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Abstract 
Background: National governments have implemented non-pharmaceutical 
interventions to control and mitigate against the COVID-19 pandemic. A deep 
understanding of these interventions is required. 
Objective: We investigate the prediction of future daily national Confirmed 
Infection Growths – the percentage change in total cumulative cases across 14 days 
– using metrics representative of non-pharmaceutical interventions and cultural 
dimensions of each country. 
Methods: We combine the OxCGRT dataset, Hofstede’s cultural dimensions, and 
COVID-19 daily reported infection case numbers to train and evaluate five non-time 
series machine learning models in predicting Confirmed Infection Growth.  We use 
three validation methods – in-distribution, out-of-distribution, and country-based 
cross-validation – for evaluation, each applicable to a different use case of the 
models. 
Results: Our results demonstrate high  values between the labels and predictions 
for the in-distribution, out-of-distribution, and country-based cross-validation 
methods (0.959, 0.513, and 0.574 respectively) using random forest and AdaBoost 
regression. While these models may be used to predict the Confirmed Infection 
Growth, the differing accuracies obtained from the three tasks suggest a strong 
influence of the use case.  
Conclusions: This work provides new considerations in using machine learning 
techniques with non-pharmaceutical interventions and cultural dimensions data for 
predicting the national growth of confirmed infections of COVID-19. 
 
Keywords: COVID-19; machine learning; non-pharmaceutical interventions; 
cultural dimensions; random forest; adaboost 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.04.21249235doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.01.04.21249235
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Introduction 

Background 
In response to the COVID-19 pandemic, national governments have implemented 
non-pharmaceutical interventions (NPIs) to control and reduce the spread in their 
respective countries [1–4]. Indeed, early reports suggested the potential 
effectiveness of the implementation of NPIs to reduce the transmission of COVID-19 
[2,5–9] and other infectious diseases [10–12]. Many epidemiological models 
forecasting future infection numbers have therefore suggested the role of NPIs in 
reducing infection rates [2,6,9,13], to aid with implementing national strategies and 
making policy decisions. In this paper, we also include the implementation of NPIs at 
the national level as features in predicting the national growth of the number of 
confirmed infection cases. Prior work has focused on the NPI variations in different 
regions of specific countries [2,3,5,8,14].  
 
Various metrics may provide different perspectives and insights on the pandemic.  
In this study, we focus on one: Confirmed Infection Growth (CIG), which is the 14-
day growth of the cumulative number of reported infection cases. Other common 
metrics to measure the transmission rates of an infectious disease are the basic 
reproduction number, , which measures the expected number of direct secondary 
infections generated by a single primary infection when the entire population is 
susceptible [4,15] and the effective reproduction number,  [2], which accounts for 
the immunity within the specified population. While such metrics are typically used 
by epidemiologists as measures of the transmission of an infectious disease, these 
metrics are dependent on estimation model structures and assumptions, making 
them application-specific and potentially misapplied [15]. Furthermore, the public 
may be less familiar with such metrics, as opposed to more practical and observable 
metrics, such as the absolute or relative change in cumulative reported cases.  

Related Work 
Mathematical modelling of the transmission of infectious disease has been a 
common method to simulate infection trajectories. A common technique for 
epidemics is the SIR model, which separates the population into three sub-
populations (susceptible, infected, and removed) and iteratively models the 
interaction and shift between these sub-populations, which change throughout the 
epidemic [16,17]. Variations of this model have since been introduced to reflect 
other dynamics expected of the spread of infectious diseases [18–20]. These 
variations of the SIR model have also been applied to the ongoing COVID-19 
pandemic [21–24]. 
 
Recent studies have also used various statistical and machine learning techniques 
for short-term forecasting of infection rates for the COVID-19 pandemic [23,25,26], 
using reported transmission and mortality statistics, population geographical 
movement data, and media activity. Machine learning has also been used for other 
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applications to combat the pandemic, such as in-patient monitoring and genome 
sequencing [27–30]. 

