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One Sentence Summary: Defining quantitative profiles of novel disease interventions by 20 
combining machine learning with mathematical models of disease transmission  21 
Abstract:  22 

The development of novel interventions against a disease entails optimising their specifications 23 
to achieve desired health goals such as disease reduction. As testing is limited early in 24 
development, it is difficult to predefine these optimal specifications, prioritize or continue 25 
investment in candidate interventions. Mathematical models of disease can provide quantitative 26 
evidence as they can simulate deployment and predict impact of a new intervention considering 27 
deployment, health-system, population and disease characteristics. However, due to large 28 
uncertainty early in development, as well as model complexity, testing all possible combinations 29 
of interventions and deployments becomes infeasible. As a result, mathematical models have 30 
been only marginally used during intervention development to date. Here, we present a new 31 
approach where machine learning enables the use of detailed disease models to identify optimal 32 
properties of candidate interventions to reach a desired health goal and guide development. We 33 
demonstrate the power of our approach by application to five novel malaria interventions under 34 
development. For various targeted reductions of malaria prevalence, we quantify and rank 35 
intervention characteristics which are key determinants of health impact. Furthermore, we 36 
identify minimal requirements and tradeoffs between operational factors, intervention efficacy 37 
and duration to achieve different levels of impact and show how these vary across disease 38 
transmission settings. When single interventions cannot achieve significant impact, our method 39 
allows finding optimal combinations of interventions fulfilling the desired health goals. By 40 
enabling efficient use of disease models, our approach supports decision-making and resource 41 
investment in the development of new interventions for infectious diseases.  42 
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Significance Statement 44 

During development of novel disease interventions (e.g. vaccines), a target product profile (TPP) 45 

document defines intervention characteristics required to meet health goals. As clinical trials are 46 

limited early in development, mathematical models simulating disease dynamics can help define 47 

TPPs. However, testing all combinations of intervention, delivery and environment 48 

characteristics is infeasible and so complex mathematical models have not been used until now. 49 

We introduce a new approach to define TPPs, combining models of disease with machine 50 

learning. We examined several novel malaria interventions, identifying key characteristics, 51 

minimum efficacy and duration of effect that ensure significant reductions in malaria prevalence. 52 

This approach therefore enabled mathematical models of disease to support intervention 53 

development, by identifying intervention requirements that ensure public health impact.  54 
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Introduction 55 

Target Product Profiles (TPPs) are dynamic documents commonly used during the development 56 

of a cutting-edge medical product, defining its required characteristics to fulfill an unmet health 57 

need (1). By offering a comprehensive snapshot of the development process at any given point in 58 

time, a TPP constitutes a vital reference for dialogue between various stakeholders to guide 59 

decisions on the development direction to be pursued (1-5). A well-constructed TPP is thus 60 

essential for efficient resource allocation and success during the development phase (1, 5). 61 

However, the process of establishing TPPs relies on minimal clinical or quantitative evidence. 62 

They are often set by expert opinion and consensus based on limited quantitative consideration 63 

of the complex dynamics of disease or predictions of the likely intervention impact while 64 

achieving the identified unmet health need (6). Furthermore, few TPPs consider operational 65 

aspects such as deployment coverage in addition to product-specific characteristics such as 66 

efficacy or half-life. This has implications for the appropriate definition of intervention 67 

effectiveness characteristics according to local health systems and health targets (1, 6, 7). 68 

Mathematical models of disease transmission dynamics can be used to bridge this gap, as they 69 

quantitatively estimate the impact of interventions while including considerable evidence of 70 

disease progression and transmission, host immunity, as well as environmental or health system 71 

dynamics and their interaction with interventions (8, 9) (Fig. 1). However, models have been 72 

mainly used at late stages during the development of a new intervention; for example, to predict 73 

likely impact or cost-effectiveness from data collected in Phase 3 clinical trials (10-15). Model 74 

investigations are usually informed by scenario analysis accounting for the delivery and target 75 

age groups, as well as properties of the new intervention pre-defined or informed by late clinical 76 

trials (16-19). In these constrained scenarios, high model and parameter complexity tend to 77 

obscure the complex relationships between intervention parameters, operational factors, health 78 

outcomes and public health impact (20). Exhaustive scenario analyses are highly 79 

computationally expensive, rendering the full exploration of all possible interventions for a 80 

disease, in conjunction with all possible delivery scenarios, combinatorically infeasible. 81 

Here we propose a new ethos where epidemiological models guide the development of novel 82 

disease interventions designed to achieve quantified health goals. To do this efficiently, we use 83 
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machine learning combined with mathematical models to perform a directed search of the entire 84 

space of intervention profiles, to define properties of new interventions (sometimes referred to as 85 

“tools” or “products”) that will achieve the desired health goal. Placing the end goal of public 86 

health impact at the center of decision making is increasingly important to direct Research & 87 

Development (R&D) efforts in the face of finite resources. The use of mathematical models 88 

enables translation of R&D efforts into potential impact. In this paper, we show how modelling 89 

can support this process, and introduce a framework that quantitatively defines product 90 

characteristics within TPPs. 91 

Previous approaches using disease models to inform TPPs have tackled the combinatorically-92 

complex parameter space by only exploring a discrete, constrained set of parameters (21-23). 93 

These approaches have provided insightful knowledge and emphasized the importance of using 94 

disease models for defining TPPs. Nevertheless, they have provided a concomitantly constrained 95 

view of intervention specifications. Our framework tackles and moves beyond these challenges. 96 

On one hand, it allows us to rigorously define TPPs by efficiently exploring highly complex 97 

parameter spaces of mathematical disease models, and on the other hand it identifies the 98 

determinants of desired public health impact to inform tradeoffs between product characteristics 99 

and use-cases. Furthermore, as the ultimate health goal guides decisions on interventions and for 100 

optimal use of the supportive framework presented here, an engaging, iterative exchange with 101 

stakeholders to define desired outcomes and the likely delivery use-cases of the new 102 

interventions is essential. 103 

Our framework utilizes a machine learning approach using Gaussian processes (GPs) (24) to 104 

generate computationally light emulators of detailed mathematical models of disease dynamics 105 

(Fig. 2A). These emulators constitute an interface that easily links properties of deployed 106 

interventions and operational factors to health goals. Furthermore, the emulators capture not just 107 

the mean tendency of complex disease models dynamics, but also the inherent variance caused 108 

by the stochasticity in the models (25). Disease model emulators allowed us to efficiently 109 

perform sensitivity analyses of intervention and health system parameters on predicted public 110 

health impacts at low computational cost. Furthermore, by coupling emulators with nonlinear 111 

optimization techniques, we constructed a predictive framework that identifies key determinants 112 

of intervention impact as well as the minimal intervention profiles required for achieving a given 113 
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health goal (Fig. 2). The framework consists of (i) a comprehensive disease progression and 114 

transmission simulation model applied on a discrete, uniformly sampled set of input parameters; 115 

(ii) training of an emulator on the sampled set of parameters and corresponding impact 116 

outcomes; (iii) using sensitivity analysis to understand drivers of intervention impact; and (iv) 117 

applying a non-linear constrained optimization algorithm to explore intervention operational and 118 

effectiveness characteristics meeting various targets and deployment use-cases specified 119 

following iterative consultation with product development experts. A detailed description of the 120 

components of the developed framework can be found in Fig. 2A and the Materials and Methods 121 

section. 122 

We apply our framework to assess and optimize new interventions for preventing malaria 123 

transmission. Strategic investment in new interventions is becoming crucial for malaria control 124 

and elimination programs, as existing interventions are currently challenged by increasing 125 

resistance (26-28). Mathematical models of malaria transmission (Fig. 1) have been used 126 

extensively to estimate the impact of malaria interventions and to optimize intervention packages 127 

for specific geographies (10, 29-32). As yet, these malaria models have not been systematically 128 

applied in directing the design of new interventions, nor in understanding how intervention-129 

specific, epidemiological and systems factors jointly contribute to impact. Following 130 

consultation with malaria product development experts, we used our new framework to define 131 

the required profiles in terms of coverage, efficacy and duration characteristics in TPPs of new 132 

putative malaria interventions to reach desired public health goals such as prevalence reduction 133 

contingent on operational constraints (Fig. 2).  134 
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 135 

 136 

 137 

Fig. 1 Schematic of a stochastic simulation platform of malaria transmission dynamics.  138 

OpenMalaria (33) is an open source, stochastic, individual-based model which simulates 139 

malaria epidemiology and transmission dynamics across humans and mosquitoes. The pattern of 140 

yearly malaria infection in the absence of interventions is determined by the entomological 141 

inoculation rate (EIR), which is a model input. Each infected human host in the simulated 142 

population has an associated parasite density and duration of infection, where each infection is 143 

also modelled individually, and follows a modelled transmission cycle (central diagram) which 144 

captures effects such as immunity, infectiousness to mosquitoes, morbidity or mortality. During 145 

the simulation, a wide range of human and vector interventions can be applied, affecting the 146 

transmission cycle at various stages (red arrows). Setting-specific characteristics such as 147 

population demographics, mosquito species entomological characteristics or seasonality are 148 

explicitly modelled. Various health outcomes are monitored over time including patent 149 

infections, uncomplicated clinical disease, severe disease in and out of hospital and malaria 150 

mortality (a detailed description of the simulation model and its features is provided in Materials 151 

and Methods and Table S1.1).  152 
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Results  154 

A disease model and machine learning approach to quantitatively define malaria interventions 155 

Our analysis workflow (Fig. 2) starts with sensibly-informed TPP scenarios; the definition of 156 

targeted health goals corresponding to unmet health needs; and possible use cases following 157 

continuous consultation with product development experts. The health goals in the present 158 

analysis are reductions of malaria prevalence for all ages (PfPR0-99) and prevention of 159 

resurgence. Next, within the “Disease model” component, malaria transmission is modeled by 160 

the means of the established, stochastic, individual-based model OpenMalaria (33) (Fig. 1, Table 161 

S1.1). A comprehensive set of simulated scenarios is built by uniformly sampling the parameter 162 

space (defined by the parameters emphasized in bold under “Tool specifications” and “Setting” 163 

components in Fig. 2 and detailed in Table S2.1). The scenarios are simulated with the disease 164 

model yielding an extensive database of disease outcomes. In the machine learning part of the 165 

approach, the database of simulated scenarios and corresponding outcomes is used to train a 166 

predictive model, in this case a Heteroskedastic Gaussian process model (see detailed training 167 

procedure in Materials and Methods). The predictive model acts as an emulator of the complex 168 

individual-based mathematical model. Specifically, the emulator can predict the disease outcome 169 

for the given health goal and any set of input parameters. For this reason, the trained emulator 170 

can be efficiently and promptly used in downstream analyses to design TPPs of new malaria 171 

interventions, and to identify their quantitative properties to meet the health goal previously 172 

defined. More precisely, sensitivity analysis allows searching for key determinants of 173 

intervention impact, while constrained optimization analyses yield the optimal required 174 

intervention properties that meet specified impactful health goals.  175 

We used our validated individual-based model, “OpenMalaria” (29, 33) (detailed description in 176 

the Materials and Methods section, Fig. 1 and Table S1.1) to simulate malaria epidemiology and 177 

transmission dynamics within various transmission settings. These settings cover a broad 178 

spectrum of transmission and mosquito biting behavior archetypes relevant for attaining general 179 

guiding principles in the early development phase of new interventions. Within the simulations, 180 

we quantitatively examined several malaria interventions that are currently under development or 181 

developed within the last ten years, including monoclonal antibodies, drugs, vaccines as well as 182 

novel vector control interventions. To be able to investigate a wide range of interventions, 183 
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instead of considering their characteristics explicitly, we more generally modelled their action on 184 

parasite or vector targets (Fig. 1). Accordingly, each intervention was modeled through its 185 

deployment coverage, efficacy, half-life or duration of effect on the given parasite or vector stage 186 

in the transmission cycle (see Materials and Methods, Fig. S2.3, Table S2.1 for detailed 187 

intervention specifications). For simplification, the words ‘half-life and ‘duration’ are used 188 

interchangeably to describe the longevity of the intervention effect (further details and 189 

definitions in Materials and Methods).  190 

Intervention impact in the current study was assessed assuming a single health goal of malaria 191 

prevalence reduction and thus through predicted reduction in Plasmodium falciparum malaria 192 

prevalence across all ages, PfPR0-99, corresponding to true infection prevalence and not patent 193 

