Optimizing vaccine allocation for COVID-19 vaccines: critical role of single-dose vaccination.

Laura Matrajt,1*,† Julia Eaton,2
1Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
2University of Washington, Tacoma, WA, USA
*To whom correspondence should be addressed; E-mail: laurama@fredhutch.org
†This author is also the senior author.

Abstract

Most of the COVID-19 vaccines require two doses, at least 3 weeks apart. In the first few months of vaccine deployment, vaccine shortages will be inevitable. Current vaccine prioritization guidelines for COVID-19 vaccines all assume two-dose vaccine deployment. However, vaccinating twice as many people with a single dose of vaccine might be a better use of resources. Utilizing an age-stratified mathematical model combined with optimization algorithms, we determined the optimal vaccine allocation with one and two doses of vaccine to minimize five key metrics of disease burden (total infections, symptomatic infections, deaths, peak non-ICU and ICU hospitalizations) under a variety of assumptions (different levels of social distancing, vaccine availability, vaccine’s mode of action, vaccination rate). Our results suggest that maintaining current social distancing interventions and speedy vaccine deployment are key for successful vaccination campaigns. Further, we show that the optimal allocation of vaccine critically depends on the single-dose efficacy (SDE). If the SDE is high, then under the majority of scenarios considered, single-dose vaccination is the optimal use of vaccine, preventing up to 48% more deaths than a strategy allocating vaccine to the high-risk (older age groups in our model) first. If the SDE is low or medium, then our results suggest that mixed vaccination campaigns with one and two doses of vaccine are best. Our work suggests that it is an absolute imperative to quickly and fully determine the efficacy of single-dose vaccines, as single-dose vaccinations can put an end to this pandemic much more quickly.

Introduction

COVID-19 has killed over 1,800,000 people worldwide as of Dec 31st, 2020. With the exciting news that several vaccines are highly efficacious (94.1%, 95% and 62% for Moderna, Pfizer and
AstraZeneca, respectively) against preventing COVID-19 disease [1, 2, 3], hopes are high that a return to normal life can soon be possible. In addition to these vaccines, there are another 6 vaccines currently in phase 3 clinical trials [4]. Most of these vaccines require two doses given at least three weeks apart [5]. Since the majority of the global population needs to be vaccinated, a vaccine supply shortage will be inevitable in the first few months of vaccine availability. Even in high-income countries, which have secured the largest quantities of vaccine, supply will be highly insufficient [6]. This situation could be far worse in low- and middle-income countries (LMIC), where vaccine supplies might arrive at later times and in smaller quantities. Most of the current vaccine prioritization schedules utilize two-dose deployments [7], but the logistics of a two-dose vaccination campaign, where people who already received their first vaccine dose need to have guaranteed access to their second dose, might prove to be extremely difficult to conduct [8]. In previous disease outbreaks, fractional dosing, where people receive less than the recommended dosage of vaccine, has been utilized as a way to stretch the vaccine supply. A single-dose campaign of the cholera vaccine (which also requires two doses) was deployed in a recent outbreak in Zambia, where a large proportion of the population was vaccinated with one dose and, months later after more supply became available, high-risk individuals were offered a second dose [9]. In 2016, in response to a yellow fever outbreak in Angola, Uganda and the Democratic Republic of Congo WHO vaccinated people with one fifth of the recommended dosage of the yellow fever vaccine [10]. Single-dose vaccination campaigns are attractive for several reasons: they are much easier to implement, potentially less costly, and, because a larger proportion of the population is vaccinated than in a two-dose campaign, herd immunity could be achieved faster, thereby permitting us to resume key activities in our lives (e.g. reopening schools). However, the success of a COVID-19 single-dose vaccination campaign depends on the protection acquired after one dose of vaccine. There is an intrinsic trade-off with using single-dose vaccination campaigns to achieve more coverage in exchange for a sub-optimal
level of protection. In this work, we analyze two main questions that determine the optimal use of resources: who should be vaccinated first and how many doses they should receive. Utilizing mathematical models combined with optimization algorithms, we determine the optimal use of vaccine under a variety of assumptions regarding the amount of vaccine available, the mode of action of a vaccine, the vaccination rate and the level of social distancing at the time of vaccination. We minimize five metrics of disease burden and show that allocations giving certain groups one dose and other groups two doses are the optimal way of utilizing scarce resources and can contain the current COVID-19 pandemic.

Methods

We built upon our previous model of SARS-CoV2 dynamics and vaccination [11]. Briefly, we developed an age-structured mathematical model with the population of Washington state (7.6 million people) and US demographics divided in 16 age-groups [12] (Fig. S1). To perform the vaccine optimization, we reduced the 16 age-groups into 5 vaccination groups: 0-19, 20-49, 50-64, 65-75 and those 75 and older. The 5 vaccination group stratification reflects our current knowledge of disease severity and outcomes and aligns with vaccination groups considered by the CDC [13]. For the main analysis, we considered a vaccination campaign delivering 300,000 (300K) vaccine doses per week (alternative scenarios of 150K vaccine doses per week and instantaneous vaccination) and resulting in vaccinating the entire population with a single dose of vaccine in ~ 6 months. This is roughly four times the vaccination rate experienced in the US during the 2009 H1N1 influenza pandemic [14].

We assumed that at the beginning of our simulations, 10% of the population has been infected and is immune (alternative scenario: 20% see Sensitivity Analysis, SI). Because it is expected that vaccine supplies will ramp up considerably over the second half of 2021 and into 2022, we focused on the first few months of vaccine availability and set 6 months as
our time horizon, both for the optimization and for the population impact. We assumed that asymptomatic and symptomatic infections are equally infectious (alternative scenario: Sensitivity Analysis, SI) and confer equal immunity. Further, we assumed that both naturally-induced and vaccine-induced immunity are long lasting, so that there is no waning during the time period analyzed. Because different cities, states and countries have enacted different social distancing interventions, we considered four levels of social distancing, which resulted in an effective reproductive number of $R_{\text{eff}} = 1.2, 1.4, 1.7$ or $3$ ($3$ is our assumed $R_0$, i.e. no interventions) that was kept constant during the duration of our simulations. We considered that front-line workers (healthcare workers, firefighters, police personnel), who should obviously be prioritized, have already been vaccinated. We evaluated five different objective functions representing different metrics of disease burden: cumulative infections, cumulative symptomatic infections, cumulative deaths, maximum number of non-ICU hospitalizations and maximum number of ICU-hospitalizations. The last two metrics served as a proxy for healthcare system burden. We utilized the WA state current goal of staying below $10\%$ of general hospital beds occupied by COVID-19 cases and the total number of licensed ICU beds in WA state [15, 16] as references when interpreting our results.

