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One Sentence Summary: Defining quantitative profiles of novel disease interventions by
combining machine learning with mathematical models of disease transmission
Abstract:

The development of novel interventions againgt a disease entails optimising their specifications
to achieve desired health goals such as disease reduction. As testing is limited early in
development, it is difficult to predefine these optimal specifications, prioritize or continue
investment in candidate interventions. Mathematical models of disease can provide quantitative
evidence as they can smulate deployment and predict impact of a new intervention considering
deployment, health-system, population and disease characteristics. However, due to large
uncertainty early in development, aswell as model complexity, testing all possible combinations
of interventions and deployments becomes infeasible. As a result, mathematical models have
been only marginally used during intervention development to date. Here, we present a new
approach where machine learning enables the use of detailed disease models to identify optimal
properties of candidate interventions to reach a desired health goal and guide development. We
demonstrate the power of our approach by application to five novel malaria interventions under
development. For various targeted reductions of malaria prevalence, we quantify and rank
intervention characteristics which are key determinants of health impact. Furthermore, we
identify minimal requirements and tradeoffs between operational factors, intervention efficacy
and duration to achieve different levels of impact and show how these vary across disease
transmission settings. When single interventions cannot achieve significant impact, our method
allows finding optimal combinations of interventions fulfilling the desired health goals. By
enabling efficient use of disease models, our approach supports decision-making and resource
investment in the development of new interventions for infectious diseases.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Significance Statement

During development of novel disease interventions (e.g. vaccines), atarget product profile (TPP)
document defines intervention characteristics required to meet health goals. As clinical trials are
limited early in development, mathematical models simulating disease dynamics can help define
TPPs. However, testing al combinations of intervention, delivery and environment
characteristics is infeasible and so complex mathematical models have not been used until now.
We introduce a new approach to define TPPs, combining models of disease with machine
learning. We examined several novel malaria interventions, identifying key characteristics,
minimum efficacy and duration of effect that ensure significant reductions in malaria prevalence.
This approach therefore enabled mathematical models of disease to support intervention

development, by identifying intervention requirements that ensure public health impact.
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I ntroduction

Target Product Profiles (TPPs) are dynamic documents commonly used during the development
of a cutting-edge medical product, defining its required characteristicsto fulfill an unmet health
need (1). By offering a comprehens ve snapshot of the development process at any given point in
time, a TPP constitutes a vital reference for dialogue between various stakeholders to guide
decisions on the development direction to be pursued (1-5). A well-constructed TPP isthus
essential for efficient resource alocation and success during the development phase (1, 5).
However, the process of establishing TPPs relies on minimal clinical or quantitative evidence.
They are often set by expert opinion and consensus based on limited quantitative consideration
of the complex dynamics of disease or predictions of the likely intervention impact while
achieving the identified unmet health need (6). Furthermore, few TPPs consider operational
aspects such as deployment coverage in addition to product-specific characteristics such as
efficacy or half-life. This has implications for the appropriate definition of intervention
effectiveness characteristics according to local health systems and health targets (1, 6, 7).

Mathematical models of disease transmission dynamics can be used to bridge this gap, as they
guantitatively estimate the impact of interventions while including considerable evidence of
disease progression and transmission, host immunity, as well as environmental or health system
dynamics and their interaction with interventions (8, 9) (Fig. 1). However, models have been
mainly used at late stages during the development of a new intervention; for example, to predict
likely impact or cost-effectiveness from data collected in Phase 3 clinical trials (10-15). Model
investigations are usually informed by scenario analysis accounting for the delivery and target
age groups, as well as properties of the new intervention pre-defined or informed by late clinical
trials (16-19). In these constrained scenarios, high model and parameter complexity tend to
obscure the complex relationships between intervention parameters, operational factors, health
outcomes and public health impact (20). Exhaustive scenario analyses are highly
computationally expensive, rendering the full exploration of all possible interventions for a
disease, in conjunction with all possible delivery scenarios, combinatorically infeasible.

Here we propose a new ethos where epidemiological models guide the devel opment of novel

disease interventions designed to achieve quantified health goals. To do this efficiently, we use
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84  machine learning combined with mathematical models to perform a directed search of the entire
85  space of intervention profiles, to define properties of new interventions (sometimes referred to as
86 “tools’ or “products’) that will achieve the desired health goal. Placing the end goal of public

87  health impact at the center of decision making isincreasingly important to direct Research &

88  Development (R&D) effortsin the face of finite resources. The use of mathematical models

89  enablestrandation of R&D efforts into potential impact. In this paper, we show how modelling
90  can support this process, and introduce a framework that quantitatively defines product

91  characteristics within TPPs.

92  Previous approaches using disease models to inform TPPs have tackled the combinatorically-

93 complex parameter space by only exploring a discrete, constrained set of parameters (21-23).

94  These approaches have provided insightful knowledge and emphasi zed the importance of using

95 disease models for defining TPPs. Nevertheless, they have provided a concomitantly constrained

96 view of intervention specifications. Our framework tackles and moves beyond these challenges.

97  Ononehand, it alows us to rigorously define TPPs by efficiently exploring highly complex

98 parameter spaces of mathematical disease models, and on the other hand it identifiesthe

99  determinants of desired public health impact to inform tradeoffs between product characteristics
100  and use-cases. Furthermore, as the ultimate health goal guides decisions on interventions and for
101  optimal use of the supportive framework presented here, an engaging, iterative exchange with
102  stakeholdersto define desired outcomes and the likely delivery use-cases of the new

103 interventionsis essential.

104  Our framework utilizes a machine learning approach using Gaussian processes (GPs) (24) to
105  generate computationally light emulators of detailed mathematical models of disease dynamics
106  (Fig. 2A). These emulators congtitute an interface that easily links properties of deployed

107  interventions and operational factors to health goals. Furthermore, the emulators capture not just
108  the mean tendency of complex disease models dynamics, but also the inherent variance caused
109 by the stochadticity in the models (25). Disease model emulators allowed usto efficiently

110  perform sensitivity analyses of intervention and health system parameters on predicted public
111 health impacts at low computational cost. Furthermore, by coupling emulators with nonlinear
112 optimization techniques, we constructed a predictive framework that identifies key determinants

113 of intervention impact as well as the minimal intervention profiles required for achieving agiven
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114  health goa (Fig. 2). The framework consists of (i) a comprehensive disease progression and

115  transmission simulation model applied on a discrete, uniformly sampled set of input parameters,
116 (ii) training of an emulator on the sampled set of parameters and corresponding impact

117  outcomes, (iii) using sensitivity analysis to understand drivers of intervention impact; and (iv)
118  applying anon-linear constrained optimization algorithm to explore intervention operational and
119  effectiveness characteristics meeting various targets and deployment use-cases specified

120  following iterative consultation with product development experts. A detailed description of the
121 components of the developed framework can be found in Fig. 2A and the Materials and M ethods
122 section.

123 We apply our framework to assess and optimize new interventions for preventing malaria

124  transmission. Strategic investment in new interventionsis becoming crucial for malaria control
125  and elimination programs, as existing interventions are currently challenged by increasing

126  resistance (26-28). Mathematical models of malaria transmission (Fig. 1) have been used

127  extensively to estimate the impact of malariainterventions and to optimize intervention packages
128  for specific geographies (10, 29-32). As yet, these malaria models have not been systematically
129  applied in directing the design of new interventions, nor in understanding how intervention-
130  gpecific, epidemiological and systems factorsjointly contribute to impact. Following

131 consultation with malaria product development experts, we used our new framework to define
132 therequired profilesin terms of coverage, efficacy and duration characteristicsin TPPs of new
133 putative malariainterventionsto reach desired public health goals such as prevalence reduction

134  contingent on operational constraints (Fig. 2).
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Fig. 1 Schematic of a stochastic simulation platform of malaria transmission dynamics.
OpenMalaria (33) is an open source, stochastic, individual-based model which simulates
malaria epidemiology and transmission dynamics across humans and mosquitoes. The pattern of
yearly malaria infection in the absence of interventionsis determined by the entomol ogical
inoculation rate (EIR), which isa model input. Each infected human host in the simulated
population has an associated parasite density and duration of infection, where each infection is
also modelled individually, and follows a modelled transmission cycle (central diagram) which
captures effects such as immunity, infectiousness to mosquitoes, morbidity or mortality. During
the ssmulation, a wide range of human and vector interventions can be applied, affecting the
transmission cycle at various stages (red arrows). Setting-specific characteristics such as
population demographics, mosguito species entomological characteristics or seasonality are
explicitly modelled. Various health outcomes are monitored over time including patent
infections, uncomplicated clinical disease, severe disease in and out of hospital and malaria
mortality (a detailed description of the simulation model and itsfeaturesis provided in Materials
and Methods and Table S1.1).


https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.01.05.21249283; this version posted January 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

154 Results

155 A disease model and machine learning approach to quantitatively define malaria interventions

156  Our analysis workflow (Fig. 2) starts with sensibly-informed TPP scenarios; the definition of

157  targeted health goals corresponding to unmet health needs; and possible use cases following

158  continuous consultation with product development experts. The health goals in the present

159  analysis are reductions of malaria prevalence for al ages (PfPRo.o9) and prevention of

160  resurgence. Next, within the “ Disease model” component, malariatransmission is modeled by
161  the means of the established, stochastic, individual-based model OpenMalaria (33) (Fig. 1, Table
162  Sl1.1). A comprehensive set of simulated scenariosis built by uniformly sampling the parameter
163  gpace (defined by the parameters emphasized in bold under “ Tool specifications’ and * Setting”
164  componentsin Fig. 2 and detailed in Table S2.1). The scenarios are simulated with the disease
165 model yielding an extensive database of disease outcomes. In the machine learning part of the
166  approach, the database of smulated scenarios and corresponding outcomes is used to train a

167  predictive model, in this case a Heteroskedastic Gaussian process model (see detailed training
168  procedure in Materials and Methods). The predictive model acts as an emulator of the complex
169  individual-based mathematical model. Specifically, the emulator can predict the disease outcome
170  for the given health goal and any set of input parameters. For this reason, the trained emulator
171 can beefficiently and promptly used in downstream analyses to design TPPs of new malaria

172 interventions, and to identify their quantitative properties to meet the health goal previously

173 defined. More precisaly, sensitivity analysis allows searching for key determinants of

174  intervention impact, while constrained optimization analyses yield the optimal required

175  intervention propertiesthat meet specified impactful health goals.

176 Weused our validated individual-based model, “OpenMalaria’ (29, 33) (detailed description in
177  the Materials and Methods section, Fig. 1 and Table S1.1) to smulate malaria epidemiology and
178  transmission dynamics within various transmission settings. These settings cover a broad

179  spectrum of transmission and mosquito biting behavior archetypes relevant for attaining general
180  guiding principlesin the early development phase of new interventions. Within the simulations,
181  we quantitatively examined several malariainterventions that are currently under development or
182  developed within the last ten years, including monoclonal antibodies, drugs, vaccines as well as

183  novd vector control interventions. To be able to investigate a wide range of interventions,
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184  instead of considering their characteristics explicitly, we more generally modelled their action on
185  paradgite or vector targets (Fig. 1). Accordingly, each intervention was modeled through its

186  deployment coverage, efficacy, half-life or duration of effect on the given parasite or vector stage
187 inthetransmission cycle (see Materials and Methods, Fig. S2.3, Table S2.1 for detailed

188 intervention specifications). For simplification, the words ‘ half-life and ‘duration’ are used

189 interchangeably to describe the longevity of the intervention effect (further details and

190  definitionsin Materials and Methods).

