Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Modelling Decay of Population Immunity With Proposed Second Dose Deferral Strategy

Jurgens Graham
doi: https://doi.org/10.1101/2021.01.05.21249293
Jurgens Graham
Roles: Microbiology and Immunology (U of S)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: graham.jurgens@saskhealthauthority.ca
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

A second dose deferred strategy has been proposed to increase initial population immunity as an alternative to the default two dose vaccine regimen with spacing of 21 or 28 days between vaccine doses for the mRNA vaccines from Pfizer and Moderna. This increased initial population immunity is only of value if one dose immunity does not decay so fast as to nullify the benefit. Because decay rates of one dose and two dose efficacy are currently unknown, a model to project population immunity between the two strategies was created. By evaluating the decay rate of one dose efficacy, two dose efficacy, and time until the second dose is given, the model shows that if there is an increased decay rate of one dose efficacy relative to the two dose decay rate, it is highly unlikely to nullify the benefit of increased population immunity seen in a second dose deferral strategy. Rather, all reasonable scenarios strongly favour a second dose deferral strategy with much higher projected population immunity in comparison to the default regimen.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No funding was received for the research

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

No ethical approval required, as a model for waning decay rates are evaluated.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • Contact information: Phone: 1 (306) 850-2140

  • Email: graham.jurgens{at}saskhealthauthority.ca

  • Participating Investigators: Thank you to Dr. P. Bretscher, Dr. D. Skowronski, Dr. G. De Serres, and Dr. M. Sadarangani for acting as scientific advisors. Thank you to Kyle Lackner for his modelling expertise and Scott Leibrand for critically reviewing the model.

Data Availability

Data self contained in submission

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted January 06, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Modelling Decay of Population Immunity With Proposed Second Dose Deferral Strategy
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Modelling Decay of Population Immunity With Proposed Second Dose Deferral Strategy
Jurgens Graham
medRxiv 2021.01.05.21249293; doi: https://doi.org/10.1101/2021.01.05.21249293
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Modelling Decay of Population Immunity With Proposed Second Dose Deferral Strategy
Jurgens Graham
medRxiv 2021.01.05.21249293; doi: https://doi.org/10.1101/2021.01.05.21249293

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Allergy and Immunology
Subject Areas
All Articles
  • Addiction Medicine (62)
  • Allergy and Immunology (142)
  • Anesthesia (44)
  • Cardiovascular Medicine (408)
  • Dentistry and Oral Medicine (67)
  • Dermatology (47)
  • Emergency Medicine (141)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (171)
  • Epidemiology (4813)
  • Forensic Medicine (3)
  • Gastroenterology (177)
  • Genetic and Genomic Medicine (671)
  • Geriatric Medicine (70)
  • Health Economics (187)
  • Health Informatics (621)
  • Health Policy (314)
  • Health Systems and Quality Improvement (200)
  • Hematology (85)
  • HIV/AIDS (155)
  • Infectious Diseases (except HIV/AIDS) (5281)
  • Intensive Care and Critical Care Medicine (326)
  • Medical Education (91)
  • Medical Ethics (24)
  • Nephrology (73)
  • Neurology (677)
  • Nursing (41)
  • Nutrition (111)
  • Obstetrics and Gynecology (124)
  • Occupational and Environmental Health (203)
  • Oncology (438)
  • Ophthalmology (138)
  • Orthopedics (36)
  • Otolaryngology (88)
  • Pain Medicine (35)
  • Palliative Medicine (15)
  • Pathology (128)
  • Pediatrics (193)
  • Pharmacology and Therapeutics (129)
  • Primary Care Research (84)
  • Psychiatry and Clinical Psychology (768)
  • Public and Global Health (1799)
  • Radiology and Imaging (321)
  • Rehabilitation Medicine and Physical Therapy (138)
  • Respiratory Medicine (255)
  • Rheumatology (86)
  • Sexual and Reproductive Health (69)
  • Sports Medicine (61)
  • Surgery (100)
  • Toxicology (23)
  • Transplantation (28)
  • Urology (37)