Description of Study 
The CIG because it is a verifiable metric that, due to its direct inference from the 
number of reported cases, may have a greater impact on the public’s perception of 
the magnitude of the pandemic compared to the actual transmission rate. CIG 
reflects the growth in the total number of reported cases within a country in 14 days 
relative to the total number of previously reported infections, including recoveries 
and mortalities.  We emphasize that the reported number of infections may not 
necessarily be correlated with the actual transmission rate, due to factors such as 
different testing criteria and varying accessibility in testing over time.  
 
To predict the CIG for individual countries, we deploy five machine learning models. 
We use features representing the implementation levels of NPIs and the cultural 
dimensions of each country. We obtain daily metrics of the implementation of NPIs 
at the national level from the Oxford COVID-19 Government Response Tracker 
(OxCGRT) dataset [1]. Although different countries may implement similar NPIs, 
some have suggested that cross-cultural variations across populations may lead to 
different perception and responses towards such NPIs [31–33]. We intend to 
capture any effects due to national cross-cultural differences by complementing the 
OxGCRT dataset with national cultural norm values from Hofstede's cultural 
dimensions [34]. Our non-time series models predict the expected future national 
CIG using both NPI implementation and cultural norm features. While time-series 
deep learning models (e.g., RNNs or transformers) may also provide CIG predictions, 
such models generally require greater amounts of accurately labeled trajectory data 
and assume that past trajectory trends are readily available and representative of 
future trajectories. Instead, our non-time series models train on more granular data 
which does not necessarily need to be temporally concatenated into a trajectory. We 
also opt for less complex non-time series models due to indeterminacies in 
acquiring and verifying sufficient trajectory data, especially due to the lack of 
reliable data at the onset of the COVID-19 outbreak. 
 
Our results suggest that non-time series machine learning models can predict future 
CIG according to multiple validation methods, depending on the user's application. 
While we do not necessarily claim state-of-the-art performance for infection rate 
prediction given the rapidly growing amount of parallel work in this area, to the 
best of our knowledge, our work is the first to use machine learning techniques to 
predict the change in national cumulative numbers of reported COVID-19 infections 
by combining NPI implementation features with national cultural features. 
Our implementation uses publicly available data retrieved from the Internet and 
relies on the open-sourced Python libraries Pandas [35] and Scikit-Learn [36]. 
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Methods 

Data and Pre-Processing 
Candidate features at the national level are extracted from three datasets for input 
into our machine learning models: NPIs, cultural dimensions, and current COVID-19 
confirmed case numbers. 
 
The Oxford COVID-19 Government Response Tracker (OxCGRT) provides daily level 
metrics of the NPIs implemented by countries [1]. This dataset categorizes NPIs into 
17 categories, each with either an ordinal policy level metric ranging from  (not 
implemented) to 3 (strictly enforced) or a continuous metric, representing a 
monetary amount (e.g., research funding). We limit our candidate features to the 13 
ordinal policy categories, as well as 4 computed indices, which represent the 
implementation of different policy types taken by governments, based on the 
implemented NPIs. This dataset contains data starting from 1 January 2020.   
 
To represent cultural differences across populations of different countries, the 2015 
edition of Hofstede's cultural dimensions [37] are tagged to each country. While 
rarely used in epidemiology studies, these dimensions have been used frequently in 
international marketing studies and cross-cultural research as indicators of the 
cultural values of national populations [38]. Because the 2015 edition of this dataset 
groups certain geographically neighboring countries together (e.g., Ivory Coast, 
Burkina Faso, Ghana, etc. into Africa West), we tag all subgroup countries with the 
dimension values of their group. While we recognize this is far from ideal and will 
likely lead to some degree of inaccurate approximation in these subgroup countries, 
we perform this pre-processing step to include those countries in our study. The 
dimension values for each country are constant across all samples. Six cultural 
dimensions are presented for each country/region [39]: 
 

• Power distance index: The establishment of hierarchies in society and 
organizations, and the extent to which lower hierarchical members accept 
inequality in power. 

• Individualism v. collectivism: The degree to which individuals are not 
integrated into societal groups (e.g., individual, immediate family 
(individualistic) v. extended families (collectivistic)) 

• Uncertainty avoidance: Society's tendency to avoid uncertainty and ambiguity 
through use of the societal disapproval, behavioral rules, laws, etc. 

