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ABSTRACT  

The reason for the striking differences in clinical outcomes of SARS-CoV-2 infected patients is still poorly 

understood. While most recover, a subset of people become critically ill and succumb to the disease. 

Thus, identification of biomarkers that can predict the clinical outcomes of COVID-19 disease is key to 

help prioritize patients needing urgent treatment. Given that an unbalanced gut microbiome is a reflection 

of poor health, we aim to identify indicator species that could predict COVID-19 disease clinical 

outcomes. Here, for the first time and with the largest COVID-19 patient cohort reported for microbiome 

studies, we demonstrated that the intestinal and oral microbiome make-up predicts respectively with 92% 

and 84% accuracy (Area Under the Curve or AUC) severe COVID-19 respiratory symptoms that lead to 

death. The accuracy of the microbiome prediction of COVID-19 severity was found to be far superior to 

that from training similar models using information from comorbidities often adopted to triage patients in 

the clinic (77% AUC). Additionally, by combining symptoms, comorbidities, and the intestinal microbiota 

the model reached the highest AUC at 96%. Remarkably the model training on the stool microbiome 

found enrichment of Enterococcus faecalis, a known pathobiont, as the top predictor of COVID-19 

disease severity. Enterococcus faecalis is already easily cultivable in clinical laboratories, as such we 

urge the medical community to include this bacterium as a robust predictor of COVID-19 severity when 

assessing risk stratification of patients in the clinic. 
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INTRODUCTION 

An estimated 20% of individuals infected with SARS-CoV-2 require hospitalization, with a subset 

of patients requiring intensive care. Why some individuals become deathly ill while others don’t is still 

unknown. Despite the rollout of vaccination campaigns against SARS-CoV-2, the threat of this infection 

is ongoing. As hospitals worldwide are challenged with episodic resurgences of patients with COVID-19 

disease, there is an urgent need for pragmatic yet accurate risk stratification biomarkers that could 

predict which patients are high risk for progression to severe disease and death. Precise risk stratification 

protocols can help justify resource allocation, if faced with limitations, and guide staffing decisions for 

efficient patient management. 

 

In an effort to develop such a protocol, the International Severe Acute Respiratory and emerging 

Infections Consortium (ISARIC) World Health Organization (WHO) described in September 2020, a 

comprehensive risk stratification tool for SARS-CoV-2 hospitalized patients: 4C Mortality score 1.  The 4C 

Mortality Score included eight variables: age, sex, number of comorbidities, respiratory rate, peripheral 

oxygen saturation, level of consciousness, urea level, and C reactive protein. However, this scoring 

system has only 79% of accuracy 1. That is, out of 10 COVID-19 patients, the 4C Mortality Score will fail 

to identify 3 patients with high risk of fatality. Thus, a more precise method is critically needed to forecast 

hospital capacity during this pandemic. It has been established that patients with SARS-Cov-2 infection 

exhibit gut microbiome dysbiosis when compared to healthy individuals (reviewed 2). More recently, a 

total of 23 bacterial taxa was found to be strongly associated with disease severity among hospitalized 

COVID-19 patients 3.   

 

Here, we capitalized on a robust and validated predictive analytic and computational framework 

developed by us 4-6 to define and model complex interactions between the microbiota, clinical variables, 

and disease severity. Hence, we discovered oral and intestinal bacteria species that can be used to 

accurately predict fatality of COVID-19 hospitalized patients.  
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RESULTS 

Fatality of patients with SARS-CoV-2 infection is predicted by respiratory severe symptoms.  

We enrolled 69 SARS-CoV-2 PCR positive patients with moderate or severe symptoms. In 

accordance with the categorization of disease severity used in the hospital, those requiring more than 4 L 

of oxygen (at the time of sample collection) were considered patients with severe symptoms; conversely, 

patients needing less than 4L of oxygen were categorized as having moderate symptoms. Out of 69, we 

included in the analysis 63 participants with complete medical records including disease outcomes 

(Table 1). As seen in table 1, there were no differences between the two groups in age, body mass index 

(BMI), sex, race, smoking status, or antibiotic administration during hospitalization. However, we 

observed significant differences in the duration of the hospital stay: patients with severe symptoms had 

an average of ~6 more days in the hospital than patients exhibiting moderate symptoms. Additional 

information about COVID-19 symptoms and comorbidities included in the subsequent analyses are 

detailed in Supplementary Table 1. 