191  Intervention impact in the current study was assessed assuming a single health goal of malaria
192  prevalence reduction and thus through predicted reduction in Plasmodium fal ciparum malaria
193  prevalence across all ages, PfPRy.g9, COrresponding to true infection prevalence and not patent
194  (detected with adiagnostic such as rapid diagnostic test (RDT), or polymerase chain reaction

195 (PCR), Fig. S2.2, S3.1-S3.4). We learned simplified predictive emulators for the OpenMalaria
196  simulation results by training GP models on alimited set of simulated scenarios (Fig. 2B). We
197  show that the trained GP models accurately capture the dependencies between the disease model
198  input parameters and the output intervention impact, and are able to reliably predict the reduction
199  in PfPRg.g9 attributable to any input intervention characteristics (Fig. 2B, $4.1-$4.3, Table $4.1).
200  Our work thus builds on recent applications of GPs in disease modelling and burden prediction
201 for malaria (34). Using the trained GP emulator, through global sensitivity analysis, we evaluated
202  thekey determinants of intervention impact (Fig. 2C). In addition, we performed a constrained
203  search for intervention and delivery profiles (TPPs) that maximize impact under a particular

204  health goal, given concrete, expert-informed, operational constraints such as possible

205 deployment coverage, or feasible intervention properties such as efficacy or duration of

206  protection (Fig. 2D).

207
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209  Fig. 2 Quantitatively defining TPPs of novel disease inter ventions.
210  (A) Detailed schematic representation of the proposed quantitative framework to support
211 product development (full specificationsin Materials and Methods). Figures (B)-(D) present the
212 results of applying the framework for an anti-infective malaria vaccine (mass administration,
213 seasonal transmission with high indoor mosquito biting): (B) Correlation between simulated
214 true (x axis) and emulator predicted (y axis) PfPRo.g9 reduction with a GP emulator trained in a
215  cross-validation scheme (Pearson correlation coefficient r? distribution shown in boxplot) and
216  validated on an out-of-sample test set (r? left upper corner and grey diamond on the boxplot in
217  theright lower corner). (C) Example vaccine impact determinants: the colors represent
218  proportions of the emulator output variance (relative importance) attributable to intervention
219  gpecifications, aswell as health system access. (D) Example feasible landscape of optimal
220  vaccine efficacy profiles for various health goals (minimum targeted PfPRy o9 reductions, y axis).
221 For each health goal, the heatmap displays the minimum required efficacy when applied at a
222 coverage of 60% and with a half-life of 7 months, assuming an accessto care level of 25%
223  (examplein theinsert plot for a target reduction of at least 60%). Resultsin figures (C) and (D)
224  aredisplayed for a range of median smulated true PfPR;.1o (before intervention deployment,
225  rounded values, x axis).

226
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227 Intervention impact and the importance of their characteristics

228  With guidance from different groups of experts and partners (see definition of the various

229  stakeholdersinvolved in Materials and Methods), we conducted an extensive analysisin the
230 malariadevelopment space, covering a diverse spectrum of interventions pertaining to 1) anti-
231 infective monoclonal antibodies 2) anti-infective vaccines, 3) transmiss on-blocking vaccines, 4)
232 outdoor attractive targeted sugar baits, and 5) eave tubes. Following simulation with

233  OpenMalaria of deployment of each of these interventions through mass administration

234  campaigns over several years (see Materials and Methods), we first analyzed the predicted

235  digtributions of reduction in true PfPRq.go (Fig. 3A, S3.2-S3.4). We found that, in general, when
236  aiming for substantial, prompt reductions in prevalence for this particular health target, vector
237 control was by far the most impactful intervention across all settings. Monoclonal antibodies,
238  anti-infective and transmiss on-blocking vaccines had a more pronounced impact in low-

239  transmission settings compared to endemic settings (Fig. 3A, S3.1-S3.4, Table S5.1).

240  Senditivity analysisindicated that the impacts of these interventions on malaria prevalence were
241 driven by different characteristics of their efficacy profiles, deployment strategies, or access to
242  carefor treatment of clinical cases, for either short and long impact follow-up (Fig. 3B-E, $6.1 —
243 6.2). Across alarge proportion of the ssmulated scenarios, over all parasite and vector targets and
244 interventions, coverage of the deployed intervention was overwhelmingly the primary driver of
245  impact especialy in low transmission settings (Fig. 3B-E, S6.1-S6.2). For therapeutic

246  interventions, the impact of short-term passive immunizations such as monoclonal antibodies
247  relied on their deployment coverage and the health system (Fig. 3B, S6.1). In contrast, for long-
248  acting interventions such as vaccines, impact was driven by deployment coverage and efficacy
249  (Fig. 3C, $6.1). Highly-efficient vector control interventions such as attractive targeted sugar
250 baitshad a strong effect on prevalence (Fig. 3A), and their duration of effect was the most

251  important determinant (Fig. 3D, $6.2). The immediate impact of long-term vector control

252 interventions such as eave tubes was driven by deployment coverage, while their half-life was a
253 key determinant for preventing resurgence (Fig. 3E, $6.2).

254
255
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257  Fig. 3: Effects of novel malaria interventions on disease prevalence and their key drivers of
258  impact.

259  (A) Distribution of obtained reduction in PfPRy.g9 following deployment of various malaria

260 interventions under development (shown with different colors) for a range of simulated

261 transmission settings (specified by median true PfPR;.10 rounded val ues, x axis). Each boxpl ot
262  displaystheinterquartile range (box), the median value (horizontal line), the largest and

263  smallest values within 1.5 times the interquartile range (whiskers), and the remaining outside
264  values (points) of the PfPRy.g9 reduction values obtained across all the simulations for each

265  given setting. The remaining plots of the figure present the results of sensitivity analysis showing,
266  across the same simulated PfPR,.1o Settings, the determinants of intervention impact on PfPRy g9
267  reduction for anti-infective monoclonal antibodies (B), transmission-blocking vaccines (C),

268  attractive targeted sugar baits (D) and eave tubes (E). Determinants of impact are shown for

269  both immediate and late follow-up, when interventions are applied once per year for three years
270  inaseasonal transmission setting with high indoor mosquito biting (full intervention

271 specifications provided in Materials and Methods and results for other settings and interventions
272 shownin Fig. $6.1-6.2 and Table $5.1).

273
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274 Minimal requirements of novel malaria interventions to achieve a defined health goal

275  For the five aforementioned malariainterventions, we explored their optimal profiles for a broad
276 set of target PfPRy.g9 reduction levels, creating landscapes of intervention profiles according to
277 thelr minimal characteristics across various transmission settings (Fig. 4-5, S7.1-S8.5). These
278  landscapes provide a broad and comprehensive overview of the intervention potential

279  capabilities and limitations in achieving a desired health goal. For example, as opposed to an

280  anti-infective monoclonal antibody which requires high efficacy and duration to achieve large
281  PfPRg.go reduction in only alimited number of settings (Fig. 4A-B, S7.1-S7.2), attractive targeted
282  sugar baitsthat kill mosquitoes achieve awider range of target PfPRg.q9 reductionsin high-

283  transmission settings aswell (Fig. 4C-D, S7.5). Similarly, while in settings with lower

284  transmission (PfPR2.s <30%), anti-infective and transmission-blocking vaccines had comparable
285  requirementsin achieving smilar PfPRg g9 reduction targets, anti-infective vaccines showed a
286  higher potential and reached additional targets in high-transmission, endemic settings (Fig. 5).
287
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289  Fig. 4: Estimated optimal inter vention and delivery profiles (T PPs) for monoclonal

200 antibodiesand attractive targeted sugar baits.

291  The heatmapsin figures (A) and (C) represent landscapes of optimal, constrained intervention
292  gpecifications (coverage, efficacy, and half-life) required to achieve a broad range of targeted
293  minimal reductionsin PfPRy.g9 (Y axis) across different simulated true PfPRy.1o Settings (rounded
294  values, x axis). Each intervention characteristic was minimized in turn, while keeping the other
295  characteristicsfixed (values marked on each figure). Results are shown for an anti-infective
296  monoclonal antibody (A) and attractive targeted sugar baits (C). For a defined health goal of
297  reduction in PfPRy.g9 (dashed horizontal lines on figures (A) and (C)), the corresponding

208  minimum product profile requirements are shown for an anti-infective monoclonal antibody in
299  (B) and attractive targeted sugar baitsin (D). Both figures (B) and (D) show how these

300 requirements change when these interventions are delivered at various frequencies (once or
301 twice per year), and when the anti-infective monoclonal antibody is delivered in combination
302  with a blood-stage drug. The ssmulated health system access was 25%. Descriptions of all

303 intervention propertiesfor identification of minimal profiles are detailed in Table 2.2, while
304 additional results for other settings and interventions are provided in Fig. S7.1-S7.6 and Table
305 SB.1

306
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307 For adetailed overview of landscapes of intervention profiles for al ssmulated settings and

308 interventions see Fig. S7.1-S7.6. These landscapes together with the results of the sensitivity
309 analysisoffer an evidence-based prioritization of resources during the product development

310 process. For example, we found that while both efficacy and half-life are important for

311  immediate prevalence reductions with monoclonal antibodies, their effect islimited in preventing
312  resurgence and isonly supported by high case-management levels (Fig. 3, 4, $6.1, S7.1-S7.2).
313  Conversdly, the efficacy of anti-infective vaccines drives immediate impact, whereas half-life of
314  effect has greater importance for achieving and maintaining PfPRg.g9 reductions (Fig. 3, 5, S6.1,
315 S7.3-S7.4). These results suggest that if vaccines and monoclonal antibodies are to support

316  preventing resurgence, then R&D efforts should focus on increasing and establishing antibody
317  longevity.

318  Our analysis showsthat coverageisthe primary driver of impact (Fig. 3B-E, S6.1-S6.2). This
319  result hasimportant implications for interventions requiring multiple applications to achieve high
320 efficacy, indicating that it is of crucial importance to target both vulnerable populations and the
321  proportion of the population missed by the intervention. While for some interventions high

322 coverage deployment might be very difficult or impossible to achieve, our analysis shows that
323  thiscan be alleviated by increasing the deployment frequency or through deploying

324  combinations of interventions, which may have cost implications (Fig. 4B, 4D, 5B, 5D, S7.1-

325 S7.5,S8.1-8.4).

326 Wefound that combining several interventionstargeting different stagesin the transmission

327  cyclecan strongly affect the minimum requirements of a putative new intervention, potentially
328 increasing the impact of an otherwise weaker intervention. For example, for an anti-infective
329  monoclonal antibody with an initial half-life of 7 months and deployed at a coverage of 60%

330 reflecting completion of multiple doses, achieving a prevalence reduction of 80% was impossible
331  when deployed once yearly for three years (Fig. 4A, S7.1). Furthermore, achieving the

332 aforementioned health goal required an efficacy of 80% when the intervention was deployed

333  twice per year for three years (Fig. 4B, Fig. S7.2). However, when deployment of the

334  monoclonal antibody was coupled with a short half-life blood-stage parasite treatment such as
335  dihydroartemisinin-piperaguine or artemether-lumefantrine, its minimum required efficacy was
336 considerably reduced for both delivery frequencies (Fig. 4B, S7.1-S7.2, S8.1). Conversdly, if we
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337 assumeaninitia efficacy of 85% for the monoclonal antibody, we find that its minimal required
338 half-life can be reduced if we deploy thisintervention in combination with the blood-stage

339 paraditeclearing drug (Fig. 4B, S7.1-S7.2, S8.1). These results partly motivated the current

340 development of anti-infective monoclonal antibodies; use-cases will likely include deployment

341  with existing or new antimalarial treatment.

342  Wealso showed that a modified deployment schedule could reduce requirements for properties
343  of someinterventions. For example, for highly-efficacious attractive targeted sugar baits, higher
344  coverage and half-life were required when implemented once per year for three years compared
345  with an accelerated delivery schedule of twice per year for three years (Fig. 4C-D). Except for
346 high transmission settings (PfPR2.10 > 41%), a minimum required efficacy of 70% was sufficient
347  to attain the desired health goal for the majority of settings and for both delivery schedules (Fig.
348 4C-D, Fig. S7.5, Fig. S8.4). Thisresult isalso reflected in the sensitivity analysis (Fig. 3D).