(detected with a diagnostic such as rapid diagnostic test (RDT), or polymerase chain reaction 194 

(PCR), Fig. S2.2, S3.1-S3.4). We learned simplified predictive emulators for the OpenMalaria 195 

simulation results by training GP models on a limited set of simulated scenarios (Fig. 2B). We 196 

show that the trained GP models accurately capture the dependencies between the disease model 197 

input parameters and the output intervention impact, and are able to reliably predict the reduction 198 

in PfPR0-99 attributable to any input intervention characteristics (Fig. 2B, S4.1-S4.3, Table S4.1). 199 

Our work thus builds on recent applications of GPs in disease modelling and burden prediction 200 

for malaria (34). Using the trained GP emulator, through global sensitivity analysis, we evaluated 201 

the key determinants of intervention impact (Fig. 2C). In addition, we performed a constrained 202 

search for intervention and delivery profiles (TPPs) that maximize impact under a particular 203 

health goal, given concrete, expert-informed, operational constraints such as possible 204 

deployment coverage, or feasible intervention properties such as efficacy or duration of 205 

protection (Fig. 2D).  206 

  207 
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 208 

Fig. 2 Quantitatively defining TPPs of novel disease interventions.  209 
(A) Detailed schematic representation of the proposed quantitative framework to support 210 
product development (full specifications in Materials and Methods). Figures (B)-(D) present the 211 
results of applying the framework for an anti-infective malaria vaccine (mass administration, 212 
seasonal transmission with high indoor mosquito biting): (B) Correlation between simulated 213 
true (x axis) and emulator predicted (y axis) PfPR0-99 reduction with a GP emulator trained in a 214 
cross-validation scheme (Pearson correlation coefficient r2 distribution shown in boxplot) and 215 
validated on an out-of-sample test set (r2 left upper corner and grey diamond on the boxplot in 216 
the right lower corner). (C) Example vaccine impact determinants: the colors represent 217 
proportions of the emulator output variance (relative importance) attributable to intervention 218 
specifications, as well as health system access. (D) Example feasible landscape of optimal 219 
vaccine efficacy profiles for various health goals (minimum targeted PfPR0-99 reductions, y axis). 220 
For each health goal, the heatmap displays the minimum required efficacy when applied at a 221 
coverage of 60% and with a half-life of 7 months, assuming an access to care level of 25% 222 
(example in the insert plot for a target reduction of at least 60%). Results in figures (C) and (D) 223 
are displayed for a range of median simulated true PfPR2-10 (before intervention deployment, 224 
rounded values, x axis). 225 
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Intervention impact and the importance of their characteristics 227 

With guidance from different groups of experts and partners (see definition of the various 228 

stakeholders involved in Materials and Methods), we conducted an extensive analysis in the 229 

malaria development space, covering a diverse spectrum of interventions pertaining to 1) anti-230 

infective monoclonal antibodies 2) anti-infective vaccines, 3) transmission-blocking vaccines, 4) 231 

outdoor attractive targeted sugar baits, and 5) eave tubes. Following simulation with 232 

OpenMalaria of deployment of each of these interventions through mass administration 233 

campaigns over several years (see Materials and Methods), we first analyzed the predicted 234 

distributions of reduction in true PfPR0-99 (Fig. 3A, S3.2-S3.4). We found that, in general, when 235 

aiming for substantial, prompt reductions in prevalence for this particular health target, vector 236 

control was by far the most impactful intervention across all settings. Monoclonal antibodies, 237 

anti-infective and transmission-blocking vaccines had a more pronounced impact in low-238 

transmission settings compared to endemic settings (Fig. 3A, S3.1-S3.4, Table S5.1).  239 

Sensitivity analysis indicated that the impacts of these interventions on malaria prevalence were 240 

driven by different characteristics of their efficacy profiles, deployment strategies, or access to 241 

care for treatment of clinical cases, for either short and long impact follow-up (Fig. 3B-E, S6.1 – 242 

6.2). Across a large proportion of the simulated scenarios, over all parasite and vector targets and 243 

interventions, coverage of the deployed intervention was overwhelmingly the primary driver of 244 

impact especially in low transmission settings (Fig. 3B-E, S6.1-S6.2). For therapeutic 245 

interventions, the impact of short-term passive immunizations such as monoclonal antibodies 246 

relied on their deployment coverage and the health system (Fig. 3B, S6.1). In contrast, for long-247 

acting interventions such as vaccines, impact was driven by deployment coverage and efficacy 248 

(Fig. 3C, S6.1). Highly-efficient vector control interventions such as attractive targeted sugar 249 

baits had a strong effect on prevalence (Fig. 3A), and their duration of effect was the most 250 

important determinant (Fig. 3D, S6.2). The immediate impact of long-term vector control 251 

interventions such as eave tubes was driven by deployment coverage, while their half-life was a 252 

key determinant for preventing resurgence (Fig. 3E, S6.2). 253 

 254 
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 256 

Fig. 3: Effects of novel malaria interventions on disease prevalence and their key drivers of 257 
impact.  258 
(A) Distribution of obtained reduction in PfPR0-99 following deployment of various malaria 259 
interventions under development (shown with different colors) for a range of simulated 260 
transmission settings (specified by median true PfPR2-10 rounded values, x axis). Each boxplot 261 
displays the interquartile range (box), the median value (horizontal line), the largest and 262 
smallest values within 1.5 times the interquartile range (whiskers), and the remaining outside 263 
values (points) of the PfPR0-99 reduction values obtained across all the simulations for each 264 
given setting. The remaining plots of the figure present the results of sensitivity analysis showing, 265 
across the same simulated PfPR2-10 settings, the determinants of intervention impact on PfPR0-99 266 
reduction for anti-infective monoclonal antibodies (B), transmission-blocking vaccines (C), 267 
attractive targeted sugar baits (D) and eave tubes (E). Determinants of impact are shown for 268 
both immediate and late follow-up, when interventions are applied once per year for three years 269 
in a seasonal transmission setting with high indoor mosquito biting (full intervention 270 
specifications provided in Materials and Methods and results for other settings and interventions 271 
shown in Fig. S6.1-6.2 and Table S5.1). 272 
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Minimal requirements of novel malaria interventions to achieve a defined health goal 274 

For the five aforementioned malaria interventions, we explored their optimal profiles for a broad 275 

set of target PfPR0-99 reduction levels, creating landscapes of intervention profiles according to 276 

their minimal characteristics across various transmission settings (Fig. 4-5, S7.1-S8.5). These 277 

landscapes provide a broad and comprehensive overview of the intervention potential 278 

capabilities and limitations in achieving a desired health goal. For example, as opposed to an 279 

anti-infective monoclonal antibody which requires high efficacy and duration to achieve large 280 

PfPR0-99 reduction in only a limited number of settings (Fig. 4A-B, S7.1-S7.2), attractive targeted 281 

sugar baits that kill mosquitoes achieve a wider range of target PfPR0-99 reductions in high-282 

transmission settings as well (Fig. 4C-D, S7.5). Similarly, while in settings with lower 283 

transmission (PfPR2-5 <30%), anti-infective and transmission-blocking vaccines had comparable 284 

requirements in achieving similar PfPR0-99 reduction targets, anti-infective vaccines showed a 285 

higher potential and reached additional targets in high-transmission, endemic settings (Fig. 5).  286 

  287 
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 288 

Fig. 4: Estimated optimal intervention and delivery profiles (TPPs) for monoclonal 289 
antibodies and attractive targeted sugar baits.  290 
The heatmaps in figures (A) and (C) represent landscapes of optimal, constrained intervention 291 
specifications (coverage, efficacy, and half-life) required to achieve a broad range of targeted 292 
minimal reductions in PfPR0-99 (y axis) across different simulated true PfPR2-10 settings (rounded 293 
values, x axis). Each intervention characteristic was minimized in turn, while keeping the other 294 
characteristics fixed (values marked on each figure). Results are shown for an anti-infective 295 
monoclonal antibody (A) and attractive targeted sugar baits (C). For a defined health goal of 296 
reduction in PfPR0-99 (dashed horizontal lines on figures (A) and (C)), the corresponding 297 
minimum product profile requirements are shown for an anti-infective monoclonal antibody in 298 
(B) and attractive targeted sugar baits in (D). Both figures (B) and (D) show how these 299 
requirements change when these interventions are delivered at various frequencies (once or 300 
twice per year), and when the anti-infective monoclonal antibody is delivered in combination 301 
with a blood-stage drug. The simulated health system access was 25%. Descriptions of all 302 
intervention properties for identification of minimal profiles are detailed in Table S2.2, while 303 
additional results for other settings and interventions are provided in Fig. S7.1-S7.6 and Table 304 
S5.1.  305 
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For a detailed overview of landscapes of intervention profiles for all simulated settings and 307 

interventions see Fig. S7.1-S7.6. These landscapes together with the results of the sensitivity 308 

analysis offer an evidence-based prioritization of resources during the product development 309 

process. For example, we found that while both efficacy and half-life are important for 310 

immediate prevalence reductions with monoclonal antibodies, their effect is limited in preventing 311 

resurgence and is only supported by high case-management levels (Fig. 3, 4, S6.1, S7.1-S7.2). 312 

Conversely, the efficacy of anti-infective vaccines drives immediate impact, whereas half-life of 313 

effect has greater importance for achieving and maintaining PfPR0-99 reductions (Fig. 3, 5, S6.1, 314 

S7.3-S7.4). These results suggest that if vaccines and monoclonal antibodies are to support 315 

preventing resurgence, then R&D efforts should focus on increasing and establishing antibody 316 

longevity. 317 

Our analysis shows that coverage is the primary driver of impact (Fig. 3B-E, S6.1-S6.2). This 318 

result has important implications for interventions requiring multiple applications to achieve high 319 

efficacy, indicating that it is of crucial importance to target both vulnerable populations and the 320 

proportion of the population missed by the intervention. While for some interventions high 321 

coverage deployment might be very difficult or impossible to achieve, our analysis shows that 322 

this can be alleviated by increasing the deployment frequency or through deploying 323 

combinations of interventions, which may have cost implications (Fig. 4B, 4D, 5B, 5D, S7.1-324 

S7.5, S8.1-8.4). 325 

We found that combining several interventions targeting different stages in the transmission 326 

cycle can strongly affect the minimum requirements of a putative new intervention, potentially 327 

increasing the impact of an otherwise weaker intervention. For example, for an anti-infective 328 

monoclonal antibody with an initial half-life of 7 months and deployed at a coverage of 60% 329 

reflecting completion of multiple doses, achieving a prevalence reduction of 80% was impossible 330 

when deployed once yearly for three years (Fig. 4A, S7.1). Furthermore, achieving the 331 

aforementioned health goal required an efficacy of 80% when the intervention was deployed 332 

twice per year for three years (Fig. 4B, Fig. S7.2). However, when deployment of the 333 

monoclonal antibody was coupled with a short half-life blood-stage parasite treatment such as 334 

dihydroartemisinin-piperaquine or artemether-lumefantrine, its minimum required efficacy was 335 

considerably reduced for both delivery frequencies (Fig. 4B, S7.1-S7.2, S8.1). Conversely, if we 336 
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assume an initial efficacy of 85% for the monoclonal antibody, we find that its minimal required 337 

half-life can be reduced if we deploy this intervention in combination with the blood-stage 338 

parasite clearing drug (Fig. 4B, S7.1-S7.2, S8.1). These results partly motivated the current 339 

development of anti-infective monoclonal antibodies; use-cases will likely include deployment 340 

with existing or new antimalarial treatment.  341 

We also showed that a modified deployment schedule could reduce requirements for properties 342 

of some interventions. For example, for highly-efficacious attractive targeted sugar baits, higher 343 

coverage and half-life were required when implemented once per year for three years compared 344 

with an accelerated delivery schedule of twice per year for three years (Fig. 4C-D). Except for 345 

high transmission settings (PfPR2-10 > 41%), a minimum required efficacy of 70% was sufficient 346 

to attain the desired health goal for the majority of settings and for both delivery schedules (Fig. 347 

4C-D, Fig. S7.5, Fig. S8.4). This result is also reflected in the sensitivity analysis (Fig. 3D). 348 

