   Range 18-87 18-75 39-72 

Study location Germany United States United Kingdom 

Study population MDD inpatients MDD outpatients General population 
CRP PRS    
   Mean (SD) -0.01 (1.00) 0.00 (1.00) -0.01 (1.00) 
   Range -3.14-3.15 -3.21-2.94 -4.58-4.21 
IL-6 PRS    
   Mean (SD) 0.00 (1.00) 0.00 (1.00) 0.00 (1.00) 
   Range -3.33-3.34 -3.41-3.94 -4.07-3.92 
IL-10 PRS    
   Mean (SD) 0.00 (1.00) 0.00 (1.00) 0.00 (1.00) 
   Range -3.11-3.24 -3.28-3.13 -4.35-4.60 
TNF-a PRS    
   Mean (SD) 0.00 (1.00) 0.00 (1.00) 0.00 (1.00) 
   Range -3.61-3.67 -3.35-3.52 -4.17-4.51 
BMI PRS    
   Mean (SD) -0.02 (1.01) 0.00 (1.00) -0.04 (1.00) 
   Range -3.02-4.06 -3.04-3.20 -4.53-3.96 
PHQ-9 sum-score    

   Mean (SD) - - 2.7 (3.6) 

   Range - - 0-27 

   Missing, N (%) - - 351 (0.3) 

HAM-D sum-score    

   Mean (SD) 23.8 (5.9) 22.4 (4.9) - 

   Range 5-42 13-38 - 

   Missing, N (%) 6 (0.6%) 0 (0%) - 

Depressed mood    

   Mean (SD) 3.05 (0.88) 2.59 (0.77) 0.23 (0.56) 

   Range 0-4 0-4 0-3 

Anhedonia    

   Mean (SD) 3.63 (0.68) 2.54 (0.76) 0.26 (0.56) 

   Range 0-4 0-4 0-3 

Sleep problems    

   Mean (SD) 3.46 (2.00) 3.42 (1.77) 0.71 (0.99) 

   Range 0-6 0-6 0-3 
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 MARS STAR*D UK Biobank 
Fatigue    

   Mean (SD) 1.49 (0.68) 1.68 (0.55) 0.66 (0.81) 

   Range 0-2 0-2 0-3 

Changes in appetite    

   Mean (SD) 0.77 (0.66) 0.68 (0.80) 0.25 (0.62) 

   Range 0-2 0-2 0-3 

Psychomotor changes    

   Mean (SD) 1.44 (0.96) 1.42 (0.72) 0.07 (0.34) 

   Range 0-4 0-4 0-3 

Suicidality    

   Mean (SD) 1.35 (1.15) 0.94 (0.85) 0.05 (0.28) 

   Range 0-4 0-4 0-3 

Note: MDD=Major Depressive Disorder, SD=Standard deviation, PHQ-9=Patient Health 
Questionnaire-9, HAM-D=Hamilton Rating Scale for Depression. 
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Table 2. PRS-symptom edge consistency criteria (C) across network analyses 

 MARS STAR*D UK Biobank  
PRS-symptom edges FGL (C1) Model search 

(C3) 
FGL (C1) Model search 

(C3) 
FGL (C1) Model search 

(C3) 
FGL 

consistency 
(C2) 

CRP        
Anhedonia -0.016 (67%)  -0.043 (95%)  -0.002 (60%)  Yes 

Depressed mood -0.009 (57%)  0.045 (94%)     
Sleep problems* -0.02 (75%)  0.031 (84%)     

Fatigue 0.053 (98%)  0.025 (79%)  0.011 (100%)  Yes 
Changes in appetite* -0.034 (89%)  -0.043 (94%)  0.003 (91%) 0.013 (73%) Yes 

Psychomotor changes 0.039 (91%)  0.001 (53%)     
Suicidality -0.02 (74%)  -0.038 (88%)     

IL-6        
Anhedonia -0.047 (97%)       

Depressed mood -0.001 (52%)       
Sleep problems*   -0.02 (82%)     

Fatigue 0.012 (72%)       
Changes in appetite* -0.032 (87%)  0.032 (85%)     

Psychomotor changes        
Suicidality 0.053 (95%)  -0.029 (83%)     

IL-10        
Anhedonia 0.008 (67%)  -0.005 (66%)     

Depressed mood   -0.002 (52%)     
Sleep problems*   0.014 (72%)     