• Masculinity v. femininity: Societal preference towards assertiveness, 
competitiveness, and division in gender roles (masculinity), compared to 
caring, sympathy, and similarity in gender roles (femininity) 

• Long-term v. short-term orientation: Societal values towards tradition, 
stability, and steadfastness (short-term) v. adaptability, perseverance, and 
pragmatism (long-term)  
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• Indulgence v. restraint: The degree of freedom available to individuals for 
fulfilling personal desires by social norms (e.g., free gratification 
(indulgence) v. controlled gratification (restraint))   

 
We extract the daily number of confirmed cases, , for each country from the 
COVID-19 Data Repository by the Center for Systems Science and Engineering 
(CSSE) at Johns Hopkins University [40]. We use a rolling average of the previous 5-
day window to smooth fluctuations in , which may be caused by various factors, 
such as inaccurate case reporting, no release of confirmed case numbers (e.g., on 
weekends and holidays), and sudden infection outbreaks. We refer to the smoothed 
daily number of confirmed cases for date  as  . 
 
We compute the Confirmed Infection Growth (CIG) for a specified date, , as: 
 

 
 
The CIG represents the expected number of new confirmed cases from date  
to date  as a percentage of the total number of confirmed infection cases up to date 

. 
 
Our goal is to predict the CIG 14 days in advance (i.e., ) given information 
from the current date  for each country. Candidate features available include all 
ordinal policy metrics and the 4 computed indices from OxCGRT, the six dimension 
values from Hofstede's cultural dimensions, the CIG of the current date , and the 
smoothed cumulative number of confirmed cases , for a total of 25 feature 
candidates. Neither the date nor any other temporal features are included. 
 
We trim samples with fewer than 10 cumulative confirmed infection cases and with 
the highest  and the lowest  of to remove outliers in the data. 
Because the lowest  of  are all 0.0%, we remove the samples with 

by ascending date. 
 
Our data ranges from 1 April 2020 to 30 September 2020 inclusively. We exclude all 
countries in our combined dataset that have missing feature values. In total, our 
combined dataset and our experiments apply to 114 countries. 

Feature Selection and Processing 
We select features to input into our machine learning models from our candidate 
feature pool using mutual information [41]. Mutual information is a measure of the 
dependency between the individual feature (i.e., independent variable) and the label 
(i.e., dependent variable) and captures both linear and non-linear dependencies. 
However, mutual information does not capture multivariate dependencies nor 
indicates collinearity between features. To include both linear and non-linear 
dependencies, features are selected if they achieve a substantially non-zero mutual 
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information, i.e., greater than . Feature selection is conducted prior to training 
with the training set in all validation methods. Similar feature filtering and selection 
techniques have been used in other machine learning applications [36,42]. The 
candidate features considered for input and their respective mutual information are 
listed in Table 1 for the in-distribution and out-of-distribution validation methods.  
Mutual information is also computed for each of the ten folds of the cross-validation 
method. 
 
Table 1. Mutual information of candidate features for the in-distribution and out-of-
distribution validation methods. In the cross-validation method, the ten folds have 
varying mutual information. Selected features are indicated with (*) for the in-
distribution method and with (†) for the out-of-distribution method. 

Candidate Features In-Distribution Out-of-
Distribution 

Non-Pharmaceutical Interventions 

School closing*† 0.184 0.205 
Workplace closing† 0.098 0.127 
Cancel public events† 0.089 0.127 
Restrictions on gatherings*† 0.107 0.112 

Close public transport† 0.094 0.124 
Stay at home requirements*† 0.139 0.163 

Restrictions on internal movement*† 0.126 0.146 

International travel controls 0.099 0.099 

Income support† 0.095 0.110 
Debt/contract relief 0.043 0.053 

Public information campaigns 0.020 0.023 

Testing policy 0.056 0.064 
Contact tracing 0.030 0.038 
Stringency Index*† 0.638 0.668 

Government Response Index*† 0.634 0.641 

Containment Health Index*† 0.621 0.655 

Economic Support Index*† 0.119 0.124 

Current Infection Numbers 

Current cumulative number of 
confirmed cases:  *† 

0.517 0.557 
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 *† 0.866 0.798 

Hofstede’s Cultural Dimensions 

Power distance*† 0.288 0.342 
Individualism*† 0.309 0.355 
Masculinity*† 0.310 0.372 
Uncertainty avoidance*† 0.314 0.370 
Long-term orientation*† 0.461 0.535 
Indulgence*† 0.456 0.529 
 
All selected features are then normalized to the range  using standard min-max 
normalization. 