Accordingly, the variation in intervention efficacy in the ranges investigated has little importance 349 

in driving the intervention impact and suggests that, once a vector control intervention such as 350 

attractive targeted sugar baits achieves a high killing efficacy (here greater than 70%), a next step 351 

of optimizing other intervention characteristics such as deployment coverage or duration leads to 352 

a higher impact. These results demonstrate the strength of our analysis in identifying the 353 

intervention characteristics to be prioritized for R&D. 354 

When coupled with a short half-life blood-stage parasite treatment, requirements of coverage, 355 

efficacy and half-life were reduced also for anti-infective and transmission blocking vaccines to 356 

achieve the targeted reductions of PfPR0-99 (Fig. 5, S7.3-7.4, S8.2-S8.3). In particular for high-357 

transmission settings (PfPR2-5>25%), given an RTS,S-like half-life of 7 months, both anti-358 

infective and transmission-blocking vaccines could not achieve any of the defined prevalence 359 

reduction goals if deployed singly. This was the case for any deployment coverage given an 360 

initial efficacy of 85% as well as for any efficacy given a deployment coverage of 60%. 361 

Combining vaccine deployment with a blood-stage drug not only significantly expanded the 362 

achievable health targets also to high-transmission settings, but also reduced vaccine properties 363 

requirements. Our analysis reveals that anti-infective vaccines had a higher potential than 364 

transmission-blocking vaccines, requiring less performance and achieving higher prevalence 365 

reductions targets also in higher transmission settings. When combined with blood-stage parasite 366 
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treatment, the coverage, efficacy and half-life requirements of anti-infective vaccines were lower 367 

compared to those of transmission-blocking vaccines for the same prevalence reduction targets 368 

(Fig. 5, S7.3, S7.4, S8.2, S8.3). 369 

Our comprehensive analysis was applied to explore determinants of impact and required profiles 370 

of interventions across two seasonal settings (seasonal and perennial) and three types of 371 

mosquito biting patterns (low, medium and high indoor biting). A detailed overview of impact 372 

determinants and optimal intervention profiles is presented in the Supplementary Materials (Fig. 373 

S6.1-S8.5, and additional key results summarized in Table S5.1).  374 

  375 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


376 

Fig. 5. Estimated optimal intervention and delivery profiles (TPPs) for anti-infective and 377 
transmission blocking vaccines deployed once per year with or without a blood stage 378 
clearing drug.  379 
The heatmaps in figures (A) and (C) represent landscapes of optimal, constrained intervention 380 
characteristic profiles (coverage, efficacy, and half-life) required to achieve various health goals 381 
(quantified by minimal reduction in PfPR0-99, y axis) across different simulated true PfPR2-10 382 
settings (rounded values, x axis). Each intervention characteristic was minimized in turn, while 383 
keeping the other characteristics fixed (values marked on each figure). Results are shown for an 384 
anti-infective vaccine (A) and a transmission blocking vaccine (C). Given a defined health goal 385 
of reduction in PfPR0-99 (minimum 70% reduction, dashed horizontal lines on figures (A) and 386 
(C)), the corresponding minimum product profile requirements are shown for the same two 387 
interventions, i.e., for an anti-infective vaccine in (B) and transmission blocking vaccine in (D). 388 
Both figures (B) and (D) show how the minimum required profiles change when these 389 
interventions are delivered in combination with a blood-stage drug. The simulated case 390 
management level (E5) for all the displayed optimization analyses was assumed 25%. The 391 
descriptions of all intervention properties for identification of minimal profiles are detailed in 392 
Table S2.2. 393 

 394 

 395 
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Discussion  396 

In this study, we introduced a new modeling and machine-learning framework that for the first 397 

time enables quantitative differentiation between operational, setting, and intervention 398 

parameters as determinants of intervention impact, using detailed simulation models of disease. 399 

Our framework can be used for any disease where a valid model of disease progression or natural 400 

history of disease is available. We provided mathematical tools for efficiently and quantitatively 401 

defining the minimum profiles of malaria interventions as well as delivery approaches required 402 

to reach a desired health goal. Furthermore, our methodology provides a means to refine the 403 

identified optimal efficacy and duration characteristics as additional information becomes 404 

available. As a result, we can apply fully-detailed disease models to direct the design of novel 405 

interventions and understand how intervention-specific, epidemiological and systems factors 406 

jointly contribute to impact and thus inform TPP guidance. Most immediately, the approach is 407 

highly relevant to define successful interventions against emerging diseases such as SARS-CoV-408 

2, and to support efficient, fast development of operational strategies. As uncertainties in disease 409 

progression and epidemiology can be incorporated in our approach, it also provides a way to 410 

systematically sort through large complex landscapes of unknowns and thus refine properties of 411 

interventions or clinical trials as more knowledge is available. 412 

The value of our approach is realized through iterative collaboration with product development 413 

experts, to perform model-based guidance throughout the development process, and refine 414 

feedback on model predictions as interventions progress through development. For malaria, 415 

where multiple interventions are in development, it also offers an approach for product 416 

developers from diverse fields (such as therapeutics and insecticide development) to collaborate 417 

and incorporate knowledge of other interventions into their TPP development. Although in our 418 

analysis we used reduction of PfPR0-99 as a health goal, our method can be applied to other 419 

disease burden statistics as required. The same rationale applies for investigation of other 420 

deployment strategies, required doses of interventions or further intervention combinations. 421 

While also bringing valuable quantitative insights to guide product development, our analysis of 422 

novel malaria interventions reproduces previous findings concerning intervention characteristics 423 

which are key drivers of impact. Previous studies have shown that intervention coverage is a 424 

major determinant of impact in the context of mass drug administration (17), of vaccines (35) as 425 
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well as vector control (36). Furthermore, our analysis reaffirms previous work showing the 426 

ability of vector control interventions to achieve substantial reductions in malaria burden (37).  427 

Our approach constitutes a powerful tool to help address the challenges of current malaria 428 

strategies and develop new interventions to progress towards malaria elimination. While 429 

currently promising interventions such as insecticide treated nets, seasonal malaria 430 

chemoprevention (SMC) and intermittent preventative treatment (IPT) have been very successful 431 

at reducing malaria incidence and saving lives, their improved burden reduction and future 432 

success is currently challenged by limited adherence, resource and time constraints to increase 433 

coverage and usage in underserved populations, as well as resistance (38). Furthermore, for 434 

settings where SMC has not been implemented or not recommended (for example in East Africa 435 

or in perennial settings), there remains a gap in available interventions to protect vulnerable 436 

populations who experience the highest burden of malaria. Similarly, for settings with outdoor 437 

biting mosquitoes, the development and rollout of novel vector control interventions is needed. 438 

New therapeutics and immune therapies suitable for seasonal delivery such as long-acting 439 

injectables or monoclonal antibodies are currently being developed that may close one of these 440 

gaps (39, 40). However, in order to efficiently make decisions on their development, guidance on 441 

their key performance characteristics and definition of their TPP documents is needed from early 442 

stages. Our quantitative framework can support the development of interventions from the 443 

beginning by generating the evidence to inform and define evaluation criteria ensuring new 444 

products meet relevant health targets, while considering how these products may affect disease 445 

burden and epidemiology within a population. As we show here, this relies on iterative dialogue 446 

with stakeholders, to first define health targets, simulated scenarios, achievable intervention 447 

properties and operational settings. The modelling part of the framework incorporates all this 448 

information as well as relevant disease transmission dynamics, building an in-silico system for 449 

testing the developed intervention. Next, the sensitivity analysis part of the framework informs 450 

which intervention characteristics drive impact and are thus crucial in achieving the defined 451 

health goal, providing insights on the development processes to be prioritized. Finally, the 452 

optimization analysis part of the framework reveals the potential of the developed intervention 453 

and how its efficacy and coverage requirements change according to the defined health targets 454 

and deployment setting. The landscapes of intervention profiles help product developers to gauge 455 

development and investment efforts and select promising products. Furthermore, our approach 456 
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allows investigating combinations of new and existing interventions, identifying alternatives to 457 

alleviate shortcomings such as coverage limitations. To achieve a final TPP, several iterations of 458 

the analysis are required, to ensure that the optimal tradeoffs between intervention capabilities 459 

and target goals for a given setting are achieved. 460 

As with all modelling studies, our approach is exposed to several limitations. The provided 461 

quantitative estimations in this study incorporate an increased level of uncertainly due to the 462 

additional emulation layer and are dependent on the performance of the trained emulator. We 463 

addressed this challenge with extensive adaptive sampling and testing to ensure a high level of 464 

accuracy of the trained emulators (Fig. 2, S4.1-S4.3, Table S4.1). Despite the intrinsic 465 

uncertainty, the framework is intended to provide guiding principles and an efficient means of 466 

exploring the space of intervention characteristics which otherwise would not be possible. 467 

Evidently, our analysis relies on the disease model assumptions of disease and transmission 468 

dynamics as well as expert opinion of likely intervention parameterizations in absence of clinical 469 

knowledge. Lastly, the current analysis explored a subset of use-cases, transmission settings and 470 

intervention combinations. Future work should focus on the likely settings and relevant use cases 471 

as the interventions are being developed and their TPP documents refined. 472 

Moving beyond the work presented in this paper, our framework would allow combining 473 

simulation models with other sources of data describing geographical variation in disease, for 474 

example, modelled health systems or modelled prevalence (41, 42) and to incorporate 475 

interactions of interventions with novel interventions for surveillance. Clinical trials for new 476 

interventions could thereby be prioritized to geographical settings, where public health impact is 477 

likely to be maximized and where appropriate, to inform decisions on achieving non-inferiority 478 

or superiority endpoints (43, 44). A significant extension is incorporating economic 479 

considerations which may affect development decisions, including both costs of R&D, as well as 480 

implementation and systems costs for final deployment.  481 

 482 

Materials and Methods 483 

The approach introduced here combines infectious disease modeling with machine learning 484 

to understand determinants and define quantitative properties of target product profiles of new 485 
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malaria interventions. The building blocks and methodology of the approach are schematically 486 

outlined in Fig. 2 which guides the following sections of Materials and Methods.  487 

1 Description of the disease model 488 

1.1 Individual-based model of malaria transmission 489 

We used OpenMalaria (33, 45), an open source stochastic individual-based model to 490 

simulate malaria epidemiology and transmission dynamics across humans and mosquitoes in 491 

various settings. OpenMalaria considers the natural history of malaria in humans linked with a 492 

deterministic, entomological model of the mosquito oviposition cycle and malaria transmission 493 

in mosquitoes (46, 47) (Table S1.1). The modelled transmission cycle (Fig. 1) considers the 494 

chain of processes following infection of a human host, simulating malaria infection in 495 

individuals and modelling infection characteristics such as parasite density, duration of infection, 496 

infectivity to mosquitoes, and health outcomes such as morbidity, mortality or anemia. 497 

OpenMalaria specifically captures heterogeneity in host exposure, susceptibility and immune 498 

response, taking into consideration the effects of several factors such as acquired immunity, 499 

human demography structure, or seasonality (48-51). Furthermore, the model includes a detailed 500 

representation of the health system (52), and of a wide range of human and vector control 501 

interventions while tracking multiple health outcomes over time (Fig. 1, Table S1.1).  502 

OpenMalaria has been widely documented and validated against a multitude of field 503 

studies, compared to existing models and used in extensive studies to provide evidence for the 504 

epidemiological effects of various interventions(10, 29, 33, 53-55). It comprises 14 model 505 

variants based on distinct sets of assumptions on its epidemiology and transmission components 506 

(45). For the present analysis, the “base” simulation model was used. The mathematical 507 

equations of the model, its assumptions and calibrations have been thoroughly described in 508 

numerous previous publications, therefore are not specified here, however, an overview of the 509 

OpenMalaria modelled processes and assumptions along with the corresponding references are 510 

provided in Table S1.1. 511 

 512 

1.2 Calibration of the disease model and description of simulation experiments 513 

OpenMalaria has been calibrated and validated in previous studies using historical 514 

epidemiological data (29, 33, 45). The present analysis uses a previously-calibrated version of 515 
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the model which reflects demographics, epidemiology, entomology, health system and 516 

seasonality of a health facility catchment area in Tanzania (50, 52, 56).  517 

The simulated human population size in this analysis was 10’000 individuals, with its age 518 

structure informed by data collected from a health and demographic surveillance site in Ifakara, 519 