349  Accordingly, the variation in intervention efficacy in the ranges investigated has little importance
350 indriving theintervention impact and suggests that, once a vector control intervention such as
351  attractive targeted sugar baits achieves a high killing efficacy (here greater than 70%), a next step
352  of optimizing other intervention characteristics such as deployment coverage or duration leadsto
353  ahigher impact. These results demonstrate the strength of our analysis in identifying the

354  intervention characteristicsto be prioritized for R&D.

355  When coupled with a short half-life blood-stage parasite treatment, requirements of coverage,
356  efficacy and half-life were reduced also for anti-infective and transmission blocking vaccinesto
357 achievethe targeted reductions of PfPRo.o (Fig. 5, S7.3-7.4, S8.2-S8.3). In particular for high-
358  transmission settings (PfPR2.5>25%), given an RTS,S-like half-life of 7 months, both anti-

359 infective and transmission-blocking vaccines could not achieve any of the defined prevalence
360 reduction goalsif deployed singly. Thiswas the case for any deployment coverage given an
361 initial efficacy of 85% aswell as for any efficacy given a deployment coverage of 60%.

362  Combining vaccine deployment with a blood-stage drug not only significantly expanded the
363 achievable health targets also to high-transmission settings, but also reduced vaccine properties
364 requirements. Our analysis reveals that anti-infective vaccines had a higher potential than

365 transmission-blocking vaccines, requiring less performance and achieving higher prevalence

366 reductionstargets also in higher transmission settings. When combined with blood-stage parasite
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367 treatment, the coverage, efficacy and half-life requirements of anti-infective vaccines were lower
368 compared to those of transmission-blocking vaccines for the same prevalence reduction targets
369 (Fig. 5, S7.3, S7.4, 8.2, S8.3).

370  Our comprehensive analysis was applied to explore determinants of impact and required profiles
371 of interventions across two seasonal settings (seasonal and perennial) and three types of

372 mosquito biting patterns (low, medium and high indoor biting). A detailed overview of impact
373 determinants and optimal intervention profilesis presented in the Supplementary Materials (Fig.
374  S6.1-S8.5, and additional key results summarized in Table S5.1).

375
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376

377 Fig. 5. Estimated optimal intervention and delivery profiles (TPPs) for anti-infective and
378 transmission blocking vaccines deployed once per year with or without a blood stage

379 clearingdrug.

380 Theheatmapsin figures (A) and (C) represent landscapes of optimal, constrained intervention
381 characteristic profiles (coverage, efficacy, and half-life) required to achieve various health goals
382  (quantified by minimal reduction in PfPRg g9, y axis) across different simulated true PfPRx.10
383  settings (rounded values, x axis). Each intervention characteristic was minimized in turn, while
384  keeping the other characteristics fixed (values marked on each figure). Results are shown for an
385 anti-infective vaccine (A) and a transmission blocking vaccine (C). Given a defined health goal
386  of reduction in PfPRy.g9 (minimum 70% reduction, dashed horizontal lines on figures (A) and
387  (C)), the corresponding minimum product profile requirements are shown for the same two

388 interventions, i.e., for an anti-infective vaccine in (B) and transmission blocking vaccinein (D).
389  Bothfigures(B) and (D) show how the minimum required profiles change when these

390 interventionsare delivered in combination with a blood-stage drug. The simulated case

391  management level (Es) for all the displayed optimization analyses was assumed 25%. The

392  descriptions of all intervention properties for identification of minimal profilesare detailed in
393 TableX2.2.

394

395


https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.01.05.21249283; this version posted January 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

396 Discussion

397  Inthisstudy, we introduced a new modeling and machine-learning framework that for the first
398 time enables quantitative differentiation between operational, setting, and intervention

399 parameters as determinants of intervention impact, using detailed simulation models of disease.
400  Our framework can be used for any disease where avalid model of disease progression or natural
401  history of diseaseis available. We provided mathematical tools for efficiently and quantitatively
402  defining the minimum profiles of malariainterventions as well as delivery approaches required
403  toreach adesired health goal. Furthermore, our methodology provides a meansto refine the

404  identified optimal efficacy and duration characteristics as additional information becomes

405 avallable. Asaresult, we can apply fully-detailed disease models to direct the design of novel
406  interventions and understand how intervention-specific, epidemiological and systems factors

407  jointly contribute to impact and thusinform TPP guidance. Most immediately, the approach is
408  highly relevant to define successful interventions against emerging diseases such as SARS-CoV-
409 2, and to support efficient, fast development of operational strategies. As uncertainties in disease
410  progression and epidemiology can be incorporated in our approach, it also provides away to

411  systematically sort through large complex landscapes of unknowns and thus refine properties of

412  interventionsor clinical trials as more knowledgeis available.

413  Thevalue of our approach is realized through iterative collaboration with product devel opment
414  experts, to perform model-based guidance throughout the devel opment process, and refine

415  feedback on model predictions as interventions progress through development. For malaria,

416  where multiple interventions are in development, it also offers an approach for product

417  developers from diverse fields (such as therapeutics and insecticide devel opment) to collaborate
418  and incorporate knowledge of other interventionsinto their TPP development. Although in our
419  analysis we used reduction of PfPRg.g9 as a health goal, our method can be applied to other

420  disease burden statistics as required. The same rationale applies for investigation of other

421  deployment strategies, required doses of interventions or further intervention combinations.

422  While aso bringing valuable quantitative insghts to guide product development, our analysis of
423  novel malariainterventions reproduces previous findings concerning intervention characteristics
424 which are key drivers of impact. Previous studies have shown that intervention coverageis a

425  major determinant of impact in the context of mass drug administration (17), of vaccines (35) as
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426  well asvector control (36). Furthermore, our analysis reaffirms previous work showing the
427  ability of vector control interventions to achieve substantial reductionsin malaria burden (37).

428  Our approach constitutes a powerful tool to help address the challenges of current malaria

429  dtrategies and develop new interventions to progress towards malaria elimination. While

430  currently promising interventions such as insecticide treated nets, seasonal malaria

431 chemoprevention (SMC) and intermittent preventative treatment (IPT) have been very successful
432  at reducing malariaincidence and saving lives, their improved burden reduction and future

433  successiscurrently challenged by limited adherence, resource and time constraints to increase
434  coverage and usage in underserved populations, as well as resistance (38). Furthermore, for

435  settings where SMC has not been implemented or not recommended (for example in East Africa
436  orin perennial settings), there remains a gap in available interventions to protect vulnerable

437  populations who experience the highest burden of malaria. Similarly, for settings with outdoor
438  biting mosquitoes, the development and rollout of novel vector control interventionsis needed.
439  New therapeutics and immune therapies suitable for seasonal delivery such as long-acting

440  injectables or monoclonal antibodies are currently being developed that may close one of these
441 gaps (39, 40). However, in order to efficiently make decisions on their development, guidance on
442  their key performance characteristics and definition of their TPP documents is needed from early
443  stages. Our quantitative framework can support the development of interventions from the

444 beginning by generating the evidence to inform and define evaluation criteria ensuring new

445  products meet relevant health targets, while considering how these products may affect disease
446 burden and epidemiology within a population. As we show here, thisrelies on iterative dialogue
447  with stakeholders, to first define health targets, smulated scenarios, achievable intervention

448  properties and operational settings. The modelling part of the framework incorporates all this
449  information as well as relevant disease transmission dynamics, building an in-silico system for
450  testing the developed intervention. Next, the sensitivity analysis part of the framework informs
451  which intervention characteristics drive impact and are thus crucial in achieving the defined

452  hedlth goal, providing insights on the development processes to be prioritized. Finally, the

453  optimization analysis part of the framework reveals the potential of the developed intervention
454  and how its efficacy and coverage requirements change according to the defined health targets
455  and deployment setting. The landscapes of intervention profiles help product developers to gauge
456  development and investment efforts and select promising products. Furthermore, our approach
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457 alowsinvestigating combinations of new and existing interventions, identifying alternatives to
458  alleviate shortcomings such as coverage limitations. To achieve afinal TPP, several iterations of
459  theanalysis arerequired, to ensure that the optimal tradeoffs between intervention capabilities

460  andtarget goalsfor a given setting are achieved.

461  Aswith all modelling studies, our approach is exposed to several limitations. The provided

462  quantitative estimationsin this study incorporate an increased level of uncertainly due to the

463  additional emulation layer and are dependent on the performance of the trained emulator. We
464  addressed this challenge with extensive adaptive sampling and testing to ensure a high level of
465  accuracy of thetrained emulators (Fig. 2, $4.1-S4.3, Table $4.1). Despitetheintrinsic

466  uncertainty, the framework isintended to provide guiding principles and an efficient means of
467  exploring the space of intervention characteristics which otherwise would not be possible.

468  Evidently, our analysis relies on the disease model assumptions of disease and transmission

469  dynamicsaswell as expert opinion of likely intervention parameterizations in absence of clinical
470  knowledge. Lastly, the current analysis explored a subset of use-cases, transmission settings and
471 intervention combinations. Future work should focus on the likely settings and relevant use cases
472  astheinterventions are being devel oped and their TPP documents refined.

473 Moving beyond the work presented in this paper, our framework would allow combining

474  simulation models with other sources of data describing geographical variation in disease, for
475  example, modelled health systems or modelled prevalence (41, 42) and to incorporate

476  interactions of interventions with novel interventions for surveillance. Clinical trials for new

477 interventions could thereby be prioritized to geographical settings, where public health impact is
478  likely to be maximized and where appropriate, to inform decisions on achieving non-inferiority
479  or superiority endpoints (43, 44). A significant extension is incorporating economic

480  considerations which may affect development decisions, including both costs of R&D, aswell as
481  implementation and systems costs for final deployment.

482

483 Materialsand Methods
484 The approach introduced here combines infectious disease modeling with machine learning

485  to understand determinants and define quantitative properties of target product profiles of new
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486  malariainterventions. The building blocks and methodology of the approach are schematically
487 outlined in Fig. 2 which guides the following sections of Materials and Methods.

488 1 Description of the disease model

489 1.1 Individual-based model of malaria transmission

490 We used OpenMalaria (33, 45), an open source stochastic individual-based model to

491  simulate malaria epidemiology and transmission dynamics across humans and mosquitoesin
492  various settings. OpenMalaria considers the natural history of malariain humans linked with a
493  deterministic, entomological model of the mosquito oviposition cycle and malaria transmission
494  inmosquitoes (46, 47) (Table S1.1). The modelled transmission cycle (Fig. 1) considers the

495  chain of processes following infection of a human host, smulating malariainfection in

496  individuals and modelling infection characteristics such as parasite density, duration of infection,
497  infectivity to mosquitoes, and health outcomes such as morbidity, mortality or anemia.

498  OpenMalaria specifically captures heterogeneity in host exposure, susceptibility and immune
499  response, taking into consideration the effects of several factors such as acquired immunity,

500 human demography structure, or seasonality (48-51). Furthermore, the model includes a detailed
501  representation of the health system (52), and of a wide range of human and vector control

502  interventions while tracking multiple health outcomes over time (Fig. 1, Table S1.1).

503 OpenMalaria has been widely documented and validated against a multitude of field

504 studies, compared to existing models and used in extensive studies to provide evidence for the
505 epidemiological effects of variousinterventions(10, 29, 33, 53-55). It comprises 14 model

506  variants based on distinct sets of assumptions on its epidemiology and transmission components
507  (45). For the present analysis, the “base” simulation model was used. The mathematical

508 equations of the model, its assumptions and calibrations have been thoroughly described in

509  numerous previous publications, therefore are not specified here, however, an overview of the
510 OpenMalariamodelled processes and assumptions along with the corresponding references are
511  providedin Table S1.1.