Model Training and Validation 
We train the machine learning models with the combinations of hyperparameters 
listed in Table 2 [36,43–46]. We optimize the models using the mean squared error 
(MSE) criterion and select the model hyperparameters with the lowest mean 
absolute error (MAE) as the optimal configuration of a model. While the MSE heavily 
penalizes large residual errors disproportionately, the MAE provides an absolute 
mean of all residual errors [47].  The MAE of the training data acts as a measure of 
the goodness-of-fit of the model, while the MAE of the validation and testing data 
acts as a measure of the predictive performance [48].  
 
Table 2. Machine learning models and hyperparameter combinations. 

Model Hyperparameters 
Ridge Regression  0.00, 0.25, 0.50, 0.75, 1.00, 1.25 
Decision Tree 
Regression 

Depth: 5, 10, 15, 20, 25, 30 
Min. Sample Split: 2, 5, 10 
Min. Sample Leaves: 1, 2, 4, 8, 10 

Random Forest 
Regression 

Depth: 5, 10, 20, 25, 30 
Estimators: 3, 5, 10, 15, 20, 30, 50, 75, 100, 125, 150 
Min. Sample Split: 2, 5, 10 
Min. Sample Leaves: 1, 2, 4, 8, 10 

AdaBoost 
Regression 

Weak learner: Decision Tree (Max. Depth: 2) 
Estimators: 3, 5, 10, 15, 20, 30, 50, 75, 100, 125, 150 
Loss function: Linear 
Learning rate: 0.1, 0.5, 1.0 

Support Vector 
Regression 

 0.00, 0.10, 0.20, 0.50 
Kernel: linear, radial, sigmoid 

 
To validate in-distribution and out-of-distribution, we split our samples into 70-15-
15 training-validation-test sets. For cross-validation [49,50], we split our samples 
into 10 folds (i.e., 90-10). These three methods of validation each represent a 
different definition of performance for the machine learning models. 
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In-distribution validation: We randomly split the samples into training, validation, 
and test sets. Consequently, the models are trained from samples distributed across 
the entire date range available in our data. This is critical - it is generally expected 
that model performance is best when training and test data are drawn from the 
same distribution. Because the COVID-19 infection numbers are naturally time 
series, this method ensures that validation and test samples are indeed from the 
same distribution as training samples. Because samples are disassociated from their 
dates and all other known temporal features, the prediction of the validation and 
test samples using the training samples are unordered. This method may be 
applicable to use cases where the date-to-predict is expected to be in a similar 
distribution as the training samples, such as predicting  when data up to the 
current date  is available. 
 
Out-of-distribution validation: While the in-distribution method may ensure that the 
training, validation, and test data are all sampled from the same distribution, it may 
not necessarily be the most practical. Generally, the goal of long-term infection rate 
forecasting is to anticipate for future infection rates and should not be represented 
as an in-distribution task, where we have trained with data from near or later than 
the date-to-predict. Therefore, we also validate the performance of our models by 
training on the earliest  of samples. The validation and test sets are then 
randomly split between the remaining  of samples. This setup ensures that all 
training samples occurred earlier than validation and testing samples and no 
temporal features (known or hidden) are leaked. However, due to the changing 
environment related to COVID-19 infections (e.g., introduction of new NPIs, 
seasonal changes, new research), the validation and testing distributions is likely 
different from that of the training set.  This method may be applicable for use cases 
where the date-to-predict is in the far future and not all data up to 14 days prior to 
the date-to-predict are available. 
 