Tanzania, available through the INDEPTH network (57). For all simulations, we assumed there 520 

were no imported infections during the whole study period.  521 

Health system characteristics (Table S1.1) were defined through parameterization of a case 522 

management model based on data provided by the Tanzanian National Malaria Control Program 523 

(52). To define the simulated case management level, the probability of effective cure within two 524 

weeks from the onset of fever (E14) was varied within the interval [0 - 0.8] corresponding to a 525 

probability of seeking care (access to treatment) within 5 days from the onset of fever (E5) within 526 

the interval [0.04 - 0.5] (53). During the model simulations, the case management level was 527 

constant over time. 528 

Mosquito entomological parameters and seasonal exposure patterns were estimated from 529 

field studies conducted in the Namawala and Michenga villages located nearby Ifakara in 530 

Tanzania (58, 59). Two archetypal seasonal settings were simulated: a seasonal exposure setting 531 

with one transmission peak in September estimated from the mentioned field studies (Fig. S2.1), 532 

and a perennial setting with uniform, constant exposure throughout the year. Two mosquito 533 

species were present in the simulated settings: endophagic (indoor-biting, human blood index 534 

equal to 0.99) and exophagic (outdoor-biting, human blood index is 0.5), respectively. The ratios 535 

between the population sizes of indoor and outdoor mosquito species were classified into three 536 

levels corresponding to high (indoor proportion is 0.8 out of total mosquito population), mid 537 

(indoor proportion is 0.5) and low indoor biting (indoor proportion is 0.2). The extent of malaria 538 

transmission in each simulation was defined by the yearly entomological inoculation rate (EIR). 539 

For each simulation, EIR was sampled from the interval [1, 25] leading to a simulated range of 540 

Plasmodium falciparum parasite rate or prevalence (PfPR) distributions across the various 541 

transmission settings (Figures S2.1, S2.2, Table S2.1).  542 

 543 

1.3 Definition of intervention profiles 544 

Adopting a holistic view, we built an agnostic, standardized representation for each 545 

malaria intervention. Accordingly, a malaria intervention was characterized through the targets 546 
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of the transmission life cycle it affects, along with the efficacy, half-life and decay of its effect 547 

(Figure 1, S2.3, Table S2.1). The efficacy of a therapeutic intervention was quantified by its 548 

ability to clear parasites or prevent infection, while for mosquito-targeted interventions (vector 549 

control tools) it corresponded to the ability of the intervention to kill or prevent mosquitoes from 550 

biting human hosts. For each intervention, its efficacy decayed over time according to a specific 551 

decay type (defined in Fig. S2.3). The coverage of interventions was quantified by the 552 

percentage of the population affected by the respective intervention. Geographical setting 553 

characteristics such as entomological inoculation rates (EIR), seasonality, case-management 554 

coverage, as well as transmission and vector characteristics were also included in the simulation 555 

specifications (Fig. 1, Table S2.1). 556 

We defined the following intervention targets in the transmission cycle (Fig. 1): 557 

- Anti-infective: acts at the liver stage and prevents occurrence of a new infection  558 

- Blood stage clearance: clears blood-stage parasites by administration of a drug  559 

- Transmission blocking: prevents parasite development into gametocytes 560 

- Mosquito life-cycle killing effect: kills mosquitoes during different stages of their life cycle, 561 

such as, for example, before a blood meal (pre-prandial killing) and/or after a blood meal 562 

(post-prandial killing). Furthermore, mosquitoes are affected by vector control interventions 563 

according to their indoor and outdoor biting patterns. 564 

The length of the intervention effect was described via either half-life for exponential, 565 

sigmoidal or biphasic decay profiles, or by duration for step-like decay profiles. Generally, half-566 

life refers to half-life of intervention efficacy decay, representing the time in which the initial 567 

intervention efficacy has been reduced by 50% (Fig. S2.3, Table S2.1). As opposed to half-life, 568 

the duration of effect is equivalent to the entire decay time. For simplicity, since only one 569 

intervention had a step-like decay, we use the words half-life and duration interchangeably.  570 

To define the breadth, range and profiles of simulated malaria interventions, we 571 

collaborated with end users at the Bill & Melinda Gates Foundation and the product development 572 

partnerships PATH’s Malaria Vaccine Initiative (PATH-MVI) and Innovative Vector Control 573 

Consortium (IVCC). For each new intervention in the portfolio of PATH-MVI, IVCC and others, 574 

we undertook several expert discussion groups to catalogue the ranges of potential effectiveness; 575 

potential delivery strategies; parasite or vector targets; the likely properties in terms of action 576 

(target), efficacy, duration and decay; and use cases/delivery (age target, mass intervention, 577 
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yearly deployment or other). These results are summarized in Table S2.1 which presents a 578 

comprehensive description of all intervention characteristics, parameter values, as well as the 579 

ranges they were varied within. Setting-specific characteristics used for the different simulated 580 

scenarios are also summarized in Table S2.1. 581 

In our current study, each intervention or combination of interventions was applied as 582 

mass intervention targeting all ages equally, along with continuous case management. In this 583 

analysis, we did not examine targeting particular populations or age groups to develop our 584 

approach. The deployed mass intervention packages followed a long period of model warm up 585 

(150 years), and were implemented in June and/or December for three years (Fig. S3.1). 586 

Coverage at deployment time refers to the percentage of the population covered by the 587 

intervention’s initial efficacy, irrespective of how many doses/applications are required to reach 588 

that coverage, assuming that the necessary doses have previously occurred. 589 

 590 

1.4 Translation of input EIR to PfPR2-10 and PfPR0-99 591 

For each simulation, OpenMalaria requires the definition of the intensity and seasonality 592 

of malaria exposure specified through the input EIR level and its yearly profile in the absence of 593 

interventions (Fig. S2.1). EIR is an appropriate measure for reflecting transmission intensity 594 

(60), however it is difficult to measure in the field and its interpretation in the context of 595 

intervention impact is difficult to apprehend when looking at the effects of drugs and vaccines 596 

(61, 62). For this reason, although EIR is the force of infection input to all OpenMalaria 597 

simulations, we report simulation outcomes and downstream analyses at the corresponding 598 

median PfPR2-10 and PfPR0-99 before the interventions are deployed. We report true infection 599 

prevalence and not patent PCR or RDT-detected. To do so, we discretized the continuous EIR 600 

space into discrete unit-wide intervals and the median PfPR was calculated across the obtained 601 

PfPR for all simulations in each discrete interval (Fig. S2.2). 602 

 603 

1.5 Definition of impact and health goals 604 

A comprehensive set of simulated scenarios was built by sampling uniformly the 605 

parameter space of setting and intervention characteristics. To estimate the impact of the 606 

deployed interventions, in each simulation, we calculated the reduction in PfPR0-99 attributable to 607 

the deployed intervention. PfPR0-99 reduction was calculated by comparing the initial average 608 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


prevalence in the year before any interventions were deployed to the average yearly prevalence 609 

obtained in the first year (short follow-up) and in the third year (long follow-up) after 610 

deployment of interventions (Fig. S3.1). Consequently, the defined health goals corresponded to 611 

a given minimum threshold of PfPR0-99 reduction that the deployed interventions should achieve.  612 

Figures S3.2 – S3.4 present the distributions of obtained PfPR0-99 reduction for the 613 

OpenMalaria simulation experiments covering all the interventions and deployments investigated 614 

in the present study. In seasonal, low transmission settings (EIR < 2) a proportion of simulations 615 

reached elimination before any intervention was deployed and were removed from the analysis 616 

(Fig. S3.5). Since this happened for over 75% of simulations at EIR<2, we did not investigate 617 

optimal intervention profiles for transmission settings with EIR<2. Arguably, for these settings 618 

close to elimination, a different health goal, such as probability of elimination, would be more 619 

appropriate which is not within the scope of the present study focusing on PfPR0-99 reduction. 620 

 621 

2 Building a disease model emulator with Gaussian processes 622 

As it was computationally intensive and challenging to run an exhaustive number of 623 

simulations in order to explore with OpenMalaria all the parameter space for diverse 624 

combinations of interventions, settings and deployments, we applied machine learning 625 

techniques and kernel methods to leverage our analysis. Precisely, starting from a training 626 

dataset of simulations generated with OpenMalaria, we used Gaussian process (GP) models (24) 627 

to infer the relationship between simulation variables (e.g., intervention coverage, half-life, 628 

efficacy, etc.) and corresponding intervention impact (PfPR0-99 reduction). This approach 629 

allowed us to build a fast, simplified predictive model that could provide estimates of the disease 630 

model output for any new inputs without running new OpenMalaria model simulations.  631 

Gaussian process models are non-parametric models which define a prior probability 632 

distribution over a collection of functions using a kernel, smooth function. Precisely, given the 633 

relationship 634 

� � ���� �  	 

where y in our case is the PfPR0-99 reduction and x represents the set of intervention parameters 635 

x1, …, xn, the main assumption of a GP is that  636 


������, �����, … , ������ ~ ���, Σ� 

where  637 
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Σ��,��
�  ���� , ��� 

is the covariance matrix of the Gaussian distribution, � is its mean and K is a kernel function 638 

(24). Once data is observed, the posterior probability distribution of the functions consistent with 639 

the observed data can be derived which is then used to infer outcomes at unobserved locations in 640 

the parameter space (24). The intuition behind a GP model is based on the “smoothness” 641 

relationship between its components. Accordingly, points which are close in the input parameter 642 

space will lead to close points in the output space. 643 

 644 

2.1 Training data  645 

For each intervention and setting, a training dataset was built using discrete Latin hypercube 646 

uniform sampling (63) across the input parameter space (defined in Table S2.1). Ten stochastic 647 

realizations (replicates) of each sampled data point were considered. OpenMalaria was run on the 648 

sampled data points and PfPR0-99 was calculated for both short and long follow-up. The size of 649 

the training set was varied between 10 and 1000 points (100 – 10000 including replicates) for 650 

several simulation experiments (Fig. S4.1) and the performance of the trained GP was assessed 651 

via the Pearson correlation coefficient r2. The minimum training set size which led to r2 > 0.95 652 

was selected for the remaining simulation experiments.  653 

 654 

2.2 Gaussian process emulators  655 

For each transmission setting and intervention, a GP model with a Gaussian kernel was 656 

trained in a 5-fold cross-validation scheme using the training set with OpenMalaria simulations. 657 

For training the GP, we used the R package HetGP version 1.1.1 (64, 65). HetGP is a powerful 658 

implementation of GP models, featuring heteroskedastic GP modeling embedded in a fast and 659 

efficient maximum-likelihood-based inference scheme.  660 

GP performance was assessed by calculating the correlation between true and predicted 661 

outputs on out-of-sample test sets as well as the mean squared error (Fig. S4.2 – 4.3, Table S4.1). 662 

Precisely, the training set was split in 5 subsets and, iteratively, 4 of these subsets were used for 663 

training the GP, while the remaining one was used as an out-of-sample test set during the cross-664 

validation procedure.  After assessing the prediction error during the cross-validation procedure, 665 

the GP was trained using the entire training set. Furthermore, since the trained GP model 666 

provides the mean and variance of each predicted output, we used this probabilistic 667 
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representation to assess the uncertainty of the trained model across the entire parameter space 668 

and to refine the GP model through adaptive sampling (66-68). Accordingly, we iteratively 669 

sampled new training points from high-uncertainty regions of the parameter space and updated 670 

the model with the new training samples until the correlation between true and predicted values 671 

on an out-of-sample test set reached a plateau. Finally, a separate out-of-sample test set was built 672 

to assess the overall performance of the GP (Fig. S4.2 – 4.3, Table S4.1). 673 

 674 

3 Identifying impact determinants through sensitivity analysis 675 

In order to estimate the contribution of each model input and its interactions with the 676 

other inputs to the variance of the model outcome, we conducted a global sensitivity analysis 677 

based on variance decomposition (69). This analysis shows which input parameters have higher 678 

impact on the model outcome. It relies on the decomposition of the output variance in a sum of 679 

individual input parameter conditional variances: 680 

Var�Y� �  � V�
�

� � � V�	
	
��

� � � V��…� 

where Y is the model outcome (in our case, PfPR0-99 reduction), d corresponds to the number of 681 

model inputs, and the conditional variances are defined as: 682 

V� � Var�E�Y|x��� 

V�	 � Var �E�Y�x�, x	� ! V� ! V	 
V�	 � Var �E�Y�x�, x	, x� ! V�	 ! V	 ! V� ! V� ! V	 ! V 

… 683 

with x1, …, xn representing the model input parameters.  684 

Based on the above decomposition of output variance, the first order sensitivity index is defined 685 

as: 686 

S� � V�
Var�Y� 

and corresponds to the proportion of output variance assigned to the main effect of Xi, i.e., 687 

regardless its interactions with other model inputs (69, 70).  688 

To account for the contribution of each model input as well as the variance of its 689 

interactions with other inputs to the variability of the model output, the total effect sensitivity 690 

index is used: 691 
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T� � 1 !  Var�E�Y|x~���
Var�Y�  

where the notation ~i stands for all indices except i (69, 70). 692 

In the above decomposition of model output variance, by replacing the expressions of the 693 

sensitivity indexes, the following properties can be deduced: 694 

� S�
�

� � � S�	 � � � S��…� � 1
	
��

 

and  695 

� T� % 1
�

 . 