 

We applied Random Forest Classification to determine which of the 68 clinical covariates (Table 

1 and Supplementary Table 1) plus severity of symptoms as described above could predict COVID-19 

fatality on the patient cohort recruited for this study. We used the Boruta algorithm to perform feature 

selection and identify all the relevant clinical covariates. We found that a combination of clinical 

covariates which includes disease severity was able to predict a patient succumbing to COVID-19 

disease with an 89% accuracy (Area Under the Curve- Receiving Operating Curve, AUC-ROC) on leave-

one-out cross validation data (Figure 1). In fact, the modeling identified the hospital classification of 

disease severity at the 4L of oxygen requirement cut-off as the main factor predicting a patient’s fatality 

based on the Random Forest Classification estimated Variable Importance values 7 with AUC-ROC 

dropping to 84% when the disease severity variable was omitted (Figure 1A and B). In addition, we found 

that other clinical variables were also more common in patient that had poor outcomes (Figure 1C and 

D).  
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Together, these suggest that prediction of COVID-19 outcomes is improved when taking into 

account respiratory symptoms, namely requiring more than 4 L of oxygen, along with other clinical 

variables commonly used to do so. 

 

Table 1. Characteristics of COVID-19 hospitalized patients recruited in the study from April to June 2020. 

 Moderate (n=32) Severe (n=31) p-value 

Demographics    

  Age (years) 70.53 + 15.86 70.58 + 14.08 0.8* 

  BMI 29.22 + 9.19 30.58 + 8.82 0.2* 

  Female (%) 16 (50%) 10 (30%) 0.2† 

Race   

0.2ˆ 
  White (%) 24 (75%) 19 (59.37%) 
  Black or African American (%) 4 (12.50%) 3 (9.37%) 
  Hispanic or Latino (%) 4 (12.50%) 8 (25%) 
  Asian (%) 0 (0.00%) 2 (6.25%) 
Smoking status   

0.6ˆ   Current 2 (6.25%) 4 (12.50%) 
  Former 11 (34.38%) 11 (34.37%) 
  Never 19 (59.38%) 16 (50%) 
Antibiotics treatment 26 (81.25%) 29 (90.62%) 0.2ˆ 

Days in the hospital 15.5 + 10.39  21.27 + 12.73 0.045* 
 

*Mann Whitney, unpaired t-test 

†Fisher T-test 

ˆ Chi-square 
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Figure 1. COVID-19 fatality is predicted by severity of respiratory symptoms and other 

comorbidities commonly used to triage patients. (A) Area Under the Curve- Receiving Operating 

Curve (AUC-ROC) for leave-one-out cross-validation evaluating prediction of accuracy of COVID-19 

fatality. Red lines correspond to the model including all the clinical covariates (CC), black line correspond 

to the model including all the clinical covariates except disease severity (CC, no Severity). (B) Covariates 

selected by the Random Forest Classification model ranked according to their importance in classifying 

fatality as a disease outcome. (C) For categorical covariates (Yes=1, No=0) the number of patients out of 

the 63 included in the analyses within a specific category were colored by outcome (Survived, in blue; 

Died, in red). (D) For numerical variable, whisker plots (median, box interquartile range, 5th and 9th 

percentile for lines) are used with each solid dot corresponding to a single patient. (BH adjusted p value 

< 0.05) 
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Disease severity is accurately predicted by stool or oral microbiome.  