Country-based cross-validation: As a compromise between the above two methods, 
we also use a cross-validation method by splitting the available countries into ten 
folds. The aim is to evaluate validation samples from the same date range as training 
samples, but not the same country trajectory. That is, only data from countries not 
in the validation set are included in the training set. Although the samples from the 
training and validation sets are therefore sampled from different distributions (i.e., 
different countries), we anticipate that features from Hofstede's cultural dimensions 
[34] may assist in identifying similar characteristics between countries, thus 
reducing the disparity between the training and validation distributions. This 
method may be applicable in predicting the CIG of countries where associated 
previous data is unavailable or unreliable. 
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Results 

Feature Selection 
For both the interpolation and extrapolation training sets, we observe that most 
candidate features meet our requirement of a non-zero mutual information ( ) 
(see Table 1).  
 
In both training sets, the candidate features that do not meet the requirements are 
international travel control ( , ), debt/contract relief ( , ), 
public information campaigns ( , ), testing policy ( , ), and 
contact tracing ( , ). Additional candidate features which do not meet the 
requirements for interpolation training set are workplace closing ( ) and cancel 
public events ( ). Overall, the in-distribution and out-of-distribution datasets 
contain  and  features, respectively. 
 

 has the highest mutual information out of all features, suggesting similarities 
between the feature  and the label . Further analysis shows a 
correlation of  between  and . This may be due to similar 
trends in the CIG when the implementation of NPIs is consistent within a 14-day 
period. 

Comparison of Machine Learning Models 
Out of all available configurations (i.e. hyperparameter combinations) of each 
model, we select the model configuration with the lowest validation error and 
compute the test error. The parameters for these selected models are listed in Table 
3. The mean training, validation, and test errors are included in Table 4, Table 5, and 
Table 6, respectively, for the in-distribution, out-of-distribution, and cross-
validation methods. We also include the median percent error [51], which is the 

percentage difference of the prediction  and the label  for each instance 

, computed as: 
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Table 3. Hyperparameters of the optimal configuration (lowest validation MAE) for 
each model for each validation method. 

 In-Distribution Out-of-
Distribution 

Cross-Validation 

Ridge Regression  0.00  0.25  0.00 
Decision Tree 
Regression 

Depth: 25 
Min. Sample Split: 
2 
Min. Sample 
Leaves: 1 

Depth: 10 
Min. Sample Split: 
5 
Min. Sample 
Leaves: 1 

Depth: 5 
Min. Sample Split: 
2 
Min. Sample 
Leaves: 4 

Random Forest 
Regression 

Depth: 30 
Estimators: 150 
Min. Sample Split: 
2 
Min. Sample 
Leaves: 1 

Depth: 15 
Estimators: 10 
Min. Sample Split: 
2 
Min. Sample 
Leaves: 10 

Depth: 15 
Estimators: 125 
Min. Sample Split: 
2 
Min. Sample 
Leaves: 10 

AdaBoost 
Regression 

Estimators: 5 
Learning rate: 0.1 

Estimators: 5 
Learning rate: 1.0 

Estimators: 3 
Learning rate: 0.1 

Support Vector 
Regression 

 0.00 
Kernel: radial 

 0.00 
Kernel: linear 

 0.00 
Kernel: linear 

 
Table 4. Optimal mean absolute error and median percent error for in-distribution 
validation method.  The model indicated with the lowest test MAE is indicated with 
(*). 

 Train Mean 
Abs. Error 
(MAE) 

Validation 
Mean Abs. 
Error 
(MAE) 

Test Mean 
Abs. Error 
(MAE) 

Validation 
Percent 
Error 

Test 
Percent 
Error 

Ridge 
Regression 

0.270 0.269 0.259 1.58 0.60 

Decision Tree 
Regression 

0.001 0.041 0.039 1.00 0.00 

Random 
Forest 
Regression* 

0.012 0.033 0.031 1.01 1.01 

AdaBoost 
Regression 

0.162 0.166 0.155 1.31 1.24 

Support 
Vector 
Regression 

0.170 0.172 0.165 1.00 1.01 
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Table 5. Optimal mean absolute error and median percent error for out-of-
distribution validation method. The model indicated with the lowest test MAE is 
indicated with (*). 