Fatigue   0.007 (66%)     
Changes in appetite* 0.021 (80%)       

Psychomotor changes 0.015 (66%)  0.033 (90%)     
Suicidality   0.054 (99%)     

TNF-α        
Anhedonia 0.054 (96%)  0.013 (66%)     

Depressed mood -0.017 (66%)  -0.017 (75%)     
Sleep problems* -0.005 (57%)  0.005 (68%)     

Fatigue 0.016 (65%)  0.032 (91%)  0.002 (58%)  Yes 
Changes in appetite* -0.015 (70%)  0.023 (75%)     
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 MARS STAR*D UK Biobank  
PRS-symptom edges FGL (C1) Model search 

(C3) 
FGL (C1) Model search 

(C3) 
FGL (C1) Model search 

(C3) 
FGL 

consistency 
(C2) 

Psychomotor changes 0.008 (63%)  0.008 (59%)     
Suicidality   0.047 (94%)     

BMI        
Anhedonia 0.036 (91%)  0.033 (86%)   -0.010 (63%)  

Depressed mood        
Sleep problems* 0.06 (99%)  0.055 (97%)     

Fatigue -0.016 (74%)       
Changes in appetite*   -0.031 (87%)  0.054 (100%) 0.066 (100%)  

Psychomotor changes 0.003 (55%)  -0.023 (83%)     
Suicidality 0.021 (75%)  0.04 (91%)     

Note: Cell values reflect edge weights (i.e., partial correlation coefficients) and the percentage of 500 bootstrap estimations that edges 
were present. Estimates are restricted to those edges, for which >50% of bootstrapped samples were non-zero and directionally consistent 
(i.e., criteria 1 & 3). *Changes in appetite and sleep problems are measured as composite symptoms in UK Biobank, but as loss of appetite 
and insomnia in MARS and STAR*D samples. 
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Figure Titles and Legends 

Figure 1. Study design and analysis pipeline 

Legend: BIC=Bayesian information criterion; CV=cross-validation; PC=principal component (or 

multi-dimensional scaling component used for MARS & STAR*D); �=PRS-CS tuning 

parameter. 

Figure 2. Estimated FGL networks across samples 

Legend: Networks are visualised with the qgraph package. Blue lines indicate positive and red 

lines negative associations, respectively, with larger associations displayed with thicker lines. 

Circles around nodes display node predictability, which can be interpreted similar to explained 

variance. Maximum size of edge associations is 0.55. As the primary focus of this investigation 

was to identify consistent PRS-symptom associations, we manually unfaded edges between PRSs 

and symptoms if these edges met quality criteria 1 and 2 (see Table 2). Changes in appetite and 

sleep problems are measured as composite symptoms in UK Biobank, but as loss of appetite and 

insomnia in MARS and STAR*D samples. 

Figure 3. Bootstrapped 95% quantile intervals of PRS-symptom edges using FGL estimation  

Legend: Bootstrapped 95% quantile intervals (i.e., 95% of the distribution of raw bootstrapped 

edge estimates) are highlighted as shaded area for each edge. Black points indicate the raw FGL 

sample estimate while red points indicate the raw bootstrapped mean estimate. Edges are 

indicated on the y-axis and sorted by mean edge weight across samples in descending order.  
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Symptom Data 
Harmonisation
1. Depressed mood
2. Anhedonia
3. Sleep problems*
4. Fatigue
5. Changes in appetite*
6. Psychomotor changes*
7. Suicidality

* only partially overlapping

1. CRP
2. IL-6
3. IL-10
4. TNF-α
5. BMI

- EstimateGroupNetwork package
- 10-fold CV (BIC optimisation)
- equal sample weighting
- 500 bootstraps

Unregularised Model
Search

Node Predictability

Primary analysis Secondary analysis

- PRS-symptom edge present in 
  individual sample
- Edge present and directionally
  consistent in >50% bootstraps

Criterion 3
- PRS-symptom edge present in 
  individual sample
- Edge present and directionally
  consistent in >50% bootstraps

Criterion 1

- Criterion 1 replicates across
  samples

Criterion 2

- qgraph & bootnet packages
- ggModSelect algorithm
- Spearman correlations
- 500 bootstraps

Residual-correction:
PRS ~ age + sex + PC1 + PC2 + array*
*correction for array only in MARS

ф = 1e-4

ф = 1e-2

- mgm package
- 10-fold CV (BIC optimisation)
- ‘OR’-rule
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