Studies have shown that viral lung infections, including SARS-CoV-2, have a lasting effect on the 

gut microbiota 3,8-11. Therefore, the composition of the microbiota may contain information that is not 

directly measured or quantified by clinicians when triaging COVID-19 patients. We therefore decided to 

compare the ability in predicting COVID-19 disease severity (the main predictor of fatality) by the 

gastrointestinal and oral microbiome compared to commonly measured clinical covariates. We applied 

Random Forest Classification to predict severe vs. moderate symptoms as a function of (i) only clinical 

variables (Table 1 and Supplementary Table 1), (ii) intestinal microbiome composition, (iii) oral 

microbiome composition, (iv) clinical variables and intestinal microbiome composition combined, and (v) 

clinical variables and oral microbiome composition combined. In the clinical variables we included age 

and BMI as additional explanatory variables to control for their effect. Here, we included a total of 62 

patients that provided either or both stool and tongue samples. The model trained only on clinical 

variables was found to predict COVID-19 disease severity with 75.55% AUC-ROC using leave-one-out 

cross-validation (Figure 2A) comparable to what have been previously reported 1. This model determined 

as significant predictors of COVID-19 disease severity, 10 clinical variables: hypercholesteremia, race 

(Latino), coronary artery disease, asthma, obesity, hypoxic respiratory stress, tachypnea, days in 

hospital, thrombosis, and sex (male).  

  

We then performed the same computational analysis but this time assessing the intestinal 

microbiota (measured in stool, referred as STL) or the oral microbiota (measured in tongue, referred as 

TNG) as predictors. These models were able to predict COVID-19 disease severity with 92.05% and 

83.79% AUC-ROC, respectively. These represent an improvement in prediction accuracy of 122% for 

intestinal, and 111% for oral microbiota compared to what is achieved using clinical variables alone 

(Figure 2A). Furthermore, combining clinical variables and STL or TNG microbiomes abundances 

improve prediction ability, with the highest AUC-ROC of 96.36%. This analysis suggests that the 

intestinal and oral microbiotas individually can provide a more accurate and robust biomarker of disease 
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severity that may not be quantifiable by other clinical variables assessed during patient triage. Additional 

metrics on prediction ability of the different models are reported in the Supplementary Table 2.   

 

 

Figure 2. Stool and oral microbiotas predict COVID-19 disease severity with significant greater 

accuracy compared to clinical variables alone. (A) Receiving Operating Curves (ROCs) for leave-

one-out cross-validation evaluating prediction of accuracy of severity for different models. The models 

accounting for stool microbiome (STL) or oral microbiome (TNG) predict severity with greater accuracy 

than models trained solely with clinical covariates (CC). Addition of clinical covariates to microbiome 
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variables increase predictive ability to 96.36% AUC. Bacterial species from the microbiome selected by 

the Random Forest models for STL (B) and TNG (C) ranked according to their importance in classifying 

COVID-19 disease severity. We ran Local Interpretable Model-agnostic Explanation (LIME) analysis to 

determine direction of the COVID-19 – microbiota associations. LIME identifies logical rules that best 

separates between the two outcome groups (moderate = blue, severe = red). For each rule, the 

frequency of each rule being selected vs. the frequency of that rule predicting the true category across all 

the cross-validation runs are displayed. Rules on Enterococcus faecalis in the STL set (D) and on 

Porphyromonas endodontalis in the TNG (E) set are found to have primary discriminatory power in 

classifying COVID-19 disease severity. While the model points to enrichment of these two pathobionts 

respectively in the intestinal and in the oral mucosa as major predictors of disease severity; conversely, 

reduction of Bacteroides fragilis and Moribaculum intestinale are also selected as primary COVID-19 

disease severity indicators. 

 

Abundance of indicator species is a predictor of COVID-19 disease severity.  

Given the time, expertise, and resources necessary for the analysis and interpretation of 

microbiota data, we further investigated indicator species of the oral and intestinal microbiota that can be 

easily cultured in clinical laboratory settings 12,13 and can be added as a test for risk stratification of 

COVID-19 patients. In ecological research, indicator species have been defined as those that serve as a 

surrogate measures of the health or lack thereof of an entire ecosystem14,15. We reasoned that indicator 

species within the microbiota ecosystem could act as surrogate markers of COVID-19 disease severity. 