**Modelling the vaccine effects**

Clinical trials for COVID-19 measure the vaccine effect against laboratory-confirmed COVID-19 disease, which we denote by $\text{VE}_{\text{DIS}}$. We considered a leaky vaccine (that is, a vaccine that confers partial protection to all the vaccinees) that can have three effects on vaccinated individuals [17]. First, the vaccine can reduce the probability of acquiring a SARS-CoV-2 infection, (denoted $\text{VE}_{\text{SUS}}$). Second, it can also reduce the probability of developing COVID-19 symptoms after infection (denoted $\text{VE}_{\text{SYMP}}$), or third, it can reduce the infectiousness of vaccinated individuals (denoted $\text{VE}_i$) upon infection (Fig. S2A). We assumed a multiplicative
relationship between $\text{VE}_{\text{DIS}}$, $\text{VE}_{\text{SUS}}$ and $\text{VE}_{\text{SYMP}}$, so that

$$\text{VE}_{\text{DIS}} = 1 - (1 - \text{VE}_{\text{SUS}})(1 - \text{VE}_{\text{SYMP}}).$$

While $\text{VE}_{\text{DIS}}$ is a useful measure to assess the direct impact of a vaccine and it is the standard quantity used for licensure, it is an incomplete measure for evaluating the indirect effects of a vaccine candidate in the population. This is because many combinations of $\text{VE}_{\text{SUS}}$ and $\text{VE}_{\text{SYMP}}$ can result in the same $\text{VE}_{\text{DIS}}$ (Fig. S2B). Further, a vaccine highly efficacious against disease could be either mediated mainly by protecting vaccinated individuals against infection (high $\text{VE}_{\text{SUS}}$), or mainly by preventing them from developing symptoms once infected (high $\text{VE}_{\text{SYMP}}$), or a combination of both. A vaccine with a high $\text{VE}_{\text{SUS}}$ or a high $\text{VE}_{\text{I}}$ (irrespective of the value of $\text{VE}_{\text{SYMP}}$) would have a bigger effect on the transmission dynamics of SARS-CoV-2, resulting in a greater population impact than one mediated primarily by $\text{VE}_{\text{SYMP}}$. In fact, a vaccine mediated exclusively by $\text{VE}_{\text{SYMP}}$ might have only a direct effect, protecting only those vaccinated (this would be the case if infected asymptomatic individuals are equally infectious as symptomatic individuals). Because we do not currently know the precise modes of action of any of the vaccines, we considered in the main scenario a vaccine with $\text{VE}_{\text{DIS}} = 90\%$ with three different combinations of $\text{VE}_{\text{SUS}}$ and $\text{VE}_{\text{SYMP}}$: a vaccine mediated only by $\text{VE}_{\text{SUS}}$, a vaccine mediated only by $\text{VE}_{\text{SYMP}}$, and a vaccine mediated by a combination of the two (Fig. S2B, table S1). We took a conservative approach and consider no effect on infectiousness ($\text{VE}_{\text{I}} = 0$, alternative scenario, $\text{VE}_{\text{I}} = 60$, Sensitivity Analysis, SM).

**Single-dose efficacy (SDE):**

We denote the single-dose efficacies against disease, susceptibility, symptoms upon infection and infectiousness by $\text{VE}_{\text{DIS}1}$, $\text{VE}_{\text{SUS}1}$, $\text{VE}_{\text{SYMP}1}$ and $\text{VE}_{\text{I}1}$ respectively. Because current vaccine clinical trials protocols have very limited data regarding the efficacy after a single-dose vaccination, we considered a two-dose vaccine with $\text{VE}_{\text{DIS}} = 90\%$ and three scenarios: 1) a
low SDE ($\text{VE}_{\text{DIS}}_1 = 18\%$): most of the protection conferred by the vaccine would be obtained after the required two doses, corresponding to acquiring 20% of the overall efficacy after the first dose, 2) a medium SDE ($\text{VE}_{\text{DIS}}_1 = 45\%$): each dose of vaccine yields the same level of protection, corresponding to acquiring 50% of the overall efficacy after the first dose and 3) a high SDE ($\text{VE}_{\text{DIS}}_1 = 72\%$): most of the protection is acquired after the first dose, corresponding to acquiring 80% of the overall efficacy after the first dose.

Full description of the methods can be found in the SM.

Results

**If the SDE is high, single-dose campaigns are optimal.** Throughout the text, we refer to vaccine coverage as the amount of vaccine available to cover a percentage of the population with one dose of vaccine. We compared the optimal allocation strategies to two other strategies: a *pro-rata strategy* where a single dose of vaccine was distributed according to the proportion of the population in each vaccination group, and a *high-risk strategy* where the full dosage of vaccine (two doses) was distributed to the oldest age group first and then to the other vaccination groups in decreasing order (by age) as vaccine availability permits. This last strategy is similar to the current vaccine prioritization schedules enacted in many countries [18]. For example, if there is enough vaccine to cover 20% of the population with a single dose of vaccine (denoted by 20% coverage below), then the *pro-rata strategy* would allocate vaccine to each vaccination group so that 20% of the population in each group would be vaccinated with a single dose of vaccine (20% of the children, 20% of adults aged 20-50, etc). In contrast, the *high-risk strategy* would allocate two doses of vaccine to all people aged 75 and older, and 32% of those aged 65 to 75 years old. For the main scenario, we considered a vaccine mediated both by $\text{VE}_{\text{SUS}}$ and $\text{VE}_{\text{SYMP}}$, so that $\text{VE}_{\text{DIS}} = 90\%$ after two doses ($\text{VE}_{\text{SUS}} = 70\%$ and $\text{VE}_{\text{SYMP}} = 66\%$), a vaccination campaign with 300K doses per week, and $R_{\text{eff}} = 1.4$, and discussed the optimal
allocation strategies for minimizing deaths.