To compute the sensitivity indexes, we use the function “soboljansen” from the R 696 

package “sensitivity” (71). The function estimates the sensitivity indices through MCMC 697 

sampling, using a Monte Carlo approximation for computing conditional expectations. Within 698 

the sampling scheme, we sampled 100’000 points to estimate the sensitivity indices. 699 

Calculating the sensitivity indices defined above, the variance of the GP emulator output 700 

was thus decomposed into proportions attributable to intervention characteristics, i.e., 701 

intervention efficacy, half-life and deployment coverage, as well as access to care. Using the 702 

main effects, we defined the relative importance ri of each characteristic as a proxy for impact 703 

determinants as follows: 704 

'� �  (�
∑ (*�
���

 

where d is the number of intervention characteristics and ∑ '� � 1�
��� . 705 

4 Finding minimal intervention properties 706 

The trained GP models for each transmission setting and intervention were used within a 707 

general-purpose optimization scheme in order to identify minimum intervention properties that 708 

reach a defined PfPR0-99 reduction goal given operational and intervention constraints.  709 

Let  710 

+��� � +���, ��, ��, ��� 

denote the GP model predicting the mean prevalence reduction obtained after deploying an 711 

intervention with given characteristics in a transmission setting, with 712 

�� � ,--. /-01'2+1 

�� � ,--. 32.� ! .*�1 
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�� � ,--. 1��*/2/� 

�� � 2//144 ,- ,'12,516,. 
For various levels of PfPR0-99 denoted with pk, each intervention characteristic was 713 

optimized separately, keeping the remaining characteristics as well as the level of case 714 

management fixed to pre-set levels. Precisely, the optimization procedure searches for 715 

min����| �~� 
such as  716 

+��� % :�  

with the constraints: 717 

.� ;  �� ;  <� ,  
where li and ui are the lower and upper bounds of xi, respectively and the notation ~i is used to 718 

represent all the characteristics except i. A detailed description of the parameter specifications 719 

during optimization for each intervention is provided in Table S2.2. 720 

To solve the above optimization problem, we used a general nonlinear augmented 721 

Lagrange multiplier method (72, 73) implemented in the R package “Rsolnp” (74). To ensure 722 

optimality of the obtained solutions and avoid local minima, 10 random restarts were chosen 723 

among 1000 uniformly-sampled input parameter sets and the optimization procedure was run 724 

separately for each restart (implemented in function “gosolnp” in the same R package). To 725 

capture the variance of the optimal intervention profile, since the output of a GP model is a 726 

distribution, we solved the above optimization problem for several cases and we report the 727 

distribution of the obtained minima when:  728 

�*�   +��� �  � 

�**�  +��� �  � =  > 

�***� +��� �  � =  2> 

where � is the predicted mean of the GP model and > is the standard deviation. Where the 729 

nonlinear optimization algorithm did not find any solutions, we performed an additional fine grid 730 

search of 10000 uniformly-sampled data points. 731 

In seasonal settings, at low transmission (simulated EIR < 2, corresponding simulated 732 

true PfPR2-10 < 11.7%), over 75% of simulations reached malaria elimination (PfPR0-99 = 0) 733 

under the simulated levels of case management, before intervention deployment (Fig. S3.5). For 734 

this reason, the space of obtained prevalence reductions following intervention deployment was 735 
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rather sparse and the obtained optima were not reliable and often did not converge. Therefore, 736 

we chose to report minimum intervention profiles for settings with true PfPR2-10 >= 11.7% (with 737 

RDTs this yields a patent PfPR2-10 >= 5.8%).  738 

 739 

5 Iterative communication with stakeholders 740 

During the development of our methodological framework, we actively engaged in regular 741 

communication and exchanges with different expert groups. The stakeholders involved in these 742 

discussions were the Bill and Melinda Gates Foundation (BMGF), the Innovative Vector Control 743 

Consortium (IVCC) and the PATH’s Malaria Vaccine Initiative (PATH-MVI). Coordinated by 744 

BMGF, these exchanges ensured a crucial discussion environment, aiding and guiding the 745 

methodology at various levels: intervention profiling, and defining relevant intervention use 746 

cases, and product characteristics. Furthermore, the framework has been presented and validated 747 

in presence of the stakeholders in successive meetings. These discussions contributed towards 748 

refining the investigation of various intervention profiles and led to exploration of intervention 749 

combinations. Subsequently, the iterative exchanges with the stakeholders have not only shaped 750 

but also proven the value of our methodological framework in its versatility to adapt addressing 751 

relevant questions along the product development pathway. 752 

 753 

Acknowledgments:  754 

We would like to thank Lydia Burgert, Theresa Reiker, Andrew Shattock, Thomas Smith, and 755 

Dylan Muir for insightful discussions and feedback on the developed methodology and the 756 

manuscript. We would also like to thank Thomas van Boeckel and Amalio Telenti for providing 757 

useful feedback on the manuscript. Calculations were performed at sciCORE 758 

(http://scicore.unibas.ch/) scientific computing core facility at University of Basel. We would 759 

further like to thank collaborators at the Innovative Vector Control Consortium (IVCC), PATH’s 760 

Malaria Vaccine Initiative (MVI) and Joerg Moehrle from Medicines for Malaria Venture 761 

(MMV) for their insightful discussions and feedback on the model scenarios. This work has been 762 

possible thanks to the Malaria Team at the Bill and Melinda Gates Foundation who facilitated 763 

exchanges with the product development partners and supported model scenarios and 764 

interpretations. In particular, we would like to thank Scott Miller, Jean-Luc Bodmer, Laura 765 

Norris, Bruno Moonen, Dan Strickman, and Philip Welkhoff.  766 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


Funding: This work was supported by the Bill and Melinda Gates Foundation (OPP1170505 to 767 

MAP) and the Swiss National Science Foundation (PP00P3_170702 to MAP);  768 

 769 

Author contributions: M.G., G.Y. and M.A.P conceived the study, designed the simulation 770 

experiments, developed methodology and analyzed the results. F.C., E.C., and N.C. provided 771 

methodological expertise. E.M.S., N.H., M.M., and S.R contributed with their expertise 772 

regarding product development, intervention properties and guided analysis. M.G., G.Y., M.A.P. 773 

wrote the manuscript. All authors provided continuous feedback and approved the final 774 

manuscript;  775 

 776 

Competing interests: All authors declare no competing interests;  777 

 778 

Data and materials availability: All the analysis code used in the paper as well as 779 

corresponding documentation, parameterizations and configuration files for the software 780 

workflow necessary to generate the simulation data with OpenMalaria and reproduce the analysis 781 

are available at https://github.com/SwissTPH/TPP_workflow. 782 

 783 

 784 

Supplementary Materials are below following the references 785 
. 786 
List of Supplementary Figures and Tables 787 
The following supplementary Figures and Tables complement the analysis and results reported in 788 
the main manuscript and are organized as follows: 789 

• Description of the malaria disease transmission dynamics (OpenMalaria) model components 790 
and assumptions:  791 

o Table S1.1. Overview of the OpenMalaria model components. 792 

• Simulated malaria transmission dynamics in the presented analysis:  793 
o Fig. S2.1. Illustration of the yearly malaria transmission and prevalence patterns 794 

in simulated seasonal settings. 795 
o Fig. S2.2. Simulated distributions of true and patent (detected with PCR or RDT) 796 

PfPR0-99 and PfPR2-10 for various input EIR levels in absence of interventions. 797 

• Parameterizations of simulated malaria interventions and their optimization setup:  798 
o Fig. S2.3. Representation of decay and the range of efficacy and half-life against 799 

different parasite or vector targets for intervention-agnostic malaria interventions. 800 
o Table S2.1. Description and ranges of simulation variables. 801 
o Table S2.2. Specifications of the optimization procedure for TPP development. 802 

• Simulation outputs:  803 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


o Fig. S3.1. Examples of OpenMalaria simulation outputs. 804 
o Fig. S3.2. Distributions of prevalence reduction following yearly deployment of 805 

single interventions. 806 
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o Fig. S8.2. Optimal intervention profiles (TPPs) for anti-infective vaccines under 849 
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1 Disease model 1180 
 1181 
 1182 

Name Description and assumptions References 

Key modelled epidemiological processes 

Malaria infection of 
humans 

- Determined by EIR which is a model input and affects 
the force of infection in the simulated setting 

- Exposure of humans to mosquitoes depends on age 

(33, 75) 

Infection 
progression in 
humans: asexual 
parasite densities 
and immunity 

- Blood stage parasite density depends on the time since 
infection and is affected by naturally acquired immunity  

- The duration of infection follows a log-normal 
distribution  

- Immunity (both pre-erythrocytic and blood-stage) 
develops progressively following consequent episodes 
of exposure to infection and decays exponentially 

- Acquired immunity reduces parasite density of 
subsequent infections 

- Super-infection is possible with cumulative parasite 
densities 

(33, 48, 75, 
76) 

Transmission from 
infected humans to 
mosquitoes 

- Depends on the density of parasites present in the 
human with gametocyte densities following a lag from 
parasite densities 

(33, 49, 77) 

Clinical illness, 
morbidity, 
mortality and 
anemia 

- Acute clinical illness depends on human host parasite 
densities and their pyrogenic threshold which evolves 
over time depending on the individual exposure history 

- Acute morbidity episodes can be uncomplicated or 
evolve to severe episodes 

- A proposition of the severe episodes leads to deaths 

(33, 50, 51, 
78) 

Modelled characteristics of the transmission setting 

Population age 
structure 

- Informed by health and demographic surveillance data 
from Tanzania 

(50, 57) 

Transmission 
seasonality 

- Seasonally-forced, the same transmission pattern is 
reproduced each year in absence of interventions 

(75, 79) 

Case management 

-  Modelled through a comprehensive decision tree-based 
model which determines the corresponding treatment 
implications depending on the occurring clinical events 
such as fevers and seeking of care 

- Its representation includes specification of diagnostic 
tests, effects of treatment, case fatality, case sequelae 
and cure rates 

(52) 

Entomological 
setting 

- Comprehensive simulation of the mosquito lifecycle and 
behavior towards human and animal hosts (biting, 
resting) embedded in a dynamic entomological model of 
the mosquito oviposition cycle 

- Multiple vector species can be simulated simultaneously 

(47) 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


Modelled interventions 

Vector control 
- Available interventions: long-lasting insecticide-treated 

nets (LLINs), indoor residual spraying (IRS), house 
screening, baited traps, repellents, push-pull 

 

Drugs and Vaccines 
- Drugs and vaccines acting at various levels of the 

parasite life cycle (transmission blocking, anti-infective, 
blood-stage clearance) 

 

Deployment 
characteristics 

- Interventions can be deployed for several rounds to a 
targeted group of individuals and specified coverages 

 

Simulation regimes and model variants 

Time steps - Simulation outputs are tracked every 5 days  

Model variants 
- Varying assumptions in immunity decay, treatment and 

heterogeneity of transmission result in 14 model variants  
(45) 

Software availability and documentation 

- Source code and wiki page available on GitHub: https://github.com/SwissTPH/openmalaria/ 

 1183 

Table S1.1  1184 
Overview of the OpenMalaria model components.  1185 
The individual based stochastic model of malaria in humans and transmission has been described 1186 
previously. This model was originally developed in 2003-2006 (33), with mosquito dynamics 1187 
updated in 2008 (46) and an additional 13 structural model variants developed and parameterized 1188 
in 2012 (45) representing different model assumptions on immunity decay, disease, 1189 
comorbidities, and heterogeneity in transmission. 1190 
  1191 
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2 Disease scenarios 1192 
 1193 