Again, after performing feature selection with Boruta, we ran Random Forest Classification using only the 

Boruta-selected features for every model in Figure 2A. After features ranking based on applied Random 

Forest Classification-estimated Variable Importance values, we found that the top three bacterial species 

with the strongest likelihood to predict COVID-19 disease severity from the intestinal microbiome were 

Bacteroides uniformis (Bacteroides/ Bacteroidia), Enterococcus faecalis (Firmicutes/ Bacilli), and 

Monoglobus pectinilyticus (Firmicutes/ Clostridia); and from the oral microbiome were Porphyromonas 
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endodontalis (Bacteroides/ Bacteroidia), Veillonella tobetsuensis (Firmicutes/ Negavicutes), and 

Bifidobacterium breve (Actinobacteria/ Actinobacteria. Figure 2B and C).  

 

 To determine the direction (positive/negative) of the identified microbial abundances related to 

COVID-19 severity we then ran Local Interpretable Model-agnostic Explanation (LIME) analysis 16. LIME 

trains a local surrogate model that can be used to explain the predictions of a ‘black-box’ machine 

learning model such as Random Forest thus providing confidence that the model will perform well on 

real-world data, crucial for medical decision making. In our context LIME identifies human-interpretable 

rules on the microbiome that discriminate between patients with moderate or severe COVID-19 

symptoms. LIME analyses predicted that reduced abundance in moderately ill patients (and vice versa 

enrichment in severely ill patients) of the known gastrointestinal pathobiont Enterococcus faecalis and of 

the oral pathobiont Porphyromonas endodontalis are the top discriminators of COVID-19 disease 

severity (Figure 2D and E). Conversely, enrichment of Bacteroides fragilis, Bacteroides caccae, and 

Clostridium clostridioforme in the stool or another Bacteriodetes species: Muribaculum intestinale in the 

oral cavity are characteristic of individuals with moderate disease. We confirmed that most of the bacteria 

selected by the machine learning modeling were also different between the two groups by running 

differential expression analysis for sequence count data with DeSeq2 17 (Supplementary Figure 1).  

 

SARS-CoV-2 antibody levels and patient outcomes 

Patients with severe COVID-19 disease have been shown to have a different antibody trajectory 

compared to those with mild/moderate disease during hospitalization 18. Although, we only collected one 

blood sample per patient (at ~ 6.42 + 6.47 days after hospital admission) we aimed to investigate the 

relationship between patient microbiota and whether plasma levels of antibodies against the receptor 

binding domain (RBD) of the SARS-CoV-2 spike protein, specifically: IgA, IgM, and IgG varied depending 

on disease severity at time of blood collection or among patients who eventually succumbed to the 

disease vs. those who survived.  We did not find any differences in antibody levels by disease severity 

(Figure 3A); however consistent with previous reports 18, we observed a significantly lower level of IgG 
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against RBD in patients who eventually died (Figure 3B). High anti-RBD IgG antibody levels measured 

by ELISA have been shown to correlate with antibodies that block viral entry into host cells as measured 

neutralizing antibody assays 19. 

 

We further investigated associations between bacterial abundance and either IgA, IgM nor IgG 

antibody titers (Random Forest classification). We found no bacteria that predicted antibody levels, 

suggesting these are independent indicators of disease outcome. 

 

 

Figure 3. Antibody titers in COVID patients recruited in this study. A total of 54 blood samples were 

collected from patients that were hospitalized from April to June 2020. A) Antibody titers from patients 

with moderate (blue) and severe (red) COVID-19 symptoms. B) Antibody titers from patients that 

survived (light gray) or died (dark grey) to SARS-CoV-2 infection and. *p-value <0.05; Mann-Whitney 

test. 
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DISCUSSION 

In this study, we have demonstrated that COVID-19 disease severity can be predicted by the 

stool or oral microbiome composition with higher accuracy than traditional clinical scoring methods using 

a combination of comorbidities and clinical biomarkers alone. Particularly, two pathobionts in the either 

the oral (Porphyromonas endodontalis) or intestinal (Enterococcus faecalis) microbiota can serve as 

indicator species to robustly predict the severity of SARS-CoV-2 infections. Our findings are clinically 

actionable as assessment of Enterococcus faecalis in feces will improve risk stratification of patients, 

which is highly relevant until this global pandemic is over. Enterococcus faecalis can be cultured from 

feces representing a cost-effective, rapid, and relatively easy test to implement in clinical settings. As 

such we urge the medical community that in addition to observable clinical variables, indicator species of 

the microbiome, specifically Enterococcus faecalis, can serve as robust predictor of COVID-19 severity 

and to quickly identify patients who are likely to require more supportive care or therapeutic interventions 

to improve chances of survival. 