512

513 1.2 Calibration of the disease model and description of simulation experiments

514 OpenMalaria has been calibrated and validated in previous studies using historical

515 epidemiological data (29, 33, 45). The present analysis uses a previously-calibrated version of
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516  the modd which reflects demographics, epidemiology, entomology, health system and

517  seasonality of a health facility catchment areain Tanzania (50, 52, 56).

518 The simulated human population size in this analysis was 10000 individuals, with its age
519  structure informed by data collected from a health and demographic surveillance sitein Ifakara,
520 Tanzania, available through the INDEPTH network (57). For al simulations, we assumed there
521 were no imported infections during the whole study period.

522 Health system characteristics (Table S1.1) were defined through parameterization of a case
523  management model based on data provided by the Tanzanian National Malaria Control Program
524  (52). To define the simulated case management level, the probability of effective cure within two
525  weeksfrom the onset of fever (Ei4) was varied within the interval [0 - 0.8] corresponding to a
526  probability of seeking care (access to treatment) within 5 days from the onset of fever (Es) within
527 theinterval [0.04 - 0.5] (53). During the model simulations, the case management level was

528  constant over time.

529 Mosquito entomologica parameters and seasonal exposure patterns were estimated from
530 field studies conducted in the Namawala and Michenga villages |ocated nearby Ifakarain

531  Tanzania (58, 59). Two archetypal seasonal settings were simulated: a seasonal exposure setting
532  with onetransmission peak in September estimated from the mentioned field studies (Fig. S2.1),
533 and aperennial setting with uniform, constant exposure throughout the year. Two mosquito

534  gpecies were present in the simulated settings: endophagic (indoor-biting, human blood index

535 equal to 0.99) and exophagic (outdoor-biting, human blood index is 0.5), respectively. Theratios
536  between the population sizes of indoor and outdoor mosquito species were classified into three
537  levels corresponding to high (indoor proportion is 0.8 out of total mosquito population), mid

538  (indoor proportion is 0.5) and low indoor biting (indoor proportion is0.2). The extent of malaria
539  transmission in each simulation was defined by the yearly entomological inoculation rate (EIR).
540 For each smulation, EIR was sampled from the interval [1, 25] leading to a simulated range of
541  Plasmodium falciparum parasite rate or prevalence (PfPR) distributions across the various

542  transmission settings (Figures S2.1, S2.2, Table S2.1).

543

544 1.3 Definition of intervention profiles

545 Adopting a holistic view, we built an agnostic, standardized representation for each

546  malariaintervention. Accordingly, a malariaintervention was characterized through the targets
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547  of thetransmission life cycleit affects, along with the efficacy, half-life and decay of its effect
548 (Figurel, S2.3, Table S2.1). The efficacy of atherapeutic intervention was quantified by its

549  ahility to clear parasites or prevent infection, while for mosquito-targeted interventions (vector
550 control tools) it corresponded to the ability of the intervention to kill or prevent mosquitoes from
551  biting human hosts. For each intervention, its efficacy decayed over time according to a specific
552 decay type (defined in Fig. S2.3). The coverage of interventions was quantified by the

553  percentage of the population affected by the respective intervention. Geographical setting

554  characteristics such as entomological inoculation rates (EIR), seasonality, case-management

555  coverage, as well as transmission and vector characteristics were also included in the simulation
556  specifications (Fig. 1, Table S2.1).

557 We defined the following intervention targets in the transmission cycle (Fig. 1):

558 - Anti-infective: acts at the liver stage and prevents occurrence of a new infection

559 - Blood stage clearance: clears blood-stage parasites by administration of adrug

560 - Transmission blocking: prevents parasite development into gametocytes

561 - Mosquito life-cyclekilling effect: kills mosquitoes during different stages of their life cycle,
562 such as, for example, before ablood meal (pre-prandial killing) and/or after a blood meal

563 (post-prandial killing). Furthermore, mosquitoes are affected by vector control interventions
564 according to their indoor and outdoor biting patterns.

565 The length of the intervention effect was described via either half-life for exponential,

566  sigmoidal or biphasic decay profiles, or by duration for step-like decay profiles. Generally, half-
567 liferefersto half-life of intervention efficacy decay, representing the time in which theinitial

568 intervention efficacy has been reduced by 50% (Fig. S2.3, Table S2.1). As opposed to half-life,
569  theduration of effect is equivalent to the entire decay time. For simplicity, since only one

570 intervention had a step-like decay, we use the words half-life and duration interchangeably.

571 To define the breadth, range and profiles of simulated malariainterventions, we

572 collaborated with end users at the Bill & Melinda Gates Foundation and the product devel opment
573  partnerships PATH’s Malaria Vaccine Initiative (PATH-M V1) and Innovative Vector Control

574  Consortium (IVCC). For each new intervention in the portfolio of PATH-M VI, IV CC and others,
575  we undertook several expert discussion groups to catalogue the ranges of potential effectiveness;
576  potential delivery strategies; parasite or vector targets, the likely propertiesin terms of action

577  (target), efficacy, duration and decay; and use cases/delivery (age target, mass intervention,
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578  yearly deployment or other). These results are summarized in Table S2.1 which presentsa

579  comprehensive description of all intervention characteristics, parameter values, as well as the
580 rangesthey were varied within. Setting-specific characteristics used for the different simulated
581  scenarios are also summarized in Table S2.1.

582 In our current study, each intervention or combination of interventions was applied as
583  massintervention targeting all ages equally, along with continuous case management. In this
584  analysis, we did not examine targeting particular populations or age groups to develop our

585  approach. The deployed massintervention packages followed along period of model warm up
586 (150 years), and were implemented in June and/or December for three years (Fig. S3.1).

587  Coverage at deployment time refers to the percentage of the population covered by the

588 intervention’'sinitial efficacy, irrespective of how many doses/applications are required to reach

589  that coverage, assuming that the necessary doses have previously occurred.

590
501 1.4 Trandation of input EIR to PfPR2.10 and PfPRg.g9
592 For each smulation, OpenMalaria requires the definition of the intensity and seasonality

503  of malaria exposure specified through theinput EIR level and its yearly profile in the absence of
504 interventions (Fig. S2.1). EIR is an appropriate measure for reflecting transmission intensity

505  (60), however it isdifficult to measure in the field and itsinterpretation in the context of

506 intervention impact is difficult to apprehend when looking at the effects of drugs and vaccines
597 (61, 62). For this reason, although EIR isthe force of infection input to all OpenMalaria

508 simulations, we report simulation outcomes and downstream analyses at the corresponding

509  median PfPR2.10 and PfPR.g9 before the interventions are deployed. We report true infection
600 prevalence and not patent PCR or RDT-detected. To do so, we discretized the continuous EIR
601  gspaceinto discrete unit-wide intervals and the median PfPR was cal culated across the obtained
602  PfPR for all simulationsin each discreteinterval (Fig. S2.2).

603

604 1.5 Definition of impact and health goals

605 A comprehensive set of simulated scenarios was built by sampling uniformly the

606  parameter space of setting and intervention characteristics. To estimate the impact of the

607  deployed interventions, in each simulation, we calculated the reduction in PfPR.g9 attributable to
608 the deployed intervention. PfPRg.g9 reduction was calculated by comparing the initial average
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609  prevalencein the year before any interventions were deployed to the average yearly prevalence
610 obtained inthefirst year (short follow-up) and in the third year (long follow-up) after

611  deployment of interventions (Fig. S3.1). Consequently, the defined health goals corresponded to
612  agiven minimum threshold of PfPRo.g9 reduction that the deployed interventions should achieve.
613 Figures S3.2 — S3.4 present the distributions of obtained PfPRg.g9 reduction for the

614  OpenMalaria simulation experiments covering all the interventions and deployments investigated
615 inthe present study. In seasonal, low transmission settings (EIR < 2) a proportion of simulations
616  reached elimination before any intervention was deployed and were removed from the analysis
617  (Fig. S3.5). Since this happened for over 75% of smulations at EIR<2, we did not investigate
618  optimal intervention profiles for transmission settings with EIR<2. Arguably, for these settings
619 closeto elimination, adifferent health goal, such as probability of elimination, would be more
620  appropriate which isnot within the scope of the present study focusing on PfPRg.g9 reduction.
621

622 2 Building a disease model emulator with Gaussan processes

623 As it was computationally intensive and challenging to run an exhaustive number of
624  simulations in order to explore with OpenMalariaall the parameter space for diverse
625  combinations of interventions, settings and deployments, we applied machine learning
626  techniques and kernel methods to leverage our analysis. Precisaly, starting from atraining
627  dataset of smulations generated with OpenMalaria, we used Gaussian process (GP) models (24)
628  toinfer the relationship between simulation variables (e.g., intervention coverage, half-life,
629  efficacy, etc.) and corresponding intervention impact (PfPRo.g9 reduction). This approach
630 allowed usto build afast, smplified predictive model that could provide estimates of the disease
631  mode output for any new inputs without running new OpenMalaria model simulations.
632 Gaussian process models are non-parametric models which define a prior probability
633  digtribution over a collection of functions usng akernel, smooth function. Precisely, given the
634  relationship
y=fx)+ ¢

635 wherey in our caseisthe PfPRg.g9 reduction and x represents the set of intervention parameters
636 X1, ..., Xn, the main assumption of a GP isthat

P(f (1), f (x2), o) f () ~ N(1, %)

637 where
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in,x,- =K (xi, xj)
638 isthe covariance matrix of the Gaussian distribution, u isits mean and K isakernel function
639  (24). Oncedatais observed, the posterior probability distribution of the functions consistent with
640  the observed data can be derived which is then used to infer outcomes at unobserved locationsin
641  the parameter space (24). The intuition behind a GP model is based on the “smoothness’
642  relationship between its components. Accordingly, points which are closein the input parameter

643  gpacewill lead to close pointsin the output space.

645 2.1 Training data

646 For each intervention and setting, atraining dataset was built using discrete Latin hypercube
647  uniform sampling (63) across the input parameter space (defined in Table S2.1). Ten stochastic
648  redlizations (replicates) of each sampled data point were considered. OpenMalaria was run on the
649  sampled data points and PfPRg.99 Was calculated for both short and long follow-up. The size of
650 thetraining set was varied between 10 and 1000 points (100 — 10000 including replicates) for
651  several ssimulation experiments (Fig. $4.1) and the performance of the trained GP was assessed
652  viathe Pearson correlation coefficient r’. The minimum training set size which led to r* > 0.95
653  was selected for the remaining Simulation experiments.

654

655 2.2 Gaussian process emulators

656 For each transmission setting and intervention, a GP modd with a Gaussian kernel was
657  trained in a5-fold cross-validation scheme using the training set with OpenMalaria s mulations.
658  For training the GP, we used the R package HetGP version 1.1.1 (64, 65). HetGP is a powerful
659 implementation of GP models, featuring heteroskedastic GP modeling embedded in a fast and
660  efficient maximum-likelihood-based inference scheme.

661 GP performance was assessed by calculating the correlation between true and predicted
662  outputs on out-of-sample test sets aswell as the mean squared error (Fig. $4.2 — 4.3, Table $4.1).
663  Precisdly, thetraining set was split in 5 subsets and, iteratively, 4 of these subsets were used for
664  training the GP, while the remaining one was used as an out-of-sample test set during the cross-
665 validation procedure. After assessing the prediction error during the cross-validation procedure,
666  the GP was trained using the entire training set. Furthermore, since the trained GP model

667  provides the mean and variance of each predicted output, we used this probabilistic
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668  representation to assess the uncertainty of the trained model across the entire parameter space
669  and to refine the GP model through adaptive sampling (66-68). Accordingly, we iteratively

670  sampled new training points from high-uncertainty regions of the parameter space and updated
671  the model with the new training samples until the correlation between true and predicted values
672  on an out-of-sample test set reached a plateau. Finally, a separate out-of-sample test set was built
673  to assessthe overall performance of the GP (Fig. $4.2 — 4.3, Table $4.1).