 1194 

Figure S2.1  1195 
Illustration of the yearly malaria transmission and prevalence patterns in simulated 1196 
seasonal settings.  1197 

(A) Observed, normalized, monthly seasonal pattern of malaria EIR in Namawala, Tanzania 1198 
extracted from (50). (B) Corresponding input, 5-day seasonal EIR pattern used in OpenMalaria 1199 
simulations, obtained by scaling and extrapolating the monthly seasonality profile from (50) to 5-1200 
day time steps. For this example, the simulated input EIR was 7.78 infectious bites per person 1201 
per year. (C) Resulting simulated yearly PfPR0-99 profile. In all figures, the arrows indicate the 1202 
month of September, the peak of transmission and show the delay between the peak of 1203 
transmission and the resulting peak in malaria prevalence. The dotted vertical lines on figures 1204 
(B) and (C) indicate the deployment times of first and second rounds of malaria interventions 1205 
when applicable. 1206 
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Figure S2.2  1209 
Simulated distributions of true and patent (detected with PCR or RDT) PfPR0-99 and 1210 
PfPR2-10 for various input EIR levels in absence of interventions. 1211 

The input entomological inoculation rate (EIR) defines the simulated malaria transmission level. 1212 
In every simulation experiment, EIR was uniformly sampled from the interval [1, 25]. In figures 1213 
(A) – (C), each panel corresponds to a simulated setting and presents the distributions of true 1214 
(A), patent with PCR (B) and patent with RDT (C) Plasmodium falciparum prevalence (PfPR, 1215 
shown with boxplots, blue for 0-99 years old and orange for 2-10 years old) at varying EIR 1216 
levels (x axis). The 6 represented settings are defined by the seasonality pattern (perennial shown 1217 
in the first row, or seasonal shown in the second row of each figure) and mosquito indoor biting 1218 
behavior (low- shown in the first column, mid- shown in the second column or high-indoor 1219 
biting shown in the third column of each figure). Each EIR level on the x axis is defined as a set 1220 
of continuous input EIR values which range between the current level and the current level - 1, 1221 
e.g., an input EIR level of 1 contains EIR values in the interval (0, 1]. For each EIR level and 1222 
setting, the case management levels, i.e., the probability of seeking care (access to treatment) 1223 
within 5 days from the onset of fever (E5), was varied within the interval [0.04 - 0.5]. PCR stands 1224 
for polymerase chain reaction and RDT stands for rapid diagnostic test. 1225 
  1226 
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 1227 

Figure S2.3  1228 
Representation of decay and the range of efficacy and half-life against different parasite or 1229 
vector targets for intervention-agnostic malaria interventions.  1230 

The simulated malaria interventions (A – F) were modeled in terms of their targets in the malaria 1231 
transmission cycle. The effect of each intervention is represented through the half-life of its 1232 
decay (x axis) as well as the initial efficacy (y axis). The color blocks represent the range of 1233 
parameter space of efficacy and half-life of decay considered in the current analysis for each 1234 
intervention. The half-life and the color block does not represent the entire duration of effect, as 1235 
that depends on the decay shape chosen for each intervention. The decay shape for each 1236 
intervention is displayed in the right side insert of each plot where the dotted lines specify the 1237 
half-life and corresponding half of the intervention efficacy. The definitions of all the parameter 1238 
ranges for all interventions are provided in each figure on the lower left side and detailed in 1239 
Table S2.1. 1240 
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Table S2.1 Description and ranges of simulation variables.  1242 
Within each OpenMalaria simulation, the varied parameters and ranges correspond to the 1243 
profiles of applied interventions (see Fig S2.3 for visual ranges of vector and parasite targets), as 1244 
well as the transmission setting characteristics. The profile of each modeled malaria intervention 1245 
is defined by its target, the ranges of the deployment coverage, initial efficacy, half-life or 1246 
duration of effect as well the type of decay. Where interventions are applied to individual 1247 
humans, in the present demonstrative analysis this is equally applied across ages, and not 1248 
targeted to certain population. The transmission setting is defined by the yearly EIR, seasonality 1249 
level, as well as proportion of indoor mosquitoes.  1250 

Intervention 
profiles 

Intervention Coverage Initial efficacy 
Half-life or 

duration 
(years) 

Decay type 

Prevent infection 

Anti-infective 
vaccine 

0 - 1 0.3 - 0.95 0.5 - 5  
Weibull (k = 0.8) 

(Sigmoidal) 

Anti-infective 
monoclonal 
antibody 

0 - 1 0.3 - 0.95 0.167 - 0.667 
Weibull (k = 3) 

(Biphasic) 

Blood stage clearance 

Antimalarial 
drugs 

0 - 1 0.8 - 1 0 - 0.1667 Exponential 

Transmission blocking 

Vaccine 0 - 1 0.3 - 0.95 0.5 - 5  
Weibull (k = 0.8) 

(Biphasic) 

Preprandial killing effect (affects only indoor mosquito biting) 

Eave tubes 0 - 1 0.3 - 0.99 0.5 - 5 
Weibull (k = 3) 
     (Sigmoidal) 

Preprandial and postprandial killing effect (affects indoor and outdoor mosquito biting) 

Attractive 
targeted sugar 
baits 

0 -1 0.7 - 0.99 0.167 – 0.667 Step 

Transmission 
settings 

EIR range: 1 – 25, representing a PfPR0-99 of 13-88% and a PfPR0-2 of 7.2-74% 
Case management (baseline scenario) range: 0 – 0.8, corresponding to a probability of 
seeking care within 5 days from the onset of fever of 0-0.5  
Seasonality levels: 

1. high seasonal setting with one transmission peak over a year 
2. perennial setting with constant yearly transmission 

Proportion of indoor-biting mosquitoes, out of total indoor and outdoor biting mosquitoes: 
3. high (0.8) 
4. medium (0.5) 
5. low (0.2) 
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Intervention Minimized 
profile 

Intervention properties 
constraints 

Specifications of 
combination therapies 

Anti-infective 
monoclonal antibody 
(Sigmoidal decay) 

Coverage Coverage ∈ [0 .. 80%] 
Efficacy = 85% 
Half-life = 4 months 

Blood stage drug: 
Efficacy = 90% 
Half-life = 10 days 

Efficacy Coverage = 60% 
Efficacy ∈ [30% .. 95%] 
Half-life = 4 months 

Half-life Coverage = 60% 
Efficacy = 85% 
Half-life ∈ [2 .. 8 months] 

Anti-infective 
vaccine 
(Biphasic decay) 

Coverage Coverage ∈ [0 .. 80%] 
Efficacy = 85% 
Half-life = 7 months 

Blood stage drug: 
Efficacy = 90% 
Half-life = 10 days 
 

Efficacy Coverage = 60% 
Efficacy ∈ [30% .. 95%] 
Half-life = 7 months 

Half-life Coverage = 60% 
Efficacy = 85% 
Half-life ∈ [2 months .. 5 years] 

Transmission-
blocking vaccine 
(Biphasic decay) 

Coverage Coverage ∈ [0 .. 80%] 
Efficacy = 85% 
Half-life = 7 months 

Blood stage drug: 
Efficacy = 90% 
Half-life = 10 days 
 

Efficacy Coverage = 60% 
Efficacy ∈ [30% .. 95%] 
Half-life = 7 months 

Half-life Coverage = 60% 
Efficacy = 85% 
Half-life ∈ [2 months .. 5 years] 

Attractive targeted 
sugar baits 
(Step decay) 

Coverage Coverage ∈ [0 .. 80%] 
Efficacy = 85% 
Half-life = 4 months 

Not applicable 
Efficacy Coverage = 60% 

Efficacy ∈ [70% .. 99%] 
Half-life = 4 months 

Half-life Coverage = 60% 
Efficacy = 85% 
Half-life ∈ [2 .. 8 months] 

Eave tubes 
(Sigmoidal decay) 

Coverage Coverage ∈ [0 .. 80%] 
Efficacy = 85% 
Half-life = 3 years 

Not applicable 
Efficacy Coverage = 60% 

Efficacy ∈ [30% .. 99%] 
Half-life = 3 years 

Half-life Coverage = 60% 
Efficacy = 85% 
Half-life ∈ [6 months .. 5 years] 

Table S2.2  1251 
Specifications of the optimization procedure for TPP development.  1252 
For each intervention, we successively identified the minimum profiles of the intervention 1253 
coverage, efficacy, and half-life. Precisely, we optimized each parameter separately (column 1254 
“Minimized profile”), according to its feasibility constraints while setting the two other 1255 
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parameters to the specified fixed values (column “Intervention properties constraints”). When 1256 
deployed in combination with other drugs or vaccines, the additional interventions had fixed 1257 
properties as well (column “Specifications of combination therapies”). 1258 
  1259 
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3 Results: Disease model simulations  1260 
 1261 

 1262 

Figure S3.1.  1263 
Examples of OpenMalaria simulation outputs.  1264 

Time series of simulated malaria PfPR0-99 in a perennial (A) and seasonal (B) setting. Both 1265 
figures display the prevalence of malaria cases, PfPR0-99, (y axis) across time (x axis). 1266 
Interventions targeting different stages in the malaria transmission cycle (different colors) are 1267 
applied once per year at the beginning of June (vertical dotted lines, in this example for three 1268 
years of deployment). The effect of each intervention is assessed by evaluating the PfPR0-99 1269 
reduction in all ages relative to the year prior deployment (first grey block). Two outcomes are 1270 
assessed, following an immediate and late follow-up (second and third grey blocks), depending 1271 
on whether the average prevalence is calculated across the next year after deployment, or across 1272 
the third year after deployment, respectively. 1273 
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 1275 

 1276 

Figure S3.2.  1277 
Distributions of prevalence reduction following yearly deployment of single interventions.  1278 

Prevalence reduction was calculated by comparing the initial prevalence in the year before any 1279 
interventions were deployed to the yearly prevalence obtained in the following year (short 1280 
follow-up, panel A) and in the third year (long follow-up, panel B) after deployment of 1281 
interventions. Each individual figure corresponds to a simulated setting and presents the 1282 
distributions of PfPR0-99 reduction (shown with boxplots) at varying EIR as well as 1283 
corresponding simulated PfPR2-10 levels (x axis). Each boxplot displays the interquartile range 1284 
(box), the median value (horizontal line), the largest and smallest values within 1.5 times the 1285 
interquartile range (whiskers), and the remaining outside values (points). The 6 represented 1286 
settings in each panel are defined by the seasonality pattern (perennial or seasonal) and mosquito 1287 
indoor biting behavior (low, mid or high indoor biting). Each EIR level on the x axis is defined 1288 
as a set of continuous input EIR values which range between the current level and the current 1289 
level - 1, e.g., an input EIR level of 1 contains all EIR values in the interval (0, 1]. The 1290 
definitions and ranges of all the EIR levels is included in Table S2.1. 1291 
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 1292 

Figure S3.3.  1293 
Distributions of prevalence reduction following yearly deployment of combinations of 1294 
interventions. 1295 

Prevalence reduction was calculated by comparing the initial prevalence in the year before any 1296 
interventions were deployed to the yearly prevalence obtained in the following year (short 1297 
follow-up, panel A) and in the third year (long follow-up, panel B) after deployment of 1298 
interventions. Each individual figure corresponds to a simulated setting and presents the 1299 
distributions of PfPR0-99 reduction (shown with boxplots) at varying EIR as well as the 1300 
corresponding simulated PfPR2-10 levels (x axis). Each boxplot displays the interquartile range 1301 
(box), the median value (horizontal line), the largest and smallest values within 1.5 times the 1302 
interquartile range (whiskers), and the remaining outside values (points). The 6 represented 1303 
settings in each panel are defined by the seasonality pattern (perennial or seasonal) and mosquito 1304 
indoor biting behavior (low, mid or high indoor biting). Each EIR level on the x axis is defined 1305 
as a set of continuous input EIR values which range between the current level and the current 1306 
level - 1, e.g., an input EIR level of 1 contains EIR values in the interval (0, 1]. The definitions 1307 
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and ranges of all the EIR levels are included in Table S2.1. MDA stands for mass drug 1308 
administration. 1309 