 

A hallmark of severe COVID-19 disease is an uncontrolled inflammatory response; specifically, a 

fulminant and fatal hypercytokinemia that causes an uncontrolled flood of immune cells into the lung 20-22. 

In these patients, it’s their own uncontrolled inflammatory response, rather than the virus, that causes 

severe lung injury and multi-organ failures leading to death. Gut microbial dysbiosis has been linked to 

activation of inflammatory immune networks that perpetuates several chronic diseases 23,24 (e.g., type 2 

diabetes, hyperlipidemia), which are comorbidities associated with COVID-19 disease. Thus, a still 

unanswered question is the contribution of the microbiome in the immune response against SASR-CoV-2 

infection.  

 

A recent study has shown that SARS-CoV-2 infection triggers aberrant phenotypes of FoxP3+ T 

regulatory cells (Treg) 25, critical to immune homeostasis (reviewed 26,27). We and others have 

demonstrated the microbiota-dependent development and activation of Treg and their role in controlling 

exacerbated inflammatory responses 4,28-36. Thus, further studies with longitudinal sampling combined 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.20249061doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.20249061
http://creativecommons.org/licenses/by-nc-nd/4.0/


with analysis of Treg markers are needed to better understand how the dysbiosis in SARS-CoV-2 

infected patients, and specifically the enrichment of the pathobionts we observed in this cohort, can 

contribute to COVID-19 disease severity via alteration of the Treg development.  
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METHODS 

Participant recruitment: We enrolled SARS-CoV-2 PCR positive patients with moderate (requiring < 4L 

of oxygen) or severe (requiring > 4L of oxygen) symptoms hospitalized at the University of 

Massachusetts Medical Center and UMASS Memorial Hospital from April 27 to June 10, 2020. This 

cohort was recruited under the COVID-COPE IRB protocol (docket # H00020145). The Institutional 

Review Board at the University of Massachusetts Medical School approved this study. Informed consent 

was obtained from all study participants or their health care proxy using RedCap digital signatures to 

reduce the potential for patient-staff transmission. 

 

Sample collection: All samples were collected by the doctor or nurse caring for the patient during 

standard of care rounds using all the necessary precautions. Stool samples were collected with a scoop 

from a paper stool catcher or directly from the ostomy bags into a sterile tube (Cat # 58-EZSAMPLER, 

ALPCO, NH, USA). Oral swabs were obtained using the OMNIgene•ORAL (DNAGenotek™, Canada) 

following the manufacturer instructions. Briefly, the tongue was swabbed for 30 seconds and then the 

swab was inserted into a tube with a DNA/RNA stabilizer buffer. For antibody assays, blood was 
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collected in EDTA tubes (5 mL. BD VacutainerÒ tubes, Becton Dickinson, USA) using sterile technique 

and blood borne pathogen precautions enhanced for COVID-19 patients. Plasma was separated from 

peripheral blood cell pellet by centrifugation, 10 minutes, room temperature and aliquots stored at -20 ºC 

until thawed for ELISA testing. 

 

Clinical data: All the clinical data was obtained retrospectively by reviewing medical records of each 

participant. 

 

DNA and RNA isolation: Prior to isolation, SARS-CoV-2 was inactivated in all samples by heat at 65-70 

ºC for one hour as done elsewhere 37,38. After viral deactivation, nucleic acid isolation for stool and oral 

samples was performed using the ZymoBIOMICS DNA/RNA Miniprep Kit (Cat # D7003/D7003T, Zymo 

Research, CA, USA) following the manufacturer recommendations for parallel isolation of DNA and RNA. 

Oral samples were first treated with the addition of 5ul Proteinase K (Cat # P8107S, New England 

Biolabs, MA, USA) and incubated for 2 hours at 50 ºC. 250ul of the treated sample was used for 

extraction. Extraction of total RNA from blood samples was performed using the Tempus™ Spin RNA 

isolation kit (Cat # 4380204, Applied Biosystems, USA) following manufactures instructions. 