 Train Mean 
Abs. Error 
(MAE) 

Validation 
Mean Abs. 
Error 
(MAE) 

Test Mean 
Abs. Error 
(MAE) 

Validation 
Percent 
Error 

Test 
Percent 
Error 

Ridge 
Regression 

0.296 0.240 0.247 2.26 1.22 

Decision Tree 
Regression 

0.117 0.109 0.114 1.15 0.12 

Random 
Forest 
Regression 

0.098 0.098 0.105 1.45 0.44 

AdaBoost 
Regression* 

0.207 0.081 0.089 1.40 0.39 

Support 
Vector 
Regression 

0.268 0.167 0.176 1.66 0.60 

 
Table 6. Optimal mean absolute error and median percent error for cross-validation 
method.  (Validation error is equivalent to test error for cross-validation.) The 
model indicated with the lowest test MAE is indicated with (*). 

 Train Mean Abs. 
Error (MAE) 

Validation Mean 
Abs. Error (MAE) 

Validation 
Percent Error 

Ridge Regression 0.262 0.275 0.62 

Decision Tree 
Regression 

0.181 0.207 0.28 

Random Forest 
Regression 

0.073 0.175 0.40 

AdaBoost Regression* 0.164 0.167 0.27 
Support Vector 
Regression 

0.230 0.240 0.03 

 
We observe that random forest regression has the lowest mean test error in the 
interpolation method ( ) and AdaBoost regression has the lowest mean test 
errors in the extrapolation and cross-validation methods (  and  
respectively) (see Table 4, Table 5, and Table 6). For all models aside from ridge 
regression, the in-distribution method has the lowest mean test errors and the 
lowest median percent error. 

Analysis of Best Performing Models 
Intercepts near and slopes near  are the linear calibration measures that 
would indicate a perfect calibration relationship between the predictions and the 
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labels [48]. For the optimal models in all validation methods, we observe slopes 
close to 1.0 and intercepts close to 0.0 (see Table 7).  Due to the large sample sizes, 
statistical significance testing indicates several slopes and intercepts as significantly 
different from 1.0 and 0.0, respectively. However, the small mean differences 
(standardized to the standard deviation, i.e., z-score) indicate these differences have 
no practical significance. High correlations and  values between the predictions 
and labels are observed in all three validation methods (see Figure 1, Figure 2, and 
Figure 3). 
 
Table 7. Linear calibration measures of the models with the lowest test MAE for 
each validation method. 

 In-Distribution Out-of-
Distribution 

Cross-Validation 

Test Sample Size,  2847 2811 19,669 
Model Random Forest AdaBoost AdaBoost 
Correlation,  0.979 0.716 0.758 
Slope ± SE 1.037 ± 0.004 0.986 ± 0.018 0.968 ± 0.006 
Slope standardized 
mean difference (z-
score) from 1 

0.176 -0.015 -0.039 

Slope P value 
(mean of 1) 

< 0.001 0.427 < 0.001 

Intercept ± SE -0.013 ± 0.002 -0.011 ± 0.004 0.006 ± 0.003 
Intercept 
standardized mean 
difference (z-
score) from 0 

-0.119 -0.044 0.014 

Intercept P value 
(mean of 0) 

<0.001 0.019 0.059 

 value 0.959 0.513 0.574 
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Figure 1. Calibration plot between labels and predictions for the interpolation 

validation method, with the means of each prediction bin of size 0.25. 

 
Figure 2. Calibration plot between labels and predictions for the extrapolation 

validation method, with the means of each prediction bin of size 0.25. 
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Figure 3. Calibration plot between labels and predictions for the cross-validation 

method, with the means of each prediction bin of size 0.25. 

 
From observing the distributions of predictions and labels in all three validation 
methods (see Figure 4, Figure 5, and Figure 6), we see that the distributions of 
predictions and labels in the in-distribution method are similar. In the cross-
validation method, predictions are slightly higher than the labels for the label range 
from  to , showing overestimation of the CIG within this range. 
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Figure 4. Distributions of test labels and predictions ( ) for the 
interpolation validation method. 

 
Figure 5. Distributions of test labels and predictions ( ) for the 

extrapolation validation method. 
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Figure 6. Distributions of test labels and predictions ( ) for the cross-

validation method. 