 1310 

Figure S3.4.  1311 
Distributions of prevalence reduction following deployment of single and combinations of 1312 
interventions twice per year.  1313 

Prevalence reduction was calculated by comparing the initial prevalence in the year before any 1314 
interventions were deployed to the yearly prevalence obtained in the following year (short 1315 
follow-up, panel A) and in the third year (long follow-up, panel B) after deployment of 1316 
interventions. Each individual figure corresponds to a simulated setting and presents the 1317 
distributions of PfPR0-99 reduction (shown with boxplots) at varying EIR as well as 1318 
corresponding simulated PfPR2-10 levels (x axis). Each boxplot displays the interquartile range 1319 
(box), the median value (horizontal line), the largest and smallest values within 1.5 times the 1320 
interquartile range (whiskers), and the remaining outside values (points). The 6 represented 1321 
settings in each panel are defined by the seasonality pattern (perennial or seasonal) and mosquito 1322 
indoor biting behavior (low, mid or high indoor biting). Each EIR level on the x axis is defined 1323 
as a set of continuous input EIR values which range between the current level and the current 1324 
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level - 1, e.g., an input EIR level of 1 contains EIR values in the interval (0, 1]. The definitions 1325 
and ranges of all the EIR levels for all simulated settings is included in Table S2.1. MDA stands 1326 
for mass drug administration. 1327 

 1328 

Figure S3.5.  1329 
Simulations reaching malaria elimination before intervention deployment.  1330 

The violin plots and boxplots in each panel present the distributions of the percentage of 1331 
simulations reaching malaria elimination (PfPR0-99 = 0) before intervention deployment (this can 1332 
arrive due to case management and only occurs in seasonal settings), across all simulated 1333 
interventions and intervention combinations.  1334 
  1335 
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4 Results: Emulator performance 1336 
 1337 

 1338 
 1339 

Figure S4.1.  1340 
Assessment of the performance of the trained GP depending on the training set size.  1341 

Each figure presents the Pearson correlation coefficient r2 between true and predicted values on a 1342 
broad range of out-of-sample test sets of varying length, when simulating deployment of an anti-1343 
infective monoclonal antibody deployed once per year (A) or twice per year (B) as well as in 1344 
combination with a blood-stage drug once (C) or twice per year (D). 1345 
  1346 
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 1347 
Figure S4.2.  1348 
Performance of the trained GP emulators predicting immediate intervention impact.  1349 

For a wide range of deployed interventions and transmission settings (see Materials and 1350 
Methods), GP emulators were trained to predict the immediate impact of each intervention, i.e., 1351 
the resulting average PfPR0-99 reduction in the year following deployment of the intervention. 1352 
The performance of the trained emulators was assessed by inspecting the Pearson correlation 1353 
coefficient (r2) and the mean squared error between true and predicted values on an out-of-1354 
sample test set. Figures (A) – (K) display the true and predicted values of each trained emulator 1355 
across all deployed interventions in a seasonal transmission setting with high indoor biting. 1356 
Figure (L) summarizes r2 and the mean squared error of all the trained emulators for all 1357 
simulated transmission settings and interventions (the simulated settings were defined by 1358 
seasonality and mosquito biting patterns, see Table S2.1 for detailed values per setting).  1359 
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 1360 
Figure S4.3.  1361 
Performance of the trained GP emulators predicting long-term intervention impact.  1362 

For a wide range of deployed interventions and transmission settings (see Methods), GP 1363 
emulators were trained to predict the immediate impact of each intervention, i.e., the resulting 1364 
average PfPR0-99 reduction in the third year following deployment of the intervention. The 1365 
performance of the trained emulators was assessed by inspecting the Pearson correlation 1366 
coefficient (r2) and the mean squared error between true and predicted values on an out-of-1367 
sample test set. Figures (A) – (K) display the true and predicted values of each trained emulator 1368 
across all deployed interventions in a seasonal transmission setting with high indoor biting. 1369 
Figure (L) summarizes r2 and the mean squared error of all the trained emulators for all 1370 
simulated transmission settings and interventions (the simulated settings were defined by 1371 
seasonality and mosquito biting patterns, see Table S2.1 for detailed values per setting).  1372 
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Intervention(s) 
(deployment) 

Training 
set size  

Test 
set size  

Cross-validation r2 and 
(mean error) 

Test set r2 and (mean 
error) 

Anti-infective 
monoclonal antibody 

(once/year) 
10000 5000 

Immediate: 0.99 (1.02%) 
Long: 0.96 (1.15%) 

Immediate: 0.99 (0.63%) 
Long: 0.97 (0.68%) 

Anti-infective 
monoclonal antibody 

(twice/year) 
5000 2500 

Immediate: 0.99 (1.11%) 
Long: 0.97 (1.32%) 

Immediate: 0.99 (0.91%) 
Long: 0.99 (0.83%) 

Anti-infective 
monoclonal antibody + 

Blood stage drug 
(once/year) 

10000 5000 
Immediate: 0.99 (1.34%) 
Long: 0.96 (1.74%) 

Immediate: 0.99 (1.18%) 
Long: 0.98 (1.05%) 

Anti-infective 
monoclonal antibody + 

Blood stage drug 
(twice/year) 

5000 2500 
Immediate: 0.99 (1.26%) 
Long: 0.97 (1.98%) 

Immediate: 0.99 (0.98%) 
Long: 0.99 (1.12%) 

Anti-infective vaccine 
(once/year) 

10000 5000 
Immediate: 0.99 (1.08%) 
Long: 0.99 (1.3%) 

Immediate: 0.99 (0.99%) 
Long: 0.99 (1.16%) 

Anti-infective vaccine 
+ Blood stage drug 

(once/year) 
5000 2500 

Immediate: 0.99 (1.18%) 
Long: 0.99 (1.63%) 

Immediate: 0.99 (1.57%) 
Long: 0.99 (2.25%) 

Transmission-blocking 
vaccine (once/year) 

10000 5000 
Immediate: 0.99 (1.13) 
Long: 0.99 (1.25%) 

Immediate: 0.99 (0.89%) 
Long: 0.99 (1.07%) 

Transmission-blocking 
vaccine + Blood stage 

drug (once/year) 
5000 2500 

Immediate: 0.99 (1.25%) 
Long: 0.99 (1.53%) 

Immediate: 0.99 (1.68%) 
Long: 0.99 (2.23 %) 

Attractive targeted 
sugar baits (once/year) 

5000 2500 
Immediate: 0.99 (1.26%) 
Long: 0.98 (1.71%) 

Immediate: 0.99 (1.98%) 
Long: 0.99 (1.19%) 

Attractive targeted 
sugar baits (twice/year) 

5000 2500 
Immediate: 0.99 (1.09%) 
Long: 0.99 (1.98%) 

Immediate: 0.99 (1.03%) 
Long: 0.99 (1.29%) 

Eave tubes (once/year) 10000 5000 
Immediate: 0.99 (1.11%) 
Long: 0.99 (1.3%) 

Immediate: 0.99 (0.89%) 
Long: 0.99 (1.26%) 

Table S4.1.   1373 
Performance of the trained GP emulators predicting immediate and long-term intervention 1374 
impact.  1375 

For each modelled transmission setting defined by case management level and mosquito biting 1376 
patterns and for each intervention (Table S2.1), a comprehensive set of simulation scenarios was 1377 
built by sampling uniformly the parameter space (defined in Table S2.1) and simulation with 1378 
OpenMalaria. In this manner, a training and a test set were constructed. The training set was used 1379 
to train, for each setting and intervention, a Heteroskedastic GP model in a 5-fold cross-1380 
validation procedure. The performance of the trained GP was assessed by computing the Pearson 1381 
correlation coefficient r2 as well as the mean error between the true and predicted outcomes on 1382 
both out-of-sample cross-validation and test sets. For each intervention and follow-up 1383 
(immediate or long-term), the average r2 and mean error for all the GP models trained across 6 1384 
settings (seasonal or perennial, high, medium or low mosquito indoor biting) are reported. 1385 
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5 Results: Summary of key intervention impact determinants, optimal intervention 1386 
profiles, and vaccine results 1387 
 1388 

Intervention Summary of analysis results Relevant 
figures 

Therapeutic 
interventions 

 
- Anti-infective 

monoclonal 
antibodies 

- Anti-infective 
vaccines 

- Transmission-
blocking vaccines 

Key determinants of impact 
- The main driver of intervention impact was coverage  
- The second determinant of intervention impact 

depended on intervention half-life. For interventions 
with short half-lives such as monoclonal antibodies, 
the half-life was the second driver, while for long-term 
interventions such as vaccines, efficacy played a key 
role.  

- As opposed to long-term vaccines whose impact is 
mainly driven by coverage and efficacy, interventions 
with short half-life (e.g., anti-infective monoclonal 
antibodies) rely on the case management to prevent 
resurgence 

- The various biting patterns of mosquitoes did not 
influence the intervention determinants of impact 

 

 
S6.1 
 and 

Figure 2  

Optimal intervention profiles  
- As opposed to vaccines, anti-infective monoclonal 

antibodies require high efficacy and deployment 
coverage while achieving limited reduction in PfPR0-99 

with very little impact in perennial settings 
- Increasing the deployment frequency for anti-infective 

monoclonal antibodies from once to twice per year, 
extended the landscape of feasible health targets but 
mainly in seasonal settings 

- Combination with a blood-stage drug proved more 
impactful as compared to increasing the deployment 
frequency for anti-infective monoclonal antibodies, 
extending the achievable health goals in perennial 
settings as well 

S7.1-S7.4 
 

 S8.1-S8.3 
  

and Figure 
3 

Vector control 
interventions 

 
- Attractive 

targeted sugar 
baits 

- Eave tubes 

Key determinants of impact 
- As with short-term therapeutic interventions such as 

anti-infective monoclonal antibodies, attractive 
targeted sugar baits rely on case management for 
preventing resurgence 

- We see limited difference between key drivers for 
attractive targeted sugar baits in different biting 
settings because mosquitoes sugar feed before indoor 
or outdoor biting. In contrast, we observe that 
intervention properties of eave tubes rather than health 
system access to treatment are larger drivers of impact 
in indoor biting settings, as mosquitoes in those 

S6.2 
 and 

Figure 2 
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settings will be more likely to contact the eave tube. 
Optimal intervention profiles 
- Increasing deployment frequency from once to twice 

per year for attractive targeted sugar baits, resulted in a 
significant increase in intervention impact and less 
requirements in terms of coverage and half-life 

- Increasing efficacy of attractive targeted sugar baits 
did not have a significant impact 

S7.5-S7.6 
S8.4-S8.55 

 
 and 

Figure 3 

 1389 

Table S5.1.  1390 
Key findings guiding target product profiles of new malaria interventions.  1391 

A summary of key results concerning impact determinants and minimal intervention profiles as 1392 
well as references to the corresponding illustrative figures is provided.  1393 
 1394 
  1395 
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6 Results: Key determinants of impact 1396 

 1397 
Figure S6.1.  1398 
Key drivers of impact for therapeutic malaria interventions across different transmission 1399 
settings.  1400 
Results of sensitivity analysis identifying the determinants of intervention impact on PfPR0-99 1401 
reduction for anti-infective monoclonal antibodies (A, B), anti-infective vaccines (C, D) and 1402 
transmission-blocking vaccines (E, F). The distinct colors represent proportions of the GP 1403 
emulator output variance (relative importance) attributable to intervention efficacy, half-life, 1404 
deployment coverage, as well as health system access. Determinants of impact are shown for 1405 
both immediate and late follow-up, when interventions are applied once per year for three years 1406 
in different transmission settings (see full intervention specifications in the Methods section). 1407 
The transmission settings are defined by two seasonal settings (seasonal and perennial) and three 1408 
types of mosquito biting patterns (low, medium and high indoor biting). The mosquito biting 1409 
patterns had little to no effect on the results of the sensitivity analysis for these therapeutic 1410 
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interventions (see results for all settings for monoclonal antibodies in figures A and B). 1411 
Therefore, only the results for seasonal and perennial settings with high indoor mosquito biting 1412 
are displayed for the vaccine interventions.  1413 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


 1414 

Figure S6.2.  1415 
Key drivers of impact for vector control malaria interventions across different 1416 
transmission settings.  1417 