 

Microbiome profiling:  

The 16S rRNA gene was sequenced following methods previously described 39  using the 341F and 

806R universal primers to amplify the V3-V4 region. The 300nt paired-end sequences were generated on 

the Illumina MiSeq platform. Replicate reactions were performed for each sample and the read data was 

combined in analysis. Forward and reverse 16S MiSeq-generated amplicon sequencing reads were 

dereplicated and sequences were inferred using dada2 40. Potentially chimeric sequences were removed 

using consensus-based methods. Taxonomic assignments were made using BLASTN against the NCBI 

refseq rna database. These files were imported into R and merged with a metadata file into a single 

Phyloseq object.  
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Mathematical modeling:  

Machine learning analysis to predict outcome from microbiome and clinical covariates: We run random 

forest classification (RFC) to identify stool, oral bacteria and clinical covariates that are predictive of 

clinical outcome SARS-CoV-2 disease fatality and severity. Our RFC pipeline consists in a first step of 

feature selection in where the wrapper Boruta 41 is used to determine a subset of covariates that is 

predictive of the outcome, and a second step in where RFC is run using only the Boruta-selected subset. 

To estimate the accuracy in predicting clinical outcome we used leave-one-out cross-validation scheme 

and corresponding Area Under the Curve (AUC). AUC values were used to compare different models in 

terms of prediction accuracy. To interpret the results from the RFC analysis, the RFC models were input 

into Local Interpretable Model-agnostic Explanation (LIME) toolbox 42. LIME trains a local surrogate 

model that explains the predictions of black-box machine learning model such as Random Forest. In our 

context LIME identifies human-interpretable logical rules on the microbiome that discriminate between 

patients with different outcomes (e.g., abundance of bacterium X less that normalized count K is 

characteristic of Severity Moderate). The LIME output was used to determine the prevalence of a rule 

(e.g., in how many cross-validations a rule was selected) and the number of times it contributes to 

predicting the correct label. This computational scheme was used to predict SARS-CoV-2 disease fatality 

and severity (binary variables). The clinical covariates corresponding to categorical variables were one-

hot-encoded. For microbial abundances we used the Amplicon Sequence Variant (ASV) counts 

normalized using DeSeq2 43. 

  

Differential analysis to confirm microbiota-outcome associations: To confirm the associations between 

stool and oral bacteria and clinical outcome we run Differential expression analysis for Sequence count 

data in DeSeq2 as done previously 44. Specifically, we run the model Counts ~ Phenotype + CC (where 

CC stands for the main clinical covariates selected by the only CC model). ASVs with Benjamin-

Hochberg adjusted p value less than 0.05 for the Phenotype variable were considered differential.  
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Antibody ELISA:  

Antibodies against the receptor binding domain (RBD) of the SARS-CoV-2 spike protein were measured 

by ELISA following published methods 45. In brief, IgG, IgA and IgM antibodies against the RBD 

recombinant protein (gifted from MassBiologics) was used at 0.5 µg/mL and incubated with plasma at a 

1:100 and 1:1000 dilution. Absorbance was measured at 450 nm and 570 nm on the SpectraMax iD5 

ELISA plate reader (Molecular Devices) using SoftMax Pro software (version 7.1, Molecular Devices). 

For the positive antibody control, CR3022 was diluted from a concentration of 2.5 μg/ml in dilution buffer 

to 12 two-fold serial dilutions to generate the standard control curve. The 570 nm OD was subtracted 

from the 450 nm OD for the final OD value. Antibody levels were used as a continuous variable in the 

analysis. 

 

Statistical analysis: 

Fisher T-test, Chi-square, and Mann-Whitney tests were used to evaluate differences in demographics 

and antibiotic use among patients with moderate vs. severe COVID-19 disease. A non-parametric Mann-

Whitney U-test was also used to evaluate differences in antibody titer in serum by disease severity or 

clinical outcome.  
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Supplementary Table 1. Clinical variables included in the models obtained by review of medical 

records. 