 
Further analysis shows that the performance of the models varies with the values of 
the labels. In both the in-distribution and cross-validation methods, the test MAE is 
lowest for samples with labels  (see Table 8 and Table 10), followed by label 
range . In the out-of-distribution method, the test MAE is lowest for 
samples with labels from  (see Table 9). For all validation methods, the 
mean MAE and median percent errors also increase with label bins greater , 
showing a decrease in accuracy for larger CIG. 
 
Table 8. Test errors and median percent errors of label bins of size 0.5 for the in-
distribution validation method. 

Upper 
Threshold 

Count Test Mean Non-
Abs. Error 

Test Mean Abs. 
Error (MAE) 

Test Percent 
Error 

0.0 20 0.000 ± 0.000 0.000 ± 0.000 N/A 
0.5 2183 0.011 ± 0.052 0.017 ± 0.050 0.01 
1.0 408 0.003 ± 0.076 0.047 ± 0.060 0.00 
1.5 140 -0.052 ± 0.139 0.094 ± 0.115 -0.02 
2.0 68 -0.104 ± 0.205 0.158 ± 0.167 -0.04 
2.5 26 -0.283 ± 0.309 0.297 ± 0.294 -0.08 
3.0 2 -1.108 ± 0.470 1.108 ± 0.470 -0.43 
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Table 9. Test errors and median percent errors of label bins of size 0.5 for the out-
of-distribution validation method. 

Upper 
Threshold 

Count Test Mean Non-
Abs. Error 

Test Mean Abs. 
Error (MAE) 

Test Percent 
Error 

0.0 19 0.076 ± 0.000 0.076 ± 0.000 N/A 
0.5 2607 0.034 ± 0.096 0.071 ± 0.074 0.44 
1.0 152 -0.161 ± 0.228 0.225 ± 0.164 -0.25 
1.5 22 -0.648 ± 0.222 0.648 ± 0.222 -0.52 
2.0 3 -1.044 ± 0.147 1.044 ± 0.147 -0.60 
2.5 8 -1.464 ± 0.116 1.464 ± 0.116 -0.67 
 
Table 10. Test errors and median percent errors of label bins of size 0.5 for the 
cross-validation method. 

Upper 
Threshold 

Count Test Mean Non-
Abs. Error 

Test Mean Abs. 
Error (MAE) 

Test Percent 
Error 

0.0 114 -0.059 ± 0.086 0.059 ± 0.086 N/A 
0.5 15,056 -0.073 ± 0.174 0.109 ± 0.153 0.493 
1.0 2815 -0.010 ± 0.282 0.217 ± 0.181 -0.006 
1.5 960 0.333 ± 0.337 0.393 ± 0.265 -0.299 
2.0 451 0.719 ± 0.370 0.719 ± 0.370 -0.391 
2.5 246 1.141 ± 0.321 1.141 ± 0.321 -0.459 
3.0 27 1.362 ± 0.266 1.225 ± 0.266 -0.486 
 

Discussion 

Principal Results 
Our results suggest that traditional, non-time series machine learning models can 
predict future CIG to an appreciable degree of accuracy, as suggested by the high  
values and strong linear calibration relationships between the labels and 
predictions in all validation methods. 
 
A comparison of our results for all validation methods suggests differences in the 
predictive performance of machine learning models across the varying use cases. 
The in-distribution method has the lowest test mean error and median percent 
error, which is to be expected as the test samples are obtained from the same 
distribution as the training samples. Intuitively, while samples in the in-distribution 
method are unordered (i.e., no temporal features are included), the availability of 
samples across the entire temporal range in the training set allows the validation 
and test samples to interpolate between these training samples. 
 
The out-of-distribution method achieves a test mean error which is higher than that 
of the in-distribution method. This is expected, as evolving COVID-19 infection 
trajectories observed most countries give distributions of training samples from 
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earlier dates that may differ greatly from those of validation and test samples from 
later dates (i.e., data shift), which often leads to poor generalization (e.g., over-
fitting) of machine learning models. 
 