674

675 3ldentifying impact deter minants through senstivity analysis

676 In order to estimate the contribution of each model input and its interactions with the
677  other inputsto the variance of the model outcome, we conducted a global sensitivity analysis
678  based on variance decomposition (69). This analysis shows which input parameters have higher
679  impact on the model outcome. It relies on the decomposition of the output variance in a sum of
680 individual input parameter conditional variances:
Var(Y) = ZVi + szij + -+ V5 g

i io>i
681  whereY isthe model outcome (in our case, PfPRo.99 reduction), d corresponds to the number of
682  mode inputs, and the conditional variances are defined as:

V; = Var(E(Y(xy)

Vy = Var (E(Y|xi, xj)) —V, -V,
Vi = Var (B(Y[x,%5,%0) ) = Vi = Viie = Ve = Vi = V; — Vi
683
684  with Xy, ..., X, representing the model input parameters.
685 Based on the above decomposition of output variance, the first order sensitivity index is defined
686 as.
5=
Var(Y)

687  and corresponds to the proportion of output variance assigned to the main effect of X, i.e,,

688  regardlessitsinteractions with other model inputs (69, 70).

689 To account for the contribution of each model input as well as the variance of its

690 interactions with other inputs to the variability of the model output, the total effect sensitivity
691  index isused:
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Var(E(Y|x.;))
Var(Y)
692  wherethe notation ~i standsfor all indices except i (69, 70).

Ti =

693 In the above decomposition of model output variance, by replacing the expressions of the
694  sengitivity indexes, the following properties can be deduced:

DS+ Y Syt Spa=1
i

i j>i
695 and
Z T,>1.
i
696 To compute the sengitivity indexes, we use the function “soboljansen” from the R

697  package “sensitivity” (71). The function estimates the sensitivity indices through MCMC
698  sampling, using a Monte Carlo approximation for computing conditional expectations. Within
699 the sampling scheme, we sampled 100’ 000 points to estimate the sengitivity indices.
700 Calculating the sengitivity indices defined above, the variance of the GP emulator output
701 wasthus decomposed into proportions attributable to intervention characteristics, i.e.,
702 intervention efficacy, half-life and deployment coverage, as well as accessto care. Using the
703  main effects, we defined the relative importance r; of each characteristic as a proxy for impact
704  determinants as follows:

Si
705 whered isthe number of intervention characteristicsand Y&, r; = 1.

706 4 Finding minimal inter vention properties

707 Thetrained GP models for each transmission setting and intervention were used within a
708  general-purpose optimization scheme in order to identify minimum intervention properties that
709  reach adefined PfPRy.g9 reduction goal given operational and intervention constraints.
710 Let
g(x) = g(xq, x5, %3, %4)

711 denote the GP model predicting the mean prevalence reduction obtained after deploying an
712 intervention with given characteristics in a transmission setting, with

X, = tool coverage

x, = tool half — life
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x5 = tool ef ficacy

X4 = access to treatment.
713 For various levels of PfPRg.g9 denoted with p, each intervention characteristic was
714 optimized separately, keeping the remaining characteristics as well as the level of case
715  management fixed to pre-set levels. Precisely, the optimization procedure searches for

min(x;)| x.;
716  suchas
9(x) = py
717 with the constraints:
L < x; < u,

718  wherel; and u; are the lower and upper bounds of X;, respectively and the notation ~i is used to
719  represent all the characteristics except i. A detailed description of the parameter specifications
720  during optimization for each intervention is provided in Table S2.2.
721 To solve the above optimization problem, we used a general nonlinear augmented
722 Lagrange multiplier method (72, 73) implemented in the R package “Rsolnp” (74). To ensure
723 optimality of the obtained solutions and avoid local minima, 10 random restarts were chosen
724 among 1000 uniformly-sampled input parameter sets and the optimization procedure was run
725  separately for each restart (implemented in function “gosolnp” in the same R package). To
726  capture the variance of the optimal intervention profile, since the output of a GP model isa
727  digtribution, we solved the above optimization problem for several cases and we report the
728  distribution of the obtained minima when:

() gx)=u

() gx)=uto

(iii)glx) = ut 20
729  where u isthe predicted mean of the GP model and o isthe standard deviation. Where the
730  nonlinear optimization algorithm did not find any solutions, we performed an additional fine grid
731 search of 10000 uniformly-sampled data points.
732 In seasonal settings, at low transmission (simulated EIR < 2, corresponding simulated
733 true PfPR2.1p < 11.7%), over 75% of ssimulations reached malaria elimination (PfPRy.g9 = 0)
734 under the simulated levels of case management, before intervention deployment (Fig. S3.5). For

735  thisreason, the space of obtained prevalence reductions following intervention deployment was
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736  rather sparse and the obtained optimawere not reliable and often did not converge. Therefore,
737 wechose to report minimum intervention profiles for settings with true PfPR2.10 >= 11.7% (with
738  RDTsthisyields a patent PfPR;.10 >= 5.8%).

739
740 5 lterative communication with stakeholders

741 During the development of our methodological framework, we actively engaged in regular

742 communication and exchanges with different expert groups. The stakeholdersinvolved in these
743 discussions were the Bill and Melinda Gates Foundation (BMGF), the Innovative Vector Control
744  Consortium (IVCC) and the PATH’s Malaria Vaccine Initiative (PATH-MV1). Coordinated by
745  BMGF, these exchanges ensured a crucial discussion environment, aiding and guiding the

746 methodology at various levels: intervention profiling, and defining relevant intervention use

747 cases, and product characteristics. Furthermore, the framework has been presented and validated
748  inpresence of the stakeholders in successive meetings. These discussions contributed towards
749  refining theinvestigation of various intervention profiles and led to exploration of intervention
750  combinations. Subsequently, the iterative exchanges with the stakeholders have not only shaped
751 but also proven the value of our methodological framework in its versatility to adapt addressing
752 relevant questions along the product devel opment pathway.
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o Fig. S3.1. Examples of OpenMalaria simulation outputs.
o Fig. S3.2. Distributions of prevalence reduction following yearly deployment of
single interventions.
o Fig. S3.3. Distributions of prevalence reduction following yearly deployment of
combinations of interventions.
o Fig. S3.4. Distributions of prevalence reduction following deployment of single
and combinations of interventions twice per year.
o Fig. S3.5. Simulations reaching malaria elimination before intervention
deployment.
e Emulator training and evaluation:
o Fig. $4.1. Assessment of the performance of the trained GP depending on the
training set Sze.
o Fig. $4.2. Performance of the trained GP emulators predicting immediate
intervention impact.
o Fig. $4.3. Performance of the trained GP emulators predicting long-term
intervention impact.
o Table $4.1. Performance of the trained Gauss an Process emulators predicting
immediate and long-term intervention impact.
e Summary of analysisresultsfor all simulated transmission settings and interventions:
o Table S5.1. Key findings guiding target product profiles of new malaria
interventions.
e  Sensitivity analyses and impact determinants of interventions:
o Fig. $6.1. Key drivers of impact for therapeutic malariainterventions across
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o Fig. $6.2. Key drivers of impact for vector control malariainterventions across
different transmission settings.
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desired health goal across different transmission settings and operational factors:
o Fig. S7.1 Feasible landscapes of optimal, constrained intervention profiles (TPPs)
for an anti-infective monoclonal antibody deployed once per year.
o Fig. S7.2. Feasible landscapes of optimal, constrained intervention profiles
(TPPs) for an anti-infective monoclonal antibody deployed twice per year.
o Fig. S7.3. Feasible landscapes of optimal, constrained intervention profiles
(TPPs) for an anti-infective vaccine deployed once per year.
o Fig. S7.4. Feasible landscapes of optimal, constrained intervention profiles
(TPPs) for atransmission-blocking vaccine deployed once per year.
o Fig. S7.5. Feasible landscapes of optimal, constrained intervention profiles
(TPPs) for attractive targeted sugar baits deployed once or twice per year.
o Fig. S7.6. Feasible landscapes of optimal, constrained intervention profiles
(TPPs) for eave tubes deployed once per year.
e  Minimum profiles of interventions for achieving a desired health goal across different
transmission settings and operational factors:
o Fig. $8.1. Optimal intervention profiles (TPPs) for anti-infective monoclonal
antibodies under various deployment regimes to achieve a PfPRg.g9 reduction of at
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o Fig. S8.2. Optimal intervention profiles (TPPs) for anti-infective vaccines under
various deployment regimes to achieve a PfPRg.g9 reduction of at least 70%.

o Fig. $8.3. Optimal intervention profiles (TPPs) for transmission-blocking
vaccines under various deployment regimes to achieve a PfPR.g9 reduction of at
least 70%.

o Fig. S8.4. Optimal intervention profiles (TPPs) for attractive targeted sugar baits
under various deployment regimes to achieve a PfPRo.g9 reduction of at least 70%.

o Fig. $8.5. Optimal intervention profiles (TPPs) for eave tubes to achieve a PfPR,.
99 reduction of at least 70%.
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Name Description and assumptions References
Key modelled epidemiol ogical processes
o ] - Determined by EIR which isamodel input and affects (33, 75)
Malariainfection of the force of infection in the simulated setting
humans - Exposure of humans to mosquitoes depends on age
- Blood stage parasite density depends on the time since (33,48, 75,
infection and is affected by naturally acquired immunity  76)
- Theduration of infection follows a log-normal
Infection distribution
progression in - Immunity (both pre-erythrocytic and blood-stage)
humans: asexual devel ops progressively following consequent episodes
parasite densities of exposure to infection and decays exponentially
and immunity - Acquired immunity reduces parasite density of
subsequent infections
- Super-infection is possible with cumulative parasite
densities
Transmission from -  Depends on the density of parasites present in the (33,49, 77)
infected humansto human with gametocyte densities following alag from
mosquitoes parasite densities
- Acuteclinical illness depends on human host parasite (33, 50, 51,
Clinical illness, densities and their pyrogenic threshold which evolves 78)
mor bidity, over time depending on the individual exposure history
mortality and - Acute morbidity episodes can be uncomplicated or
anemia evolve to severe episodes
- A proposition of the severe episodes |eads to deaths
Modelled characteristics of the transmission setting
Population age - Informed by _health and demographic surveillancedata (50, 57)
structure from Tanzania
Transmission - Seasonally-forced, the same transmi_ssi on pattern is (75, 79)
; reproduced each year in absence of interventions
seasonality
- Modé€led through a comprehensive decision tree-based  (52)
model which determines the corresponding treatment
implications depending on the occurring clinical events
Case management such as fevers and seeking of care
- Itsrepresentation includes specification of diagnostic
tests, effects of treatment, case fatality, case sequelae
and curerates
- Comprehensive simulation of the mosquito lifecycleand  (47)

Entomological
setting

behavior towards human and animal hosts (biting,
resting) embedded in a dynamic entomol ogical model of
the mosquito oviposition cycle

Multiple vector species can be simulated simultaneously
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Modelled interventions

- Available interventions: long-lasting insecticide-treated
Vector control nets (LLINS), indoor residual spraying (IRS), house
screening, baited traps, repellents, push-pull
- Drugs and vaccines acting at various levels of the
Drugsand Vaccines parasite life cycle (transmission blocking, anti-infective,
blood-stage clearance)
- Interventions can be deployed for several roundsto a
targeted group of individuals and specified coverages

Deployment
characteristics

Simulation regimes and model variants
Time steps - Simulation outputs are tracked every 5 days

. - Varying assumptionsin immunity decay, treatmentand  (45)
Model variants heterogeneity of transmission result in 14 model variants

Software availability and documentation

- Source code and wiki page available on GitHub: https.//github.com/SwissTPH/openmal aria/

1183

1184 TableSl.1

1185  Overview of the OpenMalaria model components.

1186  Theindividual based stochastic model of malariain humans and transmission has been described
1187  previoudly. This model was originally developed in 2003-2006 (33), with mosquito dynamics
1188  updated in 2008 (46) and an additional 13 structural model variants devel oped and parameterized
1189  in 2012 (45) representing different model assumptions on immunity decay, disease,

1190  comorbidities, and heterogeneity in transmission.
1191
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1192 2 Disease scenarios

1193
A Input transmission profile B Modeled transmission profile C  Simulated prevalence profile
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1195 FigureS2.1
1196 Illustration of the yearly malaria transmission and prevalence patternsin smulated
1197  seasonal settings.