Knowing the efficacy of a single-dose vaccine was critical for optimally allocating resources. If the SDE was low, then for all objectives considered, with low coverage, the optimal strategies allocated vaccine almost exclusively with two doses (Fig. 1A-D, left column). As more vaccine became available (i.e. coverage increases), the optimal allocation strategies were a combination of one- and two-dose vaccination campaigns (Fig. 1E-J, left column). For medium SDE, single-dose strategies became more prominent with a higher proportion of vaccine allocated in single doses (Fig. 1A-J, middle column, and Fig. 2E-F). If a single dose of vaccine was highly efficacious, then, at this level of social distancing, for all objectives considered and for most coverages considered, the optimal strategies involved vaccinating individuals with one dose of vaccine exclusively (Fig. 1A-J, right column). For example, when minimizing deaths, if there was enough vaccine to cover 70% of the population with a single dose, then most of the vaccine was allocated in two doses favoring the older adults if the SDE was low (Fig. 2A-E), but it was optimal to allocate all of the vaccine with a pro-rata strategy if the efficacy after a single dose was \( \geq 70\% \) of the overall efficacy (VE\(_{DIS,1} \geq 63\% \)). Fig. 2G-J).

Optimally allocating the vaccine had an enormous impact minimizing deaths, especially if a single dose of vaccine is highly efficacious. This was particularly important if few doses of vaccine are available—the optimal allocation strategy could prevent as much as 48% more deaths compared to the high-risk strategy (vaccine coverage of 20% of the population and a vaccine with a high single-dose efficacy, Fig. S3C) over the 6-month period. Even at low coverages, the optimal allocation strategy substantially slowed down the outbreak by concentrating the vaccine in the high-transmission groups (younger adults aged 20-50 in our model and under this scenario, Fig. S3D-I) rather than older adults first. Further, if there was enough vaccine to cover 50% of the population with one dose and SDE was high, the optimal allocation could prevent 29% more deaths than the high-risk strategy (Fig. 3C). At this coverage and for this \( R_{eff} \), the
optimal allocation strategy significantly contained the epidemic (Fig. 3G-I) and, if the SDE was high, temporary herd immunity was achieved (Fig. 3I).

**Social distancing interventions and speedy vaccination roll-outs are key for successful vaccination campaigns.** We next investigated the effect of social distancing interventions in the optimal allocation strategies. When social distancing interventions were most stringent ($R_{eff}=1.2$) and with low coverage (30% of the population with a single dose), the optimal allocation strategy for minimizing deaths prioritized the high-transmission groups with full dosage if the SDE was low or medium, and a *pro-rata* distribution if the SDE was high (Fig. S4A-C). If $R_{eff}=1.4$, then, at this coverage, it was optimal to allocate the vaccine to the high-transmission groups with one or two doses, depending on the efficacy of the single dose (Fig. S4D-F). This was because at these two levels of social distancing, even low vaccine volume led to a big decrease SARS-CoV-2 transmission, which prevented as much as 45% more deaths compared to the *high-risk strategy* (20% coverage, high SDE, $R_{eff}=1.2$, Fig. S6C). For example, if $R_{eff}=1.2$ and there was enough vaccine to cover 30% of the population, the optimal allocation strategy averted 29% more deaths compared to the *high-risk strategy* if the SDE was low, and 38% more deaths if the SDE was high (Fig. S6A-C). As more vaccine became available, the optimal strategy also protected the older age groups first for low and medium SDE, and it was optimal to vaccinate with a *pro-rata strategy* if the single-dose vaccine was highly efficacious (Fig. S5A-F). For example, with enough vaccine to cover 50% of the population, the optimal allocation strategy averted 10-17% more deaths than the *high-risk strategy*. With high coverage, the optimal and the *high-risk* strategies performed equally well (Fig. S6A-F).

In contrast, for social distancing interventions resulting in moderate $R_{eff}=1.7$ or in the absence of social distancing interventions ($R_{eff}=3$), if the vaccine had a low or medium SDE, the optimal allocation strategies coincided with the *high-risk strategy* and prioritized protecting the
high-risk groups with two doses as coverage permitted (Fig. S4 and S5, panels G,H, J and K). If the vaccine was highly efficacious after a single dose, the optimal strategy was still to vaccinate the high-risk groups first, but with mixed doses. For example, with enough vaccine to cover 50% of the population and a vaccine with a high SDE, it was optimal to cover all adults aged 65 and over with two doses and those aged 50-65 with a single dose of vaccine with the remaining vaccine supply (Fig. S5I and L). This is because for these transmission rates, the epidemic was advancing at a faster pace than the vaccination campaign, so protecting those at highest risk directly was optimal. Indeed, for $R_{eff} = 1.7$ or 3, the percentage of deaths averted plateaued at 40% and 60% coverage respectively, pointing to the fact that the epidemic had ran its course before vaccination finished, so that any vaccine given after that point had no real effect (Fig. S6G-L).

There was clearly a close interplay between the vaccination rate and the level of social distancing interventions; this interplay affected the optimal allocation strategies: more stringent social distancing interventions allowed for more successful slower vaccination campaigns. For example, for 50% vaccination coverage and 150K doses per week, optimally allocating the vaccine averted 63-77% more deaths (compared to no vaccination) with $R_{eff} =1.4$ but averted only only 34-41% more deaths without any social distancing intervention (Figs. S7 and S8, A-C).

Under strict social distancing interventions, the efficacy after a single dose determined the optimal allocation strategy. If the SDE is high, slow vaccination campaigns favored the pro-rata strategy, while fast vaccination campaigns favored vaccinating the high-transmission groups with one dose (Fig. S9C, F, I). In contrast, if vaccine was rolled out in absence of any social distancing interventions, then regardless of the vaccination rate, it was optimal to protect the high risk groups (Fig. S10).
The mode of action of a vaccine shapes the optimal allocation strategy. We next explored how different mechanisms mediating vaccine efficacy against disease influenced the optimal vaccine allocation. When the vaccine was mostly mediated by $\text{VE}_{\text{SYMP}}$, the optimal strategies for minimizing deaths allocated vaccine directly to the older adults, who are the most at risk. If the SDE was low, it was optimal to vaccinate the older age groups with two doses as coverage permitted (Fig. 4A). As the SDE increased, the optimal strategy still allocated two doses to those aged 65 and older, but it distributed a single dose to the next vaccination group (Fig. 4C). If the mode of action was mediated by both $\text{VE}_{\text{SYMP}}$ and $\text{VE}_{\text{SUS}}$, then the optimal strategies allocated vaccine more uniformly across the vaccination groups, preserving the two-dose vaccination if the SDE was low and single-dose vaccination if the SDE was high (Fig. 4D-E). If the vaccine was mediated exclusively by $\text{VE}_{\text{SUS}}$, this trend became stronger: for vaccines with medium or high SDE, the optimal strategies allocated single-dose vaccine to all age-groups in a pro-rata fashion (Fig. 4G-I).