Conversely, even though the cross-validation method contains the training and 
validation sets within the same date range, the cross-validation method also 
separates countries across these sets (i.e., the 10 folds), such that there is no country 
which has samples in both the training and validation sets. This difference leads to 
higher test mean errors and median percent errors than both other methods, which 
suggests that including training samples from the same country as the validation 
samples is more important than ensuring temporal overlap. We speculate that this 
occurs because the unique cultural dimensions per country may potentially act as a 
categorical rather than continuous features, for each country. In such cases, the 
cultural dimensions observed in the training set would be considered irrelevant to 
cultural dimensions within the validation set. 
 
Performance also varies depending on the value of the label (see Table 8, Table 9, 
and Table 10), which may be due to the imbalanced frequency of training samples. 
That is, the rareness of samples with higher CIG compared to lower CIG in the 
training set may be the cause of their comparatively poorer performance. 
 
In Figure 2 and Figure 3, we also observe constraints of the trained AdaBoost 
regression models.  Discretization of the prediction values may be due to the low 
number of estimators used in the lowest mean test error configuration, as seen in 
Table 3. The low number of estimators in these configurations may also restrict the 
predictions to a maximum of  selected to the relatively lower number of samples 
with labels greater than  (see Figure 5 and Figure 6). Label ranges with the most 
samples are selected over underrepresented ranges as candidates for prediction 
values in the discretized AdaBoost regression models. While additional estimators 
in the AdaBoost regression models may result in less discrete prediction values, 
they may also cause over-fitting by increasing the complexity of the models. 

Limitations 
First, the scores in the OxCGRT and Hofstede's cultural dimensions datasets are 
imprecise. NPI enforcement levels and definitions may vary even between countries 
with the same scores, while countries sharing similar cultural dimension scores may 
have unobserved differences in terms of cultural practices. Second, by predicting the 
CIG 14 days in advance of the current date, the models do not account for 
information regarding changes in NPIs between the current date and the date-to-
predict. Third, the CIG is a measure of the change in the cumulative number of 
confirmed infections and may not necessarily be correlated with the change in the 
daily number of confirmed infections nor the actual transmission rate of COVID-19. 
For example, changing biased and/or unreliable testing policies (e.g., prioritizing 
high-risk patients) may lead to a misleading representation of the infection growth 
within the general population.  
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Conclusion 
In this study, we train five non-time series machine learning models to predict the 
CIG 14 days into the future, using NPI features extracted from the OxGCRT dataset 
[1], as well as cultural norm features extracted from Hofstede's cultural dimensions 
[34]. Together, these features enable the prediction of near-future CIG in multiple 
machine learning models. Specifically, we observe that random forest regression 
and AdaBoost regression result in the most accurate predictions out of the five 
evaluated machine learning models.  
 
We observe differences in the predictive performance of the machine learning 
models across the three validation methods, with the highest accuracy with the in-
distribution method and the lowest with the cross-validation method. These 
differences in performance suggest that the models have varying levels of accuracy 
depending on use case. Specifically, predictions are expected to have higher 
accuracies when existing data from the same country in nearby dates are available 
(i.e., in-distribution method). This enables use cases such as predicting the CIG over 
the upcoming 14 days from the current date. The decrease in accuracy when data 
from nearby dates are unavailable (i.e., out-of-distribution method) suggest weaker 
performance in predicting the CIG over 14 days for relatively distanced future dates. 
We observe the greatest decrease in performance when data from the same country 
is unavailable (i.e., cross-validation method). However, with all validation methods, 
we observe appreciable calibration measures between the predictions and labels of 
the test set. 
 
Due to the rapidly growing body of work related to predicting COVID-19 infection 
rates, one cannot claim state-of-the-art results. However, this work provides new 
considerations in the use of NPIs and cultural dimensions for predicting the national 
growth of confirmed infections of the COVID-19 pandemic and other infectious 
diseases using non-time series machine learning models. These experiments also 
provide insight into validation methods for different applications of the models. As 
the availability of such data increases and the nature of the data continues to evolve, 
we expect that simple and straightforward models such as these may prove to be 
more accurate and generalizable, improving overall predictive performance. 
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