1198  (A) Observed, normalized, monthly seasonal pattern of malaria EIR in Namawala, Tanzania
1199  extracted from (50). (B) Corresponding input, 5-day seasonal EIR pattern used in OpenMalaria
1200  simulations, obtained by scaling and extrapolating the monthly seasonality profile from (50) to 5-
1201  day time steps. For this example, the ssmulated input EIR was 7.78 infectious bites per person
1202  per year. (C) Resulting ssmulated yearly PfPRg.g9 profile. In al figures, the arrows indicate the
1203 month of September, the peak of transmisson and show the delay between the peak of
1204  transmission and the resulting peak in malaria prevalence. The dotted vertical lines on figures
1205  (B) and (C) indicate the deployment times of first and second rounds of malaria interventions

1206  when applicable.
1207
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1209 FigureS2.2
1210  Simulated distributions of true and patent (detected with PCR or RDT) PfPRg.g9 and
1211 PfPR2jofor variousinput EIR levelsin absence of inter ventions.

1212 Theinput entomological inoculation rate (EIR) defines the simulated malaria transmission level.
1213 In every smulation experiment, EIR was uniformly sampled from the interval [1, 25]. In figures
1214 (A) — (C), each panedl corresponds to a ssimulated setting and presents the distributions of true
1215 (A), patent with PCR (B) and patent with RDT (C) Plasmodium falciparum prevalence (PfPR,
1216  shown with boxplots, blue for 0-99 years old and orange for 2-10 years old) at varying EIR
1217 levels (x axis). The 6 represented settings are defined by the seasonality pattern (perennial shown
1218  in thefirst row, or seasonal shown in the second row of each figure) and mosquito indoor biting
1219  behavior (low- shown in the first column, mid- shown in the second column or high-indoor
1220  biting shown in the third column of each figure). Each EIR level on the x axis is defined as a set
1221 of continuous input EIR values which range between the current level and the current level - 1,
1222 eg., aninput EIR level of 1 contains EIR values in the interval (0, 1]. For each EIR level and
1223  setting, the case management levels, i.e., the probability of seeking care (access to treatment)
1224 within 5 days from the onset of fever (Es), was varied within the interval [0.04 - 0.5]. PCR stands
1225  for polymerase chain reaction and RDT stands for rapid diagnostic test.

1226
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1228  Figure S2.3
1229  Representation of decay and the range of efficacy and half-life against different parasite or
1230  vector targetsfor intervention-agnostic malariainterventions.
1231  Thesimulated malariainterventions (A — F) were modeled in terms of thelir targets in the malaria
1232  transmission cycle. The effect of each intervention is represented through the half-life of its
1233  decay (x axis) as well as the initial efficacy (y axis). The color blocks represent the range of
1234  parameter space of efficacy and half-life of decay considered in the current analysis for each
1235 intervention. The half-life and the color block does not represent the entire duration of effect, as
1236  that depends on the decay shape chosen for each intervention. The decay shape for each
1237  intervention is displayed in the right side insert of each plot where the dotted lines specify the
1238 half-life and corresponding half of the intervention efficacy. The definitions of all the parameter
1239  ranges for al interventions are provided in each figure on the lower left side and detailed in
1240 Table S2.1.

1241
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Half-life or
I ntervention Coverage Initial efficacy duration Decay type
(years)
Prevent infection
Ant|7|nfect|ve 0-1 03-095 05-5 Wei b_uII (k_ =0.8)
vaccine (Sigmoidal)
Anti-infective : _
monoclona 0-1 03-095 0.167-0667  vebul (k=3)
. (Biphasic)
antibody
Blood stage clearance
Intervention dA”“ malarial 0-1 08-1 0-0.1667 Exponential
profiles rugs
Transmission blocking
Vaccine 0-1 03-095 05-5 Weibull (k =0.8)
(Biphasic)
Preprandial killing effect (affects only indoor mosquito biting)
Weibull (k = 3)
Eave tubes 0-1 0.3-0.99 05-5 (Sigmoidal)
Preprandial and postprandial Killing effect (affects indoor and outdoor mosquito biting)
Attractive
targeted sugar 0-1 0.7-0.99 0.167-0.667  Step
baits
EIR range: 1 — 25, representing a PfPRg g9 Of 13-88% and a PfPRy., of 7.2-74%
Case management (baseline scenario) range: 0 — 0.8, corresponding to a probability of
seeking care within 5 days from the onset of fever of 0-0.5
Seasonality levels:
Transmission 1. high seasonal setting with one transmission peak over a year
settings 2. perennia setting with constant yearly transmission
Proportion of indoor-biting mosquitoes, out of total indoor and outdoor biting mosquitoes.
3. high(0.8)
4. medium (0.5)
5. low (0.2)

1242  Table S2.1 Description and ranges of simulation variables.

1243  Within each OpenMalaria smulation, the varied parameters and ranges correspond to the
1244  profiles of applied interventions (see Fig S2.3 for visual ranges of vector and parasite targets), as
1245  waell as the transmission setting characteristics. The profile of each modeled malaria intervention
1246 is defined by its target, the ranges of the deployment coverage, initial efficacy, half-life or
1247  duration of effect as well the type of decay. Where interventions are applied to individual
1248  humans, in the present demondrative analysis this is equally applied across ages, and not
1249  targeted to certain population. The transmission setting is defined by the yearly EIR, seasonality
1250 level, aswell as proportion of indoor mosguitoes.
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I ntervention

Minimized
profile

I ntervention properties
constraints

Specifications of

combination therapies

Anti-infective

monaoclonal antibody

(Sigmoidal decay)

Coverage

Coverage e [0 .. 80%)]
Efficacy = 85%
Half-life = 4 months

Efficacy

Coverage = 60%

Efficacy € [30% .. 95%)]
Half-life = 4 months

Half-life

Coverage = 60%
Efficacy = 85%
Half-lifee [2 .. 8 monthg]

Blood stage drug:
Efficacy = 90%

Half-life = 10 days

Anti-infective
vaccine
(Biphasic decay)

Coverage

Coverage e [0.. 80%)]
Efficacy = 85%
Half-life = 7 months

Efficacy

Coverage = 60%

Efficacy € [30% .. 95%)]
Half-life = 7 months

Half-life

Coverage = 60%
Efficacy = 85%
Half-lifee [2 months .. 5 years]

Blood stage drug:
Efficacy = 90%

Half-life = 10 days

Transmission-
blocking vaccine
(Biphasic decay)

Coverage

Coverage e [0.. 80%)]
Efficacy = 85%
Half-life = 7 months

Efficacy

Coverage = 60%

Efficacy € [30% .. 95%)]
Half-life = 7 months

Half-life

Coverage = 60%
Efficacy = 85%
Half-lifee [2 months .. 5 years]

Blood stage drug:
Efficacy = 90%

Half-life = 10 days

Attractive targeted
sugar baits
(Step decay)

Coverage

Coverage e [0.. 80%)]
Efficacy = 85%
Half-life = 4 months

Efficacy

Coverage = 60%
Efficacy € [70% .. 99%)]
Half-life = 4 months

Half-life

Coverage = 60%
Efficacy = 85%
Half-lifee [2 .. 8 monthg]

Not applicable

Eave tubes
(Sigmoidal decay)

Coverage

Coverage e [0 .. 80%)]
Efficacy = 85%
Half-life = 3 years

Efficacy

Coverage = 60%
Efficacy € [30% .. 99%)]
Half-life = 3 years

Half-life

Coverage = 60%
Efficacy = 85%
Half-life e [6 months .. 5 years]

Not applicable

Table S2.2

Specifications of the optimization procedurefor TPP development.

1253  For each intervention, we successively identified the minimum profiles of the intervention
1254  coverage, efficacy, and half-life. Precisely, we optimized each parameter separately (column
1255  “Minimized profile’), according to its feasibility constraints while setting the two other


https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/

1256
1257

1258
1259

medRXxiv preprint doi: https://doi.org/10.1101/2021.01.05.21249283; this version posted January 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

parameters to the specified fixed values (column “Intervention properties constraints’). When
deployed in combination with other drugs or vaccines, the additional interventions had fixed
properties as well (column * Specifications of combination therapies’).


https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.01.05.21249283; this version posted January 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

1260 3 Results; Disease model smulations

1261
A 100 T
reference ! ' ' immediate late

0.75- year ‘ ‘ ‘ follow-up follow-up
2 I . : :
)
X 0504
[a
§—
[a

0.25

‘ ‘ ‘ Applied
0.00 . . — . , , , interventions
0 2 4 5 6 7 8 9 10 11 13 15
Time (years) Anti-infective monoclonal
= Anti—infective vaccine
B 1.00 T T T
reference ' ' " immediate late == Transmission—blocking vaccine

075+ year i i i follow—up  follow-up == Attractive targeted sugar baits
o A A A A AR ! Eave tubes
Z \ /\ / \ /.\ \ ‘CJ/\\\ : '
o os0-\ / \ J \/\/\

\ / / / \

a " IVVVVVN\
o 1

0.25 - i

0.00 ‘ .

0 2 4 5 6 7 8 9 10 11 13 15
Time (years
1262 (vears)

1263 Figure S3.1.
1264 Examples of OpenMalaria simulation outputs.

1265 Time series of simulated malaria PfPRg.99 in a perennial (A) and seasonal (B) setting. Both
1266  figures display the prevalence of malaria cases, PfPRogs, (y axis) across time (X axis).
1267  Interventions targeting different stages in the malaria transmission cycle (different colors) are
1268  applied once per year at the beginning of June (vertical dotted lines, in this example for three
1269  years of deployment). The effect of each intervention is assessed by evaluating the PfPRo.g9
1270  reduction in all ages relative to the year prior deployment (first grey block). Two outcomes are
1271  assessed, following an immediate and late follow-up (second and third grey blocks), depending
1272 on whether the average prevalence is calculated across the next year after deployment, or across

1273 thethird year after deployment, respectively.
1274
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1277 Figure S3.2.
1278 Distributions of prevalence reduction following yearly deployment of single interventions.

1279  Prevalence reduction was calculated by comparing the initial prevalence in the year before any
1280 interventions were deployed to the yearly prevalence obtained in the following year (short
1281  follow-up, panel A) and in the third year (long follow-up, panel B) after deployment of
1282  interventions. Each individual figure corresponds to a simulated setting and presents the
1283 digtributions of PfPRgg9 reduction (shown with boxplots) at varying EIR as well as
1284  corresponding simulated PfPR,.10 levels (x axis). Each boxplot displays the interquartile range
1285  (box), the median value (horizontal line), the largest and smallest values within 1.5 times the
1286 interquartile range (whiskers), and the remaining outside values (points). The 6 represented
1287  settings in each pand are defined by the seasonality pattern (perennial or seasonal) and mosquito
1288  indoor biting behavior (low, mid or high indoor biting). Each EIR level on the x axisis defined
1289 as a set of continuous input EIR values which range between the current level and the current
1290 level - 1, eg., an input EIR level of 1 contains all EIR values in the interval (0, 1]. The
1291  definitions and ranges of all the EIR levelsisincluded in Table S2.1.
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1293  Figure S3.3.
1294  Distributions of prevalence reduction following yearly deployment of combinations of
1295 interventions.