As expected, a vaccine that only prevented symptomatic disease had a somewhat lower effect preventing deaths than one that was exclusively mediated by preventing infection, with the former averting a maximum of 81% deaths while the latter averting 98% deaths over the time period considered (Fig. S11). However, a vaccine acting exclusively by reducing symptomatic infection without any effect on susceptibility or infection, even if used optimally, had no impact on the overall transmission (averting a maximum of 6% of the cumulative number of infections, Fig. S12A-C), while a vaccine acting on reducing infection could, if optimally allocated (with enough vaccine to cover 100% of the population with a single dose), contain the epidemic (averting at least 97% of infections, Fig. S12G-I). The mode of action of a vaccine had little effect on the high-risk strategy for preventing deaths, regardless of the SDE. However, the mode of action had a major effect on the pro-rata strategy: while this allocation performed very poorly if the vaccine was mediated by $\text{VE}_{\text{SYMP}}$ and has low SDE, it was extremely effective if
the vaccine was mediated also by $V_{E_{\text{SUS}}}$ and had a high SDE (Fig. S11).

**Different objective functions have different optimal allocation strategies.** In this work, we optimized five objective functions that represent different metrics of disease burden. When few vaccines were available, there was little difference in the optimal allocation strategies for all the objective functions considered—all vaccine was allocated to the high-transmission groups (30% coverage, Fig. S13). This remained the optimal strategy as more vaccine became available when minimizing the cumulative number of infections or the cumulative number of symptomatic infections, allocating most of the vaccine to children and young adults (aged 20-50) with one and two doses for a vaccine with low or medium SDE, respectively, and exclusively with a single dose if SDE was high (Fig. 5A-F). However, as we minimized more severe outcomes (ICU peak hospitalizations and deaths), the optimal allocation strategy with high vaccination coverage (70% coverage) changed to prioritize older adults, who were the most at risk for these outcomes if the SDE was low or medium (Fig. 5J, K, M, N), and to a pro-rata strategy if the SDE was high (Fig. 5L and O).

When minimizing non-ICU hospitalizations and with enough vaccine to cover the entire population with one dose, only the optimal allocation strategy was able to maintain the number of non-ICU hospitalizations below 10% general bed occupancy (the goal established in WA state) for low SDE. However, for higher SDEs, all strategies resulted in peak non-ICU hospitalizations much lower than this threshold (Fig. S14). In contrast, all strategies considered resulted in much fewer ICU-hospitalizations than the maximum occupancy (Fig. S15).

**Discussion**

Vaccination with COVID-19 vaccines has started in a few countries, and it is expected that many more will start in the next few months. As demand will far exceed supply in the first few
months of vaccination deployment, vaccine will be (and is already being) prioritized. However, most of the current schedules consider vaccination with full dosage (two doses). In this work, we explore the use of mixed vaccination campaigns, with some people receiving one dose and others receiving two doses. We find that the optimal use of resources depends mostly on the efficacy after one dose of vaccine. If a single-dose vaccine is highly efficacious, then for the majority of the scenarios explored, our results suggest that vaccination campaigns that optimally allocate a single dose of vaccine are far more effective at averting deaths than a high-risk strategy. Previous work for other infectious diseases [19, 20, 21] has reached similar conclusions. Furthermore, our results show that vaccinating with a single-dose campaign allow us to reach temporary herd immunity faster. Of course, as more vaccine becomes available, additional vaccination campaigns will be needed to cover everyone with the full dosage of vaccine, but in the meantime, the optimal use of resources can allow us to return to some level of normalcy. In fact, previous work has shown (e.g [22]) that herd immunity can be reached for single dose vaccination campaigns as long as the efficacy of a single dose is $\geq 60\%$ and a very high proportion of the population is vaccinated.

In addition, we show that the optimal use of resources depends strongly on the level of social distancing interventions put in place while vaccine is being rolled out. With stringent interventions, our results suggest that it is optimal to vaccinate the high-transmission groups. As interventions are relaxed, the optimal allocation shifts to directly protecting those at higher risk. These conclusions are consistent with previous work that has optimized vaccine allocation assuming a single dose [23, 24, 11]. In agreement with others [25, 26, 27], our results show the absolute necessity to keep social distancing interventions in place: if social distancing interventions are lax, or if the vaccine is not rolled out fast enough, then our results show that the effect of vaccination will be limited, and that the current wave of infections will be over long before
vaccine campaigns finish.

Key features of the vaccines remain poorly understood, including their mode of action. To account for that, we investigate the optimal use of vaccine assuming three possible mechanisms that would result in the same observed $\text{VE}_{\text{DIS}}$, and we find that the optimal use of vaccine strongly depends on them. For a vaccine that is medium or highly efficacious after the first dose, and if the vaccine is mainly preventing disease after infection, it is optimal to vaccinate those most at risk and to give others a single-dose as coverage permits. In contrast, if the vaccine reduces the susceptibility to infection, then it is optimal to vaccinate as many people as possible with one dose. Similar to [27], we find that a vaccine mostly preventing disease upon infection will have limited population impact. These results underscore the need for fast and more thorough studies to estimate all of the vaccine effects.

Here, we report the mathematical optimal use of resources. However, we acknowledge that in practice other factors (ethical, political, logistical, etc.) need to be considered when allocating vaccine. Nevertheless, we believe that our results can provide useful guidance to decision-makers.