Clinical variables included in the models Moderate 
(n=32) 

Severe 
(n=31) 

Mann Whitney 
tests (p value) 

Symptoms    

Abdominal pain 1 1 >0.999999 
Chest pain 2 3 0.671867 
Chills 5 6 0.74996 
Cough 12 12 >0.999999 
Diarrhea 3 4 0.707846 
Difficulty breathing 16 22 0.12349 
Dizziness 1 0 >0.999999 
Dyspnea 14 19 0.210129 
Fever 11 17 0.131294 
Hemoptysis 0 1 0.492063 
Hypotension 4 2 0.671867 
Hypoxic respiratory distress 18 25 0.057677 
Shortness of breath 16 21 0.202826 
Sore throat 1 0 >0.999999 
Tachycardia 9 11 0.595035 
Tachypnea 11 17 0.131294 
Vomiting 4 2 0.671867 
Anemia 3 5 0.474123 

Co-morbidities    

Asthma 7 2 0.147716 
Bradycardia 2 0 0.492063 
Cardiomyopathy 3 2 >0.999999 
Cancer 6 8 0.556127 
Cerebellar atrophy 0 0 >0.999999 
Cerebral palsy 1 0 >0.999999 
Chronic fibrillation 6 8 0.556127 
Chronic anticoagulation 3 6 0.302018 
Heart failure 8 12 0.286909 
Kidney disease 7 8 0.773534 
Chronic respiratory failure 2 7 0.081587 
Thrombosis 4 1 0.354671 
Cirrhosis 1 1 >0.999999 
Congestive heart failure 7 12 0.176864 
COPD 3 7 0.183638 
Coronary artery disease 2 8 0.043318 
Emphysema 0 2 0.238095 
End stage renal disease 2 5 0.248622 
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Epilepsy 2 4 0.425766 
Goodpasture syndrome 1 0 >0.999999 
Heart attack 0 1 0.492063 
Heart failure 8 13 0.187691 
Hepatic encephalopathy 1 0 >0.999999 
History (hx) adenocarcinoma 1 3 0.354671 
History (hx) aortic aneurysm 1 0 >0.999999 
History (hx) cancer 6 8 0.556127 
Hypercholesteremia 1 11 0.001153 
Hyperglycemia 13 15 0.61593 
Hyperlipidemia 16 13 0.620886 
Hypertension 23 26 0.36492 
Hypotension 0 1 0.492063 
Interstitial lung disease 0 1 0.492063 
Lymphoma 1 0 >0.999999 
Multiple myeloma 1 1 >0.999999 
Nephrectomy 0 1 0.492063 
Parkinson’s 0 1 0.492063 
Renal disease 7 8 0.773534 
Renal failure 2 5 0.256519 
Stage 3 chronic kidney disease 4 4 >0.999999 
Stage 4 adenocarcinoma 1 1 >0.999999 
Stage 5 end stage renal disease 2 5 0.256519 
Type 1 diabetes 0 1 0.492063 
Type 2 diabetes 13 15 0.61593 
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Supplementary Table 2. Performance metrics of different Random Forest Classification Models 

predicting COVID-19 severity (moderate vs. severe).  SEN=Sensitivity, SPEC=Specificity, 

PPV=Positive Predicted Values, NPV=Negative Predicted Values, PREC=Precision, REC=Recall, F1=F1 

Score. 

 

MODEL SEN SPEC PPV NPV PREC REC F1 

CC 0.68 0.68 0.68 0.68 0.68 0.68 0.68 

STL  0.86 0.85 0.86 0.85 0.86 0.86 0.86 

TNG 0.72 0.87 0.84 0.76 0.84 0.72 0.78 

CC + STL 1.00 0.80 0.85 1.00 0.85 1.00 0.92 

CC + TNG 0.76 0.90 0.88 0.79 0.88 0.76 0.81 
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Supplementary Figure 1: Differential Analysis results from DeSeq2. DeSeq2 was used to fit the 

model Counts ~ Severity for the stool (STL) or oral (TNG) microbiomes. Heatmap display Amplicon 

Sequence Variants (ASVs) with significant p value (BH corrected p value < 0.05). 
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