1296  Prevalence reduction was calculated by comparing the initial prevalence in the year before any
1297  interventions were deployed to the yearly prevalence obtained in the following year (short
1298  follow-up, panel A) and in the third year (long follow-up, panel B) after deployment of
1299  interventions. Each individual figure corresponds to a simulated setting and presents the
1300 distributions of PfPRo.gg reduction (shown with boxplots) at varying EIR as well as the
1301  corresponding simulated PfPR,.10 levels (x axis). Each boxplot displays the interquartile range
1302  (box), the median value (horizontal line), the largest and smallest values within 1.5 times the
1303  interquartile range (whiskers), and the remaining outsde values (points). The 6 represented
1304  settingsin each pand are defined by the seasonality pattern (perennial or seasonal) and mosquito
1305  indoor biting behavior (low, mid or high indoor biting). Each EIR level on the x axis is defined
1306 as a set of continuous input EIR values which range between the current level and the current
1307 level - 1, eg., an input EIR level of 1 contains EIR values in the interval (0, 1]. The definitions
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1308 and ranges of all the EIR levels are included in Table S2.1. MDA stands for mass drug
1309  administration.
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1311  Figure S3.4.
1312 Distributions of prevalence reduction following deployment of single and combinations of
1313  interventionstwice per year.

1314  Prevalence reduction was calculated by comparing the initial prevalence in the year before any
1315 interventions were deployed to the yearly prevalence obtained in the following year (short
1316  follow-up, pane A) and in the third year (long follow-up, panel B) after deployment of
1317  interventions. Each individual figure corresponds to a simulated setting and presents the
1318  distributions of PfPRgg9 reduction (shown with boxplots) at varying EIR as well as
1319  corresponding simulated PfPR,.1o levels (x axis). Each boxplot displays the interquartile range
1320  (box), the median value (horizontal line), the largest and smallest values within 1.5 times the
1321  interquartile range (whiskers), and the remaining outside values (points). The 6 represented
1322  settings in each panel are defined by the seasonality pattern (perennial or seasonal) and mosquito
1323 indoor biting behavior (low, mid or high indoor biting). Each EIR level on the x axisis defined
1324  as aset of continuous input EIR values which range between the current level and the current
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1325 level - 1, eg., an input EIR level of 1 contains EIR values in the interval (O, 1]. The definitions
1326  and ranges of all the EIR levelsfor all simulated settingsisincluded in Table S2.1. MDA stands
1327  for mass drug administration.
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1328

1329  Figure S3.5.
1330 Simulationsreaching malaria elimination befor e inter vention deployment.

1331  The violin plots and boxplots in each panel present the distributions of the percentage of
1332  simulations reaching malaria elimination (PfPRo.g9 = 0) before intervention deployment (this can
1333  arrive due to case management and only occurs in seasonal settings), across al simulated
1334  interventions and intervention combinations.

1335
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1336 4 Results: Emulator performance
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1340 Figure4.1.
1341  Assessment of the performance of the trained GP depending on thetraining set size.

1342 Each figure presents the Pearson correlation coefficient r* between true and predicted values on a
1343 broad range of out-of-sample test sets of varying length, when simulating deployment of an anti-
1344  infective monoclonal antibody deployed once per year (A) or twice per year (B) as well asin

1345  combination with a blood-stage drug once (C) or twice per year (D).
1346
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1347
1348  Figure 44.2.
1349  Performance of thetrained GP emulator s predicting immediate inter vention impact.

1350 For a wide range of deployed interventions and transmission settings (see Materials and
1351  Methods), GP emulators were trained to predict the immediate impact of each intervention, i.e.,
1352  the resulting average PfPRg.g9 reduction in the year following deployment of the intervention.
1353  The performance of the trained emulators was assessed by inspecting the Pearson correlation
1354  coefficient (r’) and the mean squared error between true and predicted values on an out-of-
1355  sample test set. Figures (A) — (K) display the true and predicted values of each trained emulator
1356  across all deployed interventions in a seasonal transmission setting with high indoor biting.
1357  Figure (L) summarizes r* and the mean squared error of all the trained emulators for all
1358 simulated transmission settings and interventions (the simulated settings were defined by
1359  seasonality and mosquito biting patterns, see Table S2.1 for detailed values per setting).
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1360
1361 Figure 44.3.
1362  Performance of thetrained GP emulator s predicting long-ter m inter vention impact.

1363 For a wide range of deployed interventions and transmission settings (see Methods), GP
1364  emulators were trained to predict the immediate impact of each intervention, i.e., the resulting
1365 average PfPRo.g9 reduction in the third year following deployment of the intervention. The
1366  performance of the trained emulators was assessed by inspecting the Pearson correlation
1367  coefficient (r’) and the mean squared error between true and predicted values on an out-of-
1368  sample test set. Figures (A) — (K) display the true and predicted values of each trained emulator
1369 across all deployed interventions in a seasonal transmission setting with high indoor biting.
1370 Figure (L) summarizes r* and the mean squared error of all the trained emulators for all
1371  simulated transmission settings and interventions (the simulated settings were defined by
1372 seasonality and mosquito biting patterns, see Table S2.1 for detailed values per setting).
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I ntervention(s) Training | Test Cross-validation r* and Test set r” and (mean
(deployment) setsize | setsize (mean error) error)
Anti-infective . .

X Immediate: 0.99 (1.02%) | Immediate: 0.99 (0.63%)
monoclonal antibody | 10000 | 5000 |70 o6’ (1 150) Long: 0.97 (0.68%)
(oncelyear)
Anti-infective . .
X Immediate: 0.99 (1.11%) | Immediate: 0.99 (0.91%)
monoclonal antibody | 5000 | 2500 | "0 97 (1 3206 Long: 0.99 (0.83%)
(twicelyear)
Anti-infective
monoclonal antibody + 10000 5000 Immediate: 0.99 (1.34%) | Immediate: 0.99 (1.18%)
Blood stage drug Long: 0.96 (1.74%) Long: 0.98 (1.05%)
(oncelyear)
Anti-infective
monoclonal antibody + 5000 2500 Immediate: 0.99 (1.26%) | Immediate: 0.99 (0.98%)
Blood stage drug Long: 0.97 (1.98%) Long: 0.99 (1.12%)
(twicelyear)
Anti-infective vaccine 10000 5000 Immediate: 0.99 (1.08%) | Immediate: 0.99 (0.99%)
(oncefyear) Long: 0.99 (1.3%) Long: 0.99 (1.16%)
Anti-infective vaccine . .
Immediate: 0.99 (1.18%) | Immediate: 0.99 (1.57%)
+Bloodstagedrug | 5000 | 2500 | 100 99 (1.63%) Long: 0.99 (2.25%)
(oncelyear)
Transmission-blocking 10000 5000 Immediate: 0.99 (1.13) Immediate: 0.99 (0.89%)
vaccine (once/year) Long: 0.99 (1.25%) Long: 0.99 (1.07%)
Transmission-blocking . .
) Immediate: 0.99 (1.25%) | Immediate: 0.99 (1.68%)
veccine+ Blood stage | 5000 | 2800 || 30" 99 (1 53%) Long: 0.99 (2.23 %)
drug (oncelyear)
Attractive targeted 5000 2500 Immediate: 0.99 (1.26%) | Immediate: 0.99 (1.98%)
sugar baits (once/year) Long: 0.98 (1.71%) Long: 0.99 (1.19%)
Attractive targeted 5000 2500 Immediate: 0.99 (1.09%) | Immediate: 0.99 (1.03%)
sugar baits (twice/year) Long: 0.99 (1.98%) Long: 0.99 (1.29%)
Immediate: 0.99 (1.11%) | Immediate: 0.99 (0.89%)
Eavetubes (oncelyear) | 10000 | 5000 | 10009 (1.3%) Long: 0.99 (1.26%)
Table $4.1.

Performance of thetrained GP emulator s predicting immediate and long-ter m inter vention
impact.

For each modelled transmission setting defined by case management level and mosquito biting
patterns and for each intervention (Table S2.1), a comprehensive set of smulation scenarios was
built by sampling uniformly the parameter space (defined in Table S2.1) and smulation with
OpenMalaria. In this manner, atraining and a test set were constructed. The training set was used
to train, for each setting and intervention, a Heteroskedastic GP model in a 5-fold cross-
validation procedure. The performance of the trained GP was assessed by computing the Pearson
correlation coefficient r? as well as the mean error between the true and predicted outcomes on
both out-of-sample cross-validation and test sets. For each intervention and follow-up
(immediate or long-term), the average r* and mean error for all the GP models trained across 6
settings (seasonal or perennial, high, medium or low mosquito indoor biting) are reported.
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5 Results: Summary of key intervention impact deter minants, optimal intervention
profiles, and vaccineresults

Intervention

Summary of analysisresults

Relevant
figures

Therapeutic
interventions

Anti-infective
monoclonal
antibodies
Anti-infective
vaccines
Transmission-

blocking vaccines

K ey determinants of impact

The main driver of intervention impact was coverage
The second determinant of intervention impact
depended on intervention half-life. For interventions
with short half-lives such as monoclonal antibodies,
the half-life was the second driver, while for long-term
interventions such as vaccines, efficacy played akey
role.

As opposed to long-term vaccines whose impact is
mainly driven by coverage and efficacy, interventions
with short half-life (e.g., anti-infective monoclonal
antibodies) rely on the case management to prevent
resurgence

The various biting patterns of mosquitoes did not
influence the intervention determinants of impact

6.1
and
Figure 2

Optimal intervention profiles

As opposed to vaccines, anti-infective monoclonal
antibodies require high efficacy and deployment
coverage while achieving limited reduction in PfPRg.g9
with very little impact in perennial settings

Increasing the deployment frequency for anti-infective
monoclonal antibodies from once to twice per year,
extended the landscape of feasible health targets but
mainly in seasonal settings

Combination with ablood-stage drug proved more
impactful as compared to increasing the deployment
frequency for anti-infective monoclonal antibodies,
extending the achievable health goals in perennial
settings as well

S7.1-S7.4
$8.1-S8.3

and Figure
3

Vector control
interventions

Attractive
targeted sugar
baits

Eave tubes

K ey determinants of impact

As with short-term therapeutic interventions such as
anti-infective monoclonal  antibodies, attractive
targeted sugar baits rely on case management for
preventing resurgence

We see limited difference between key drivers for
attractive targeted sugar baits in different biting
settings because mosquitoes sugar feed before indoor
or outdoor biting. In contrast, we observe that
intervention properties of eave tubes rather than health
system access to treatment are larger drivers of impact
in indoor biting settings, as mosquitoes in those

$6.2
and
Figure 2
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settings will be more likely to contact the eave tube.

Optimal intervention profiles

- Increasing deployment frequency from once to twice 75576
per year for attractive targeted sugar baits, resulted ina | sg4.sg55
significant increase in intervention impact and less
requirementsin terms of coverage and half-life ~and

- Increasing efficacy of attractive targeted sugar baits Figure 3
did not have a significant impact

1389

1390 Table S5.1.
1391  Key findings guiding tar get product profiles of new malaria interventions.

1392 A summary of key results concerning impact determinants and minimal intervention profiles as
1393  well asreferences to the corresponding illustrative figures is provided.

1394
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1396 6 Results: Key deter minants of impact
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1397 _
1398  Figure $6.1.