Our work has several limitations. Our model assumes that asymptomatic and symptomatic infections are equally infectious and confer equal protection. It is possible that an asymptomatic infection might result in weaker protection [28]. We assume that naturally and vaccine-induced immunity will be long lasting, but some studies suggest that it might last only a few months [29]. If immunity is short-lived, then the results would be valid only for that time frame. Here, we assumed that vaccinating currently or previously infected individuals would have no effect on their immunity. However, it is possible that previous infections might act as a first dose of vaccine and that vaccinating those individuals might result in a boost of their immunity. We use
age-stratified hospitalization rates based on data from Wuhan, China [30] and mortality rates based on data from France [31]. These rates strongly depend on comorbidities (e.g. heart disease, diabetes, etc.) that are country dependent. It is then important to determine country-based estimates of these rates to adequately parameterize models. To keep the optimization from being unreasonably complicated and doable in real time, we use a deterministic model that does not account for geographic movement or complex contact patterns and age was our sole risk factor. In reality, we know that other factors, like occupation, have been linked to an increased risk of acquisition and severe disease [32, 33]. Because of systemic social inequalities, several studies have shown that in certain countries people from racial and minority groups are at increased risk of infection and death from COVID-19 [34, 35]. Further, deterministic models tend to overestimate infection dynamics, and as a result it is likely that our peak hospitalizations are also overestimated. We have determined optimal allocation strategies under a variety of scenarios and once more information regarding the vaccine’s mode of action, vaccination rates and coverages for specific countries are known, we welcome validation with more complex models.

Limited data estimating the efficacy after a single dose of vaccine for the two currently licensed vaccines suggest that these vaccines might be very efficacious after a single dose: 80.2% for the Moderna vaccine [1] and 52% for the Pfizer vaccine [2]. In addition, there is speculation that the high efficacy observed after the lower dosage of the Astrazeneca vaccine might suggest that this vaccine is highly efficacious after a single dose [36]. We do not know however how long the protection acquired after a single dose will last. Other vaccines, like the oral cholera vaccines that require two doses, are highly effective after a single dose but their protection is short lived compared with the full dosage [37]. If immunity lasts several months, our results show that single-dose vaccination campaigns, which are much easier to implement, are the optimal use of resources in the short term. Then, as more vaccine becomes available, additional
single-dose campaigns would have to be done to fully protect the population. Our work suggests that it is an absolute imperative to quickly and fully determine the efficacy of single-dose vaccinations, not doing so could result in a missed opportunity to much more quickly put an end to this pandemic.

**Acknowledgements**

This research was supported by Fred Hutchinson Cancer Research Center discretionary funds awarded to Peter Gilbert.

**Figures**

**References**


Figure 1: Optimal vaccine allocation as a function of single-dose use and two-dose use. Percentage of total vaccine available utilized for single-dose allocation (light blue) and two-dose allocation (dark blue) when there is enough vaccine to cover 10% (row A) to 100% (row J) of the population with a single dose. Each column of the plot assumes that the efficacy after the first dose of vaccine is low (left column, VE_{DIS1} = 18%), moderate (center column, VE_{DIS1} = 45%) or high (right column, VE_{DIS1} = 72%).
Figure 2: Optimal vaccine allocation for minimizing deaths as a function of the efficacy after the first dose, ranging from $\text{VE}_{\text{DIS}_1} = 9\%$ (A) to $\text{VE}_{\text{DIS}_1} = 90\%$ (J) with enough vaccine to cover 70\% of the population with a single dose (35\% with two doses). For each panel, the bars correspond to the percentage of the population in each vaccination group vaccinated with one (light blue) or two (dark blue) doses.
Figure 3: A-C: Percentage of deaths averted for the optimal allocation strategies (blue), the high-risk strategy (pink) and the pro-rata strategy (green) with enough vaccine to cover 10-100% of the population with a single dose (5-50% with two doses). D-F: Optimal (light and dark blue), high-risk (pink) and pro-rata (green) allocation strategies with enough vaccine to cover 50% of the population with a single dose (25% with two doses). Within each panel, the bars represent the percentage vaccinated in each vaccination group. G-I: Prevalence of symptomatic infections (per 100,000) in absence of vaccine (black), with the optimal allocation strategy to minimize deaths (blue), the high-risk strategy (pink) or the pro-rata strategy (green) with enough vaccine to cover 50% of the population with a single dose (25% with two doses).
Figure 4: Optimal vaccine allocation for a vaccine with $VE_{DIS} = 90\%$ and enough vaccine to cover 50% of the population with a single dose (25% with two doses). For each panel (A-I), the bars represent the total percentage of the population in each vaccination group to be vaccinated, split in those receiving a single dose (light blue) and those receiving two doses (dark blue). Each row represents a different breakdown of $VE_{DIS} = 90\%$ as a function of $VE_{SUS}$ and $VE_{SYMP}$. Top row (A-C): $VE_{DIS}$ is mediated by a reduction in symptoms upon infection. Middle row (D-F): $VE_{DIS}$ is mediated by a combination of reduction in susceptibility to infection and reduction of symptoms upon infection. Bottom row (G-I): $VE_{DIS}$ is mediated by a reduction in susceptibility to infection. Each column represents a different vaccine efficacy after the first dose, with $VE_{DIS,1} = 18\%$ (left), 45% (middle) or 72% (right) corresponding to acquiring 20, 50 or 80% of the overall protection after the first dose.
Figure 5: Optimal vaccine allocation for a vaccine with $\text{VE}_{\text{DIS}} = 90\%$ and enough vaccine to cover 70% of the population with a single dose (35% with two doses). Each row represents an objective function minimized: cumulative infections (A-C), cumulative symptomatic infections (D-F), non-ICU peak hospitalizations (G-I), ICU hospitalizations (J-L) and total deaths (M-O). Each column represents a different vaccine efficacy after the first dose, with $\text{VE}_{\text{DIS1}} = 18\%$ (left), 45% (middle) or 72% (right) corresponding to acquiring 20, 50 or 80% of the overall protection after the first dose.