Results of sensitivity analysis identifying the determinants of intervention impact on PfPR0-99 1418 
reduction for attractive targeted sugar baits (A, B) and eave tubes (C, D). The distinct colors 1419 
represent proportions of the GP emulator output variance (relative importance) attributable to 1420 
intervention efficacy, half-life, deployment coverage, as well as health system access. 1421 
Determinants of impact are shown for both immediate and late follow-up, when interventions are 1422 
applied once per year for three years in different transmission settings (see full intervention 1423 
specifications in the Methods section). The transmission settings are defined by two seasonal 1424 
settings (seasonal and perennial) and three types of mosquito biting patterns (low, medium and 1425 
high indoor biting). Like for the therapeutic interventions in the previous figure, we see limited 1426 
difference between key drivers for attractive targeted sugar baits in different biting settings as 1427 
mosquitoes sugar feed before indoor or outdoor biting. In contrast, we observe that intervention 1428 
properties of eave tubes rather than health system access to treatment are larger drivers of impact 1429 
in indoor biting settings, as mosquitoes in those settings will be more likely to contact the eave 1430 
tube. 1431 
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7 Results: Feasible landscapes of optimal, constrained intervention profiles  1433 

 1434 
Figure S7.1.  1435 
Feasible landscapes of optimal, constrained intervention profiles (TPPs) for an anti-1436 
infective monoclonal antibody deployed once per year.  1437 

The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles 1438 
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified 1439 
by minimal reduction in PfPR0-99, y axis) across different simulated true PfPR2-10 settings 1440 
(rounded values, x axis) with seasonal transmission and high indoor mosquito biting. Each 1441 
intervention characteristic was minimized in turn, while keeping the other characteristics fixed 1442 
(fixed parameter values for each optimization are specified in Table S2.2). Results are shown for 1443 
an anti-infective monoclonal antibody delivered alone and assessing immediate (A) and late (B) 1444 
follow up, as well as when delivered in combination with a blood stage drug assessing immediate 1445 
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(C) and late (D) follow-up. The simulated case management level (E5) for all the displayed 1446 
optimization analyses was assumed 25%.  1447 
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 1448 

  1449 
Figure S7.2.  1450 
Feasible landscapes of optimal, constrained intervention profiles (TPPs) for an anti-1451 
infective monoclonal antibody deployed twice per year.  1452 

The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles 1453 
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified 1454 
by minimal reduction in PfPR0-99, y axis) across different simulated true PfPR2-10 settings 1455 
(rounded values, x axis) with seasonal transmission and high indoor mosquito biting. Each 1456 
intervention characteristic was minimized in turn, while keeping the other characteristics fixed 1457 
(fixed parameter values for each optimization are specified in Table S2.2). Results are shown for 1458 
an anti-infective monoclonal antibody delivered alone and assessing immediate (A) and late (B) 1459 
follow up, as well as when delivered in combination with a blood stage drug assessing immediate 1460 
(C) and late (D) follow-up. The simulated case management level (E5) for all the displayed 1461 
optimization analyses was assumed 25%.   1462 
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 1463 
Figure S7.3  1464 
Feasible landscapes of optimal, constrained intervention profiles (TPPs) for an anti-1465 
infective vaccine deployed once per year.  1466 

The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles 1467 
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified 1468 
by minimal reduction in PfPR0-99, y axis) across different simulated true PfPR2-10 settings 1469 
(rounded values, x axis) with seasonal transmission and high indoor mosquito biting. Each 1470 
intervention characteristic was minimized in turn, while keeping the other characteristics fixed 1471 
(fixed parameter values for each optimization are specified in Table S2.2). Results are shown for 1472 
an anti-infective vaccine delivered alone and assessing immediate (A) and late (B) follow up, as 1473 
well as when delivered in combination with a blood stage drug assessing immediate (C) and late 1474 
(D) follow-up. The simulated case management level (E5) for all the displayed optimization 1475 
analyses was assumed 25%.   1476 

0 25 50 75 100

Minimum
Coverage (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Perennial, 
high indoor biting

30 40 50 60 70 80 90

Minimum
Efficacy (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Perennial, 
high indoor biting

0 10 20 30 40 50 60

Minimum
half−life (months) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Perennial, 
high indoor biting

Anti−infective vaccine (once per year), immediate follow−upA

0 25 50 75 100

Minimum
Coverage (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Perennial, 
high indoor biting

30 40 50 60 70 80 90

Minimum
Efficacy (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)
Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Perennial, 
high indoor biting

0 10 20 30 40 50 60

Minimum
half−life (months) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Perennial, 
high indoor biting

Anti−infective vaccine (once per year), late follow−upB

0 25 50 75 100

Minimum
Coverage (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Perennial, 
high indoor biting

30 40 50 60 70 80 90

Minimum
Efficacy (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Perennial, 
high indoor biting

0 10 20 30 40 50 60

Minimum
half−life (months) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Perennial, 
high indoor biting

Anti−infective vaccine + blood stage drug (once per year), immediate follow−upC

0 25 50 75 100

Minimum
Coverage (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Perennial, 
high indoor biting

30 40 50 60 70 80 90

Minimum
Efficacy (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Perennial, 
high indoor biting

0 10 20 30 40 50 60

Minimum
half−life (months) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 r
ed

uc
tio

n 
(%

)
Perennial, 
high indoor biting

Anti−infective vaccine + blood stage drug (once per year), late follow−upD

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


 1477 
Figure S7.4.  1478 
Feasible landscapes of optimal, constrained intervention profiles (TPPs) for a transmission-1479 
blocking vaccine deployed once per year.  1480 

The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles 1481 
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified 1482 
by minimal reduction in PfPR0-99, y axis) across different simulated true PfPR2-10 settings 1483 
(rounded values, x axis) with seasonal transmission and high indoor mosquito biting. Each 1484 
intervention characteristic was minimized in turn, while keeping the other characteristics fixed 1485 
(fixed parameter values for each optimization are specified in Table S2.2). Results are shown for 1486 
a transmission-blocking vaccine delivered alone and assessing immediate (A) and late (B) follow 1487 
up, as well as when delivered in combination with a blood stage drug assessing immediate (C) 1488 
and late (D) follow-up. The simulated case management level (E5) for all the displayed 1489 
optimization analyses was assumed 25%.   1490 
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 1491 
Figure S7.5.  1492 
Feasible landscapes of optimal, constrained intervention profiles (TPPs) for attractive 1493 
targeted sugar baits deployed once or twice per year.  1494 

The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles 1495 
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified 1496 
by minimal reduction in PfPR0-99, y axis) across different simulated true PfPR2-10 settings 1497 
(rounded values, x axis) with seasonal transmission and high indoor mosquito biting. Each 1498 
intervention characteristic was minimized in turn, while keeping the other characteristics fixed 1499 
(fixed parameter values for each optimization are specified in Table S2.2). Results are shown for 1500 
attractive targeted sugar baits delivered alone once per year and assessing immediate (A) and late 1501 
(B) follow up, as well as when delivered twice per year assessing immediate (C) and late (D) 1502 
follow-up. The simulated case management level (E5) for all the displayed optimization analyses 1503 
was assumed 25%.   1504 
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 1505 

 1506 

Figure S7.6.  1507 
Feasible landscapes of optimal, constrained intervention profiles (TPPs) for eave tubes 1508 
deployed once per year.  1509 

The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles 1510 
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified 1511 
by minimal reduction in PfPR0-99, y axis) across different simulated true PfPR2-10 settings 1512 
(rounded values, x axis) with seasonal or perennial transmission and high indoor mosquito biting 1513 
(results for other biting patterns not shown as they are similar). Each intervention characteristic 1514 
was minimized in turn, while keeping the other characteristics fixed (fixed parameter values for 1515 
each optimization are specified in Table S2.2). Results are shown for eave tubes delivered alone 1516 
and assessing immediate (A) and late (B) follow up. The simulated case management level (E5) 1517 
for all the displayed optimization analyses was assumed 25%.  1518 
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8 Results: Optimal intervention profiles 1520 
 1521 

 1522 

Figure S8.1  1523 
Optimal intervention profiles (TPPs) for anti-infective monoclonal antibodies under 1524 
various deployment regimes to achieve a PfPR0-99 reduction of at least 70%.  1525 

Each figure displays minimum, constrained intervention characteristic profiles (minimum 1526 
coverage, efficacy, and half-life, y axis) required to achieve a minimal reduction in PfPR0-99 of 1527 
70% across different simulated true PfPR2-10 settings (rounded values, x axis) with seasonal 1528 
transmission and high indoor mosquito biting. Each intervention characteristic was minimized in 1529 
turn, while keeping the other characteristics fixed (fixed parameter values for each optimization 1530 
are specified in Table S2.2). Results are shown when assessing PfPR0-99 reduction at immediate 1531 
(A - C) and late (D - F) follow up. The simulated case management level (E5) for all the 1532 
displayed optimization analyses was assumed 25%.  1533 
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 1535 

Figure S8.2  1536 
Optimal intervention profiles (TPPs) for anti-infective vaccines under various deployment 1537 
regimes to achieve a PfPR0-99 reduction of at least 70%.  1538 

Each figure displays minimum, constrained intervention characteristic profiles (minimum 1539 
coverage, efficacy, and half-life, y axis) required to achieve a minimal reduction in PfPR0-99 of 1540 
70% across different simulated true PfPR2-10 settings (rounded values, x axis) with seasonal 1541 
transmission and high indoor mosquito biting. Each intervention characteristic was minimized in 1542 
turn, while keeping the other characteristics fixed (fixed parameter values for each optimization 1543 
are specified in Table S2.2). Results are shown when assessing PfPR0-99 reduction at immediate 1544 
(A - C) and late (D - F) follow up. The simulated case management level (E5) for all the 1545 
displayed optimization analyses was assumed 25%.  1546 
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 1548 

Figure S8.3  1549 
Optimal intervention profiles (TPPs) for transmission-blocking vaccines under various 1550 
deployment regimes to achieve a PfPR0-99 reduction of at least 70%.  1551 

Each figure displays minimum, constrained intervention characteristic profiles (minimum 1552 
coverage, efficacy, and half-life, y axis) required to achieve a minimal reduction in PfPR0-99 of 1553 
70% across different simulated true PfPR2-10 settings (rounded values, x axis) with seasonal 1554 
transmission and high indoor mosquito biting. Each intervention characteristic was minimized in 1555 
turn, while keeping the other characteristics fixed (fixed parameter values for each optimization 1556 
are specified in Table S2.2). Results are shown when assessing PfPR0-99 reduction at immediate 1557 
(A - C) and late (D - F) follow up. The simulated case management level (E5) for all the 1558 
displayed optimization analyses was assumed 25%.  1559 
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 1562 

Figure S8.4  1563 
Optimal intervention profiles (TPPs) for attractive targeted sugar baits under various 1564 
deployment regimes to achieve a PfPR0-99 reduction of at least 70%.  1565 

Each figure displays minimum, constrained intervention characteristic profiles (minimum 1566 
coverage, efficacy, and half-life, y axis) required to achieve a minimal reduction in PfPR0-99 of 1567 
70% across different simulated true PfPR2-10 settings (rounded values, x axis) with seasonal 1568 
transmission and high indoor mosquito biting. Each intervention characteristic was minimized in 1569 
turn, while keeping the other characteristics fixed (fixed parameter values for each optimization 1570 
are specified in Table S2.2). Results are shown when assessing PfPR0-99 reduction at immediate 1571 
(A - C) and late (D - F) follow up. The simulated case management level (E5) for all the 1572 
displayed optimization analyses was assumed 25%.  1573 
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 1576 

Figure S8.5  1577 
Optimal intervention profiles (TPPs) for eave tubes to achieve a PfPR0-99 reduction of at 1578 
least 70%.  1579 

Each figure displays minimum, constrained intervention characteristic profiles (minimum 1580 
coverage, efficacy, and half-life, y axis) required to achieve a minimal reduction in PfPR0-99 of 1581 
70% across different simulated true PfPR2-10 settings (rounded values, x axis) with seasonal 1582 
transmission and high indoor mosquito biting. Each intervention characteristic was minimized in 1583 
turn, while keeping the other characteristics fixed (fixed parameter values for each optimization 1584 
are specified in Table S2.2). Results are shown when assessing PfPR0-99 reduction at immediate 1585 
(A - C) and late (D - F) follow up. The simulated case management level (E5) for all the 1586 
displayed optimization analyses was assumed 25%.  1587 
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