1399 Key driversof impact for therapeutic malariainterventions across different transmission
1400  settings.

1401  Results of sendtivity analysis identifying the determinants of intervention impact on PfPRo.g9
1402  reduction for anti-infective monoclonal antibodies (A, B), anti-infective vaccines (C, D) and
1403  transmission-blocking vaccines (E, F). The distinct colors represent proportions of the GP
1404  emulator output variance (relative importance) attributable to intervention efficacy, half-life,
1405  deployment coverage, as well as health system access. Determinants of impact are shown for
1406 both immediate and late follow-up, when interventions are applied once per year for three years
1407 in different transmission settings (see full intervention specifications in the Methods section).
1408  The transmission settings are defined by two seasonal settings (seasonal and perennial) and three
1409  types of mosquito biting patterns (low, medium and high indoor biting). The mosquito biting
1410  patterns had little to no effect on the results of the sensitivity analysis for these therapeutic
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1411 interventions (see results for all settings for monoclonal antibodies in figures A and B).
1412  Therefore, only the results for seasonal and perennial settings with high indoor mosquito biting
1413  aredisplayed for the vaccine interventions.
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A Attractive targeted sugar baits, immediate follow-up B Attractive targeted sugar baits, late follow-up
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1415  Figure S6.2.
1416  Key driversof impact for vector control malaria interventions acr oss different
1417  transmission settings.

1418  Results of sendtivity analysis identifying the determinants of intervention impact on PfPRg.g9
1419  reduction for attractive targeted sugar baits (A, B) and eave tubes (C, D). The distinct colors
1420  represent proportions of the GP emulator output variance (relative importance) attributable to
1421 intervention efficacy, half-life, deployment coverage, as well as health system access.
1422 Determinants of impact are shown for both immediate and late follow-up, when interventions are
1423  applied once per year for three years in different transmission settings (see full intervention
1424  specifications in the Methods section). The transmission settings are defined by two seasonal
1425  settings (seasonal and perennial) and three types of mosquito biting patterns (low, medium and
1426 high indoor biting). Like for the therapeutic interventions in the previous figure, we see limited
1427  difference between key drivers for attractive targeted sugar baits in different biting settings as
1428  mosquitoes sugar feed before indoor or outdoor biting. In contrast, we observe that intervention
1429  properties of eave tubes rather than health system access to treatment are larger drivers of impact
1430 inindoor biting settings, as mosquitoes in those settings will be more likely to contact the eave
1431 tube.
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7 Results: Feasible landscapes of optimal, constrained intervention profiles
A Anti-infective monoclonal (once per year), immediate follow-up
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D Anti-infective monoclonal + blood stage drug (once per year), late follow-up
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Figure S7.1.
Feasible landscapes of optimal, constrained intervention profiles (TPPs) for an anti-
infective monoclonal antibody deployed once per year.

The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified
by minimal reduction in PfPRog, Yy axis) across different simulated true PfPR;.1o Settings
(rounded values, x axis) with seasonal transmission and high indoor mosquito biting. Each
intervention characteristic was minimized in turn, while keeping the other characteristics fixed
(fixed parameter values for each optimization are specified in Table S2.2). Results are shown for
an anti-infective monoclonal antibody delivered alone and assessing immediate (A) and late (B)
follow up, as well as when delivered in combination with ablood stage drug assessing immediate
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1446  (C) and late (D) follow-up. The ssimulated case management level (Es) for all the displayed
1447  optimization analyses was assumed 25%.
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A Anti-infective monoclonal (twice per year), immediate follow-up
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Anti-infective monoclonal (twice per year), late follow-up
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Figure S7.2.
Feasible landscapes of optimal, constrained intervention profiles (TPPs) for an anti-
infective monoclonal antibody deployed twice per year.

The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified
by minimal reduction in PfPRo.ge, ¥ axis) across different simulated true PfPR,.1o Settings
(rounded values, x axis) with seasonal transmission and high indoor mosquito biting. Each
intervention characteristic was minimized in turn, while keeping the other characteristics fixed
(fixed parameter values for each optimization are specified in Table S2.2). Results are shown for
an anti-infective monoclonal antibody delivered alone and assessing immediate (A) and late (B)
follow up, as well as when delivered in combination with ablood stage drug assessing immediate
(C) and late (D) follow-up. The simulated case management level (Es) for all the displayed
optimization analyses was assumed 25%.
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A Anti-infective vaccine (once per year), immediate follow-up
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C Anti-infective vaccine + blood stage drug (once per year), immediate follow-up
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D Anti-infective vaccine + blood stage drug (once per year), late follow-up
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1464 Figure S7.3
1465 Feasiblelandscapes of optimal, constrained intervention profiles (TPPs) for an anti-
1466  infective vaccine deployed once per year.
1467  The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles
1468  (minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified
1469 by minimal reduction in PfPRogs, Yy axis) across different simulated true PfPR2.10 Settings
1470  (rounded values, x axis) with seasonal transmission and high indoor mosguito biting. Each
1471  intervention characteristic was minimized in turn, while keeping the other characteristics fixed
1472 (fixed parameter values for each optimization are specified in Table S2.2). Results are shown for
1473 an anti-infective vaccine delivered alone and assessing immediate (A) and late (B) follow up, as
1474  well as when delivered in combination with a blood stage drug assessing immediate (C) and late
1475 (D) follow-up. The smulated case management level (Es) for all the displayed optimization
1476  analyses was assumed 25%.
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A Transmisison—blocking vaccine (once per year), immediate follow-up
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1477
1478  Figure S7.4.

1479  Feasiblelandscapes of optimal, constrained intervention profiles (TPPs) for a transmission-
1480  blocking vaccine deployed once per year.

1481  The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles
1482  (minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified
1483 by minimal reduction in PfPRg.g, y axis) across different smulated true PfPR2.1o Settings
1484  (rounded values, x axis) with seasonal transmission and high indoor mosquito biting. Each
1485  intervention characteristic was minimized in turn, while keeping the other characteristics fixed
1486  (fixed parameter values for each optimization are specified in Table S2.2). Results are shown for
1487  atransmission-blocking vaccine delivered alone and assessing immediate (A) and late (B) follow
1488  up, as well as when delivered in combination with a blood stage drug assessing immediate (C)
1489 and late (D) follow-up. The smulated case management level (Es) for all the displayed
1490  optimization analyses was assumed 25%.
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1492  Figure S7.5.
1493  Feasiblelandscapes of optimal, constrained intervention profiles (TPPs) for attractive
1494  targeted sugar baits deployed once or twice per year.
1495  The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles
1496  (minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified
1497 by minimal reduction in PfPRgge, Yy axis) across different simulated true PfPR,.10 Settings
1498  (rounded values, x axis) with seasonal transmission and high indoor mosguito biting. Each
1499  intervention characteristic was minimized in turn, while keeping the other characteristics fixed
1500  (fixed parameter values for each optimization are specified in Table S2.2). Results are shown for
1501  attractive targeted sugar baits delivered alone once per year and assessing immediate (A) and late
1502  (B) follow up, as well as when delivered twice per year assessing immediate (C) and late (D)
1503  follow-up. The simulated case management level (Es) for al the displayed optimization analyses

1504  was assumed 25%.
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A Eave tubes (once per year), immediate follow-up
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Figure S7.6.

Feasible landscapes of optimal, constrained intervention profiles (TPPs) for eave tubes
deployed once per year.

The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified
by minimal reduction in PfPRo.ge, ¥ axis) across different simulated true PfPR,.1o Settings
(rounded values, x axis) with seasona or perennial transmission and high indoor mosquito biting
(results for other biting patterns not shown as they are similar). Each intervention characteristic
was minimized in turn, while keeping the other characteristics fixed (fixed parameter values for
each optimization are specified in Table S2.2). Results are shown for eave tubes delivered alone
and assessing immediate (A) and late (B) follow up. The ssmulated case management level (Es)
for al the displayed optimization analyses was assumed 25%.
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1520 8 Results: Optimal intervention profiles

Monoclonal antibodies, immediate followup
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1523 FigureS8.1

1524  Optimal intervention profiles (TPPs) for anti-infective monoclonal antibodies under
1525  various deployment regimesto achieve a PfPRg.o9 reduction of at least 70%.

1526  Each figure displays minimum, constrained intervention characteristic profiles (minimum
1527  coverage, efficacy, and half-life, y axis) required to achieve a minimal reduction in PfPRg.g9 Of
1528  70% across different simulated true PfPR;.10 settings (rounded values, x axis) with seasonal
1529  transmission and high indoor mosquito biting. Each intervention characteristic was minimized in
1530  turn, while keeping the other characteristics fixed (fixed parameter values for each optimization
1531  are specified in Table S2.2). Results are shown when assessing PfPR.g9 reduction at immediate
1532 (A - C) and late (D - F) follow up. The smulated case management level (Es) for al the

1533  displayed optimization analyses was assumed 25%.
1534
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Antillinfective vaccine, immediate followOup
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1536  Figure S8.2
1537 Optimal intervention profiles (TPPs) for anti-infective vaccines under various deployment
1538  regimesto achieve a PfPRg.go reduction of at least 70%.

1539  Each figure displays minimum, constrained intervention characteristic profiles (minimum
1540  coverage, efficacy, and half-life, y axis) required to achieve a minimal reduction in PfPRo.g9 Of
1541  70% across different simulated true PfPR;.10 settings (rounded values, x axis) with seasonal
1542 transmission and high indoor mosquito biting. Each intervention characteristic was minimized in
1543  turn, while keeping the other characteristics fixed (fixed parameter values for each optimization
1544  are specified in Table S2.2). Results are shown when assessing PfPRg.g9 reduction at immediate
1545 (A - C) and late (D - F) follow up. The smulated case management level (Es) for al the

1546 displayed optimization analyses was assumed 25%.
1547
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TransmissionOblocking vaccine, immediate followOup
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Figure S8.3

Optimal intervention profiles (TPPs) for transmission-blocking vaccines under various
deployment regimesto achieve a PfPRg.g9 reduction of at least 70%.

Each figure displays minimum, constrained intervention characteristic profiles (minimum
coverage, efficacy, and half-life, y axis) required to achieve a minimal reduction in PfPRg.g9 Of
70% across different simulated true PfPR.1p settings (rounded values, x axis) with seasonal
transmission and high indoor mosquito biting. Each intervention characteristic was minimized in
turn, while keeping the other characteristics fixed (fixed parameter values for each optimization
are specified in Table S2.2). Results are shown when assessing PfPRo.g9 reduction at immediate
(A - C) and late (D - F) follow up. The smulated case management level (Es) for all the
displayed optimization analyses was assumed 25%.
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Attractive targeted sugar baits, immediate follow-up
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Attractive targeted sugar baits, late follow-up
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Figure S8.4
Optimal intervention profiles (TPPs) for attractive targeted sugar baits under various
deployment regimesto achieve a PfPRg.g9 reduction of at least 70%.

Each figure displays minimum, constrained intervention characteristic profiles (minimum
coverage, efficacy, and half-life, y axis) required to achieve a minimal reduction in PfPRg.g9 Of
70% across different simulated true PfPR.1p settings (rounded values, x axis) with seasonal
transmission and high indoor mosquito biting. Each intervention characteristic was minimized in
turn, while keeping the other characteristics fixed (fixed parameter values for each optimization
are specified in Table S2.2). Results are shown when assessing PfPRo.g9 reduction at immediate
(A - C) and late (D - F) follow up. The smulated case management level (Es) for all the
displayed optimization analyses was assumed 25%.
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Eave tubes, immediate followOup
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1577 Figure S8.5

1578  Optimal intervention profiles (TPPs) for eave tubesto achieve a PfPRg.g9 reduction of at
1579  least 70%.

1580 Each figure displays minimum, constrained intervention characteristic profiles (minimum
1581  coverage, efficacy, and half-life, y axis) required to achieve a minimal reduction in PfPR.g9 Of
1582  70% across different simulated true PfPR;.10 settings (rounded values, x axis) with seasonal
1583  transmission and high indoor mosquito biting. Each intervention characteristic was minimized in
1584  turn, while keeping the other characteristics fixed (fixed parameter values for each optimization
1585  are specified in Table S2.2). Results are shown when assessing PfPRg.g9 reduction at immediate
1586 (A - C) and late (D - F) follow up. The smulated case management level (Es) for al the
1587  displayed optimization analyses was assumed 25%.
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