Supplemental figures

Figure S1: Diagram of the SEIR model with vaccination with one or two doses of vaccine. Age indices have been omitted for clarity.
Figure S2: A: Different vaccine effects modeled: a vaccine can reduce the probability of infection, denoted by $\text{VE}_{\text{SUS}}$. In addition, it can reduce the probability of developing symptoms once infected, denoted $\text{VE}_{\text{SYMP}}$. Finally, it can reduce the infectiousness of a vaccinated person upon infection, denoted $\text{VE}_{\text{I}}$. We assumed that $\text{VE}_{\text{DIS}}$ can be expressed as a combination of $\text{VE}_{\text{SUS}}$ and $\text{VE}_{\text{SYMP}}$ (see text). B: Level curves for $\text{VE}_{\text{DIS}}$ as a function of $\text{VE}_{\text{SUS}}$ and $\text{VE}_{\text{SYMP}}$. The light blue lines indicate the efficacies $\text{VE}_{\text{DIS}}$ obtained after a first dose of vaccine considered in the main analysis. The dark blue line indicates the vaccine efficacy obtained after the full dosage (two doses) $\text{VE}_{\text{DIS}} = 90\%$. 
Figure S3: A-C: Percentage of deaths averted for the optimal allocation strategies (blue), the high-risk strategy (pink) and the pro-rata strategy (green) with enough vaccine to cover 10-100% of the population with one dose (5-50% with two doses). D-F: Optimal (light and dark blue), high-risk (pink) and pro-rata (green) allocation strategies with enough vaccine to cover 20% of the population with a single dose (10% with two doses). Within each panel, the bars represent the percentage vaccinated in each vaccination group. G-I: Prevalence of symptomatic infections (per 100,000) in absence of vaccine (black), with the optimal allocation strategy to minimize deaths (blue), the high-risk strategy (pink) or the pro-rata strategy (green) with enough vaccine to cover 20% of the population with one dose (10% with two doses).
Figure S4: Optimal vaccine allocation for minimizing deaths with a vaccine with VE\textsubscript{DIS} = 90% and enough vaccine to cover 30% of the population with one dose (or 15% with two doses). For each panel (A-L), the bars represent the total percentage of the population in each vaccination group to be vaccinated, split in those receiving one dose (light blue) and those receiving two doses (dark blue). Each row represents a different level of social distancing interventions resulting in an R\textsubscript{eff}=1.2 (A-C), 1.4 (D-F), 1.7 (G-I) or 3 (no interventions, J-L). Each column represents a different vaccine efficacy after the first dose, with VE\textsubscript{DIS1} = 18% (left), 45% (middle) or 72% (right) corresponding to acquiring 20, 50 or 80% of the overall protection after the first dose.
Figure S5: Optimal vaccine allocation for minimizing deaths with a vaccine with VE_{DIS} = 90% and enough vaccine to cover 50% of the population with one dose (or 25% with two doses). For each panel (A-L), the bars represent the total percentage of the population in each vaccination group to be vaccinated, split in those receiving one dose (light blue) and those receiving two doses (dark blue). Each row represents a different level of social distancing interventions resulting in an R_{eff} = 1.2 (A-C), 1.4 (D-F), 1.7 (G-I) or 3 (no interventions, J-L). Each column represents a different vaccine efficacy after the first dose, with VE_{DIS1} = 18% (left), 45% (middle) or 72% (right) corresponding to acquiring 20, 50 or 80% of the overall protection after the first dose.
Figure S6: Percentage of deaths averted for the optimal allocation strategies (blue), the high-risk strategy (pink) and the pro-rata strategy (green) with enough vaccine to cover 10-100% of the population with one dose (5-50% with two doses). Each row represents a different social distancing interventions resulting in $R_{\text{eff}} = 1.2$ (A-C), 1.4 (D-F), 1.7 (G-I) or 3 (no interventions, J-L). Each column represents a different vaccine efficacy after the first dose, with $\text{VE}_{\text{Dis1}} = 18\%$ (left), 45\% (middle) or 72\% (right) corresponding to acquiring 20, 50 or 80\% of the overall protection after the first dose.
Figure S7: Percentage of cumulative infections averted for the optimal allocation strategies (blue), the high-risk strategy (pink) and the pro-rata strategy (green) with enough vaccine to cover 10-100% of the population with one dose (5-50% with two doses). Each row corresponds to a different vaccination rate: 150K doses per week (A-C), 300K doses per week (D-F) or instantaneous vaccination (G-H). Each column represents a different vaccine efficacy after the first dose, with VE_{DIS1} = 18% (left), 45% (middle) or 72% (right) corresponding to acquiring 20, 50 or 80% of the overall protection after the first dose. Here, we assumed R_{eff} = 1.4.
Figure S8: Percentage of cumulative infections averted for the optimal allocation strategies (blue), the high-risk strategy (pink) and the pro-rata strategy (green) with enough vaccine to cover 10-100% of the population with one dose (5-50% with two doses). Each row corresponds to a different vaccination rate: 150K doses per week (A-C), 300K doses per week (D-F) or instantaneous vaccination (G-H). Each column represents a different vaccine efficacy after the first dose, with $\text{VE}_{\text{DIS}_1} = 18\%$ (left), 45% (middle) or 72% (right) corresponding to acquiring 20, 50 or 80% of the overall protection after the first dose. Here, we assumed $R_{\text{eff}} = 3$. 

