Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Strategies to minimize SARS-CoV-2 transmission in classroom settings: Combined impacts of ventilation and mask effective filtration efficiency

View ORCID ProfileDavid A. Rothamer, Scott Sanders, Douglas Reindl, View ORCID ProfileTimothy H. Bertram
doi: https://doi.org/10.1101/2020.12.31.20249101
David A. Rothamer
1Department of Mechanical Engineering, University of Wisconsin-Madison
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for David A. Rothamer
  • For correspondence: rothamer@wisc.edu
Scott Sanders
1Department of Mechanical Engineering, University of Wisconsin-Madison
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Douglas Reindl
1Department of Mechanical Engineering, University of Wisconsin-Madison
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Timothy H. Bertram
2Department of Chemistry, University of Wisconsin-Madison
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Timothy H. Bertram
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

The impact of the COVID-19 pandemic continues to be significant and global. As the global community learns more about the novel coronavirus SARS-CoV-2, there is strong evidence that a significant modality of transmission is via the long-range airborne route, referred to here as aerosol transmission. In this paper, we evaluate the efficacy of ventilation, mask effective filtration efficiency, and the combined effect of the two on the reduction of aerosol infection probability for COVID-19 in a classroom setting. The Wells-Riley equation is used to predict the conditional probability of infection for three distinct airborne exposure scenarios: (1) an infectious instructor exposing susceptible students; (2) an infectious student exposing other susceptible students; and (3) an infectious student exposing a susceptible instructor. Field measurements were performed in a classroom using a polydisperse neutralized salt (NaCl) aerosol, generated in a size range consistent with human-generated SARS-CoV-2 containing bioaerosols, as a safe surrogate. Measurements included time-resolved and size-resolved NaCl aerosol concentration distributions and size-resolved effective filtration efficiency of different masks with and without mask fitters. The measurements were used to validate assumptions and inputs for the Wells-Riley model. Aerosol dynamics and distribution measurements confirmed that the majority of the classroom space is uniform in aerosol concentration within a factor of 2 or better for distances > 2 m from the aerosol source. Mask effective filtration efficiency measurements show that most masks fit poorly with estimated leakage rates typically > 50%, resulting in significantly reduced effective filtration efficiency. However, effective filtration efficiencies approaching the mask material filtration efficiency were achievable using simple mask fitters. Wells-Riley model results for the different scenarios suggest that ventilation of the classroom alone is not able to achieve infection probabilities less than 0.01 (1%) for air exchanges rates up to 10 h−1 and an event duration of one hour. The use of moderate to high effective filtration efficiency masks by all individuals present, on the other hand, was able to significantly reduce infection probability and could achieve reductions in infection probability by 5x, 10x, or even >100x dependent on the mask used and use of a mask fitter. This enables conditional infection probabilities < 0.001 (0.1%) or even < 0.0001 (0.01%) to be reached with the use of masks and mask fitters alone. Finally, the results demonstrate that the reductions provided by ventilation and masks are synergistic and multiplicative. The results reinforce the use of properly donned masks to achieve reduced aerosol transmission of SARS-CoV-2 and other infectious diseases transmitted via respiratory aerosol indoors and provide new motivation to further improve the effective filtration efficiency of common face coverings through improved design, and/or the use of mask fitters.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was funded in part by the Emergency Operations Committee at the University of Wisconsin-Madison.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

No approval IRB approval required for this research

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

Data that support the findings of this study are available from the corresponding author upon reasonable request.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted January 04, 2021.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Strategies to minimize SARS-CoV-2 transmission in classroom settings: Combined impacts of ventilation and mask effective filtration efficiency
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Strategies to minimize SARS-CoV-2 transmission in classroom settings: Combined impacts of ventilation and mask effective filtration efficiency
David A. Rothamer, Scott Sanders, Douglas Reindl, Timothy H. Bertram
medRxiv 2020.12.31.20249101; doi: https://doi.org/10.1101/2020.12.31.20249101
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Strategies to minimize SARS-CoV-2 transmission in classroom settings: Combined impacts of ventilation and mask effective filtration efficiency
David A. Rothamer, Scott Sanders, Douglas Reindl, Timothy H. Bertram
medRxiv 2020.12.31.20249101; doi: https://doi.org/10.1101/2020.12.31.20249101

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Occupational and Environmental Health
Subject Areas
All Articles
  • Addiction Medicine (230)
  • Allergy and Immunology (507)
  • Anesthesia (111)
  • Cardiovascular Medicine (1256)
  • Dentistry and Oral Medicine (207)
  • Dermatology (148)
  • Emergency Medicine (283)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (537)
  • Epidemiology (10047)
  • Forensic Medicine (5)
  • Gastroenterology (500)
  • Genetic and Genomic Medicine (2481)
  • Geriatric Medicine (239)
  • Health Economics (482)
  • Health Informatics (1652)
  • Health Policy (756)
  • Health Systems and Quality Improvement (638)
  • Hematology (250)
  • HIV/AIDS (536)
  • Infectious Diseases (except HIV/AIDS) (11888)
  • Intensive Care and Critical Care Medicine (626)
  • Medical Education (255)
  • Medical Ethics (75)
  • Nephrology (269)
  • Neurology (2301)
  • Nursing (140)
  • Nutrition (354)
  • Obstetrics and Gynecology (458)
  • Occupational and Environmental Health (537)
  • Oncology (1257)
  • Ophthalmology (377)
  • Orthopedics (134)
  • Otolaryngology (226)
  • Pain Medicine (158)
  • Palliative Medicine (50)
  • Pathology (326)
  • Pediatrics (737)
  • Pharmacology and Therapeutics (315)
  • Primary Care Research (282)
  • Psychiatry and Clinical Psychology (2294)
  • Public and Global Health (4850)
  • Radiology and Imaging (846)
  • Rehabilitation Medicine and Physical Therapy (493)
  • Respiratory Medicine (654)
  • Rheumatology (288)
  • Sexual and Reproductive Health (241)
  • Sports Medicine (228)
  • Surgery (271)
  • Toxicology (44)
  • Transplantation (130)
  • Urology (100)