This version posted January 5, 2021. The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Figure S9: Optimal vaccine allocation for a vaccine with \( \text{VE}_{\text{DIS}} = 90\% \) and enough vaccine to cover 50% of the population with one dose (25% with two doses), administering 150K (A-C), 300K (D-F) or all of the vaccine (G-H) per week. Each column represents a different vaccine efficacy after the first dose, with \( \text{VE}_{\text{DIS}_1} = 18\% \) (left), 45\% (middle) or 72\% (right) corresponding to acquiring 20, 50 or 80\% of the overall protection after the first dose. Here, we assumed \( R_{\text{eff}} = 1.4 \).
Figure S10: Optimal vaccine allocation for a vaccine with $\text{VE}_{\text{DIS}} = 90\%$ and enough vaccine to cover 50% of the population with one dose (25% with two doses), administering 150K (A-C), 300K (D-F) or all of the vaccine (G-H) per week. Each column represents a different vaccine efficacy after the first dose, with $\text{VE}_{\text{DIS}_1} = 18\%$ (left), 45\% (middle) or 72\% (right) corresponding to acquiring 20, 50 or 80\% of the overall protection after the first dose. Here, we assumed $R_{\text{eff}} = 3$. 
Figure S11: Percentage of deaths averted for the optimal allocation strategies (blue), the high-risk strategy (pink) and the pro-rata strategy (green) with enough vaccine to cover 10-100% of the population with one dose (5-50% with two doses). Each row represents a different breakdown of $\text{VE}_{\text{DIS}} = 90\%$ as a function of $\text{VE}_{\text{SUS}}$ and $\text{VE}_{\text{SYMP}}$. Top row (A-C): $\text{VE}_{\text{DIS}}$ is mediated by a reduction in symptoms upon infection. Middle row (D-F): $\text{VE}_{\text{DIS}}$ is mediated by a combination of reduction in susceptibility to infection and reduction of symptoms upon infection. Bottom row (G-I): $\text{VE}_{\text{DIS}}$ is mediated by a reduction in susceptibility to infection. Each column represents a different vaccine efficacy after the first dose, with $\text{VE}_{\text{DIS}_1} = 18\%$ (left), 45% (middle) or 72% (right) corresponding to acquiring 20, 50 or 80% of the overall protection after the first dose.
Figure S12: Percentage of cumulative infections averted for the optimal allocation strategies (blue), the high-risk strategy (pink) and the pro-rata strategy (green) with enough vaccine to cover 10-100% of the population with one dose (5-50% with two doses). Each row represents a different breakdown of VE\textsubscript{DIS} = 90% as a function of VE\textsubscript{SUS} and VE\textsubscript{SYMP}. Top row (A-C): VE\textsubscript{DIS} is mediated by a reduction in symptoms upon infection. Middle row (D-F): VE\textsubscript{DIS} is mediated by a combination of reduction in susceptibility to infection and reduction of symptoms upon infection. Bottom row (G-I): VE\textsubscript{DIS} is mediated by a reduction in susceptibility to infection. Each column represents a different vaccine efficacy after the first dose, with VE\textsubscript{DIS\textsubscript{1}} = 18\%, 45\% or 72\% corresponding to acquiring 20, 50 or 80\% of the overall protection after the first dose. Here, we assumed R\textsubscript{eff} = 1.4.
Figure S13: Optimal vaccine allocation for a vaccine with $\text{VE}_{\text{DIS}} = 90\%$ and enough vaccine to cover 30\% of the population with one dose (15\% with two doses). Each row represents an objective function minimized: cumulative infections (A-C), cumulative symptomatic infections (D-F), non-ICU peak hospitalizations (G-I), ICU hospitalizations (J-L) and total deaths (M-O). Each column represents a different vaccine efficacy after the first dose, with $\text{VE}_{\text{DIS}} = 18\%$ (left), 45\% (middle) or 72\% (right) corresponding to acquiring 20, 50 or 80\% of the overall protection after the first dose.
Figure S14: A-C: Optimal (light and dark blue), high-risk (pink) and pro-rata (green) allocation strategies to minimize peak non-ICU hospitalizations with enough vaccine to cover 100% of the population with a single dose (50% with two doses). Within each panel, the bars represent the percentage vaccinated in each vaccination group. D-F: Prevalence of non-ICU hospitalizations in absence of vaccine (black), with the optimal allocation strategy to minimize non-ICU hospitalizations (blue), the high-risk strategy (pink) or the pro-rata strategy (green) with enough vaccine to cover 100% of the population with a single dose (50% with two doses). The dashed gray line indicates 10% occupancy of non-ICU beds in WA state. Each column represents a different vaccine efficacy after the first dose, with \( \text{VE}_{\text{DIS}} = 18\% \) (left), 45\% (middle) or 72\% (right) corresponding to acquiring 20, 50 or 80\% of the overall protection after the first dose.
Figure S15: A-C: Optimal (light and dark blue), high-risk (pink) and pro-rata (green) allocation strategies to minimize peak non-ICU hospitalizations with enough vaccine to cover 100% of the population with a single dose (50% with two doses). Within each panel, the bars represent the percentage vaccinated in each vaccination group. D-F: Prevalence of ICU hospitalizations in absence of vaccine (black), with the optimal allocation strategy to minimize deaths (blue), the high-risk strategy (pink) or the pro-rata strategy (green) with enough vaccine to cover 100% of the population with a single dose (50% with two doses). The dashed gray line indicates the number of ICU beds in WA state. Each column represents a different vaccine efficacy after the first dose, with $\text{VE}_{\text{DIS}} = 18\%$ (left), 45\% (middle) or 72\% (right) corresponding to acquiring 20, 50 or 80\% of the overall protection after the first dose.
Figure S16: Optimal vaccine allocation as a function of one-dose use and two-dose use. Percentage of total vaccine available utilized for one-dose allocation (light blue) and two-dose allocation (dark blue) when there is enough vaccine to cover 10% (row A) to 100% (row J) of the population with one dose. Each column of the plot assumes that the efficacy after the first dose of vaccine is low (left column, $\text{VE}_{\text{DIS}} = 18\%$), moderate (center column, $\text{VE}_{\text{DIS}} = 45\%$) or high (right column, $\text{VE}_{\text{DIS}} = 72\%$). Here, we assumed that asymptomatic infections are 50% less infectious than symptomatic infections.
Figure S17: Optimal vaccine allocation for minimizing deaths as a function of the efficacy after the first dose, ranging from $\text{VE}_{\text{DIS}_1} = 9\%$ (A) to $\text{VE}_{\text{DIS}_1} = 90\%$ (J) with enough vaccine to cover 70% of the population with one dose (35% with two doses). For each panel, the bars correspond to the percentage of the population in each vaccination group vaccinated with one (light blue) or two (dark blue) doses. Here, we assumed that asymptomatic infections are 50% less infectious than symptomatic infections.
Figure S18: Percentage of cumulative infections averted for the optimal allocation strategies (blue), the high-risk strategy (pink) and the pro-rata strategy (green) with enough vaccine to cover 10-100% of the population with one dose (5-50% with two doses). Each row represents a different breakdown of VEDIS = 90% as a function of VESUS and VESYMP. Top row (A-C): VEDIS is mediated by a reduction in symptoms upon infection. Middle row (D-F): VEDIS is mediated by a combination of reduction in susceptibility to infection and reduction of symptoms upon infection. Bottom row (G-I): VEDIS is mediated by a reduction in susceptibility to infection. Each column represents a different vaccine efficacy after the first dose, with VEDIS1 = 18%, 45% or 72% corresponding to acquiring 20, 50 or 80% of the overall protection after the first dose. Here, we assumed Reff = 1.4 and that asymptomatic infections are 50% less infectious than symptomatic infections.
Figure S19: Optimal vaccine allocation for minimizing deaths as a function of the efficacy after the first dose, ranging from $\text{VE}_{\text{DIS}}^1 = 9\%$ (A) to $\text{VE}_{\text{DIS}}^1 = 90\%$ (J) with enough vaccine to cover 70% of the population with one dose (35% with two doses). For each panel, the bars correspond to the percentage of the population in each vaccination group vaccinated with one (light blue) or two (dark blue) doses. Here, we assumed 20% of the population has been infected and is immune at the beginning of the simulations.
Figure S20: A-C: Percentage of deaths averted for the optimal allocation strategies (blue), the high-risk strategy (pink) and the pro-rata strategy (green) with enough vaccine to cover 10-100% of the population with a single dose (5-50% with two doses). D-F: Optimal (light and dark blue), high-risk (pink) and pro-rata (green) allocation strategies with enough vaccine to cover 50% of the population with one dose (25% with two doses). Within each panel, the bars represent the percentage vaccinated in each vaccination group. G-I: Prevalence of symptomatic infections (per 100,000) in absence of vaccine (black), with the optimal allocation strategy to minimize deaths (blue), the high-risk strategy (pink) or the pro-rata strategy (green) with enough vaccine to cover 50% of the population with one dose (25% with two doses). Here, we assumed 20% of the population has been infected and is immune at the beginning of the simulations.
### Table S1: Description of vaccine efficacies used in the model.

<table>
<thead>
<tr>
<th>Vaccine Mode of Action</th>
<th>VE&lt;sub&gt;SUS&lt;/sub&gt;&lt;sup&gt;1&lt;/sup&gt;</th>
<th>VE&lt;sub&gt;SYMPr&lt;/sub&gt;&lt;sup&gt;1&lt;/sup&gt;</th>
<th>VE&lt;sub&gt;SUS&lt;/sub&gt;&lt;sup&gt;1&lt;/sup&gt;</th>
<th>VE&lt;sub&gt;SYMPr&lt;/sub&gt;&lt;sup&gt;1&lt;/sup&gt;</th>
<th>VE&lt;sub&gt;SUS&lt;/sub&gt;</th>
<th>VE&lt;sub&gt;SYMPr&lt;/sub&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine mediated mainly by reducing symptoms upon infection</td>
<td>0%</td>
<td>18%</td>
<td>0%</td>
<td>45%</td>
<td>0%</td>
<td>72%</td>
</tr>
<tr>
<td>Vaccine mediated by reducing symptoms upon infection and reducing susceptibility to infection</td>
<td>9%</td>
<td>10%</td>
<td>26%</td>
<td>26%</td>
<td>50%</td>
<td>44%</td>
</tr>
<tr>
<td>Vaccine mediated mainly by reducing susceptibility to infection</td>
<td>18%</td>
<td>0%</td>
<td>45%</td>
<td>0%</td>
<td>72%</td>
<td>0%</td>
</tr>
</tbody>
</table>

**Supplemental Tables**

---

<sup>1</sup> VE: Vaccine Efficacy; VE<sub>SUS</sub>: Vaccine efficacy against susceptibility to infection; VE<sub>SYMPr</sub>: Vaccine efficacy against symptoms of infection.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/\sigma)</td>
<td>mean duration of latent period</td>
</tr>
<tr>
<td>(1/\gamma_P)</td>
<td>mean pre-symptomatic period</td>
</tr>
<tr>
<td>(1/\gamma_A)</td>
<td>mean infectious period of asymptomatic infections</td>
</tr>
<tr>
<td>(1/\gamma_S)</td>
<td>mean infectious period of symptomatic infections after developing symptoms</td>
</tr>
<tr>
<td>(1/\gamma_H)</td>
<td>mean duration of non-ICU hospitalization</td>
</tr>
<tr>
<td>(1/\gamma_C)</td>
<td>mean duration of ICU hospitalization</td>
</tr>
<tr>
<td>(a)</td>
<td>proportion of infections that are asymptomatic</td>
</tr>
<tr>
<td>(h)</td>
<td>proportion of symptomatic infections requiring hospitalization</td>
</tr>
<tr>
<td>(c)</td>
<td>proportion of hospitalizations requiring ICU</td>
</tr>
<tr>
<td>(d)</td>
<td>proportion of hospitalized who died</td>
</tr>
<tr>
<td>(r_A)</td>
<td>relative infectiousness of asymptomatic infections (^b)</td>
</tr>
<tr>
<td>(r_H)</td>
<td>relative infectiousness of hospitalized infections</td>
</tr>
<tr>
<td>(r_P)</td>
<td>relative infectiousness of pre-symptomatic infections (^c)</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>mean time from symptom onset to hospitalization</td>
</tr>
<tr>
<td>(R_0)</td>
<td>basic reproductive number</td>
</tr>
<tr>
<td>(R_{eff})</td>
<td>Effective reproductive number</td>
</tr>
<tr>
<td>(\beta)</td>
<td>transmission coefficient</td>
</tr>
<tr>
<td>(M)</td>
<td>contact matrix</td>
</tr>
<tr>
<td>(N)</td>
<td>total population</td>
</tr>
<tr>
<td>(R(0))</td>
<td>recovered proportion of the total population at (t = 0)</td>
</tr>
</tbody>
</table>

\(^a\) assumed to match the duration of infectiousness of symptomatic infections

\(^b\) with respect to symptomatic not hospitalized infections

\(^c\) with respect to symptomatic not hospitalized infections

\(^d\) see table S3 for details.

Table S2: Description of parameters used in the model.
<table>
<thead>
<tr>
<th>$R_{\text{eff}}$</th>
<th>Home</th>
<th>Work</th>
<th>Other locations</th>
<th>School</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1</td>
<td>0.6</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>1.4</td>
<td>1</td>
<td>0.6</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>1.7</td>
<td>1</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table S3: Multipliers used based on the contact matrices given in Prem et al [12].
Mathematical model

Transmission model:

We build upon our previous developed model of SARS-CoV2 dynamics and vaccination [?]. We developed an age-structured mathematical model with the population of Washington state (7.6 million people, [48]) and US demographics [49] divided in 16 age groups: 0-5, 5,10, . . . , 70-75 and 75+. For each age group $i$, our model tracks susceptible $S_i$, exposed $E_i$, asymptomatic $A_i$, pre-symptomatic $P_i$ and symptomatic infected people (assumed to be equally infectious). Symptomatic individuals have one of three fates: they become mildly symptomatic $I_i$, hospitalized in a non-ICU ward $H_i$, or hospitalized requiring intensive care, $ICU_i$. After infection, individuals move to the respective recovered classes: recovered asymptomatic, mildly symptomatic, non-ICU hospitalized and ICU hospitalized (denoted by $RA_i, R_i, RH_i$ and $RC_i$ respectively). In addition, we modeled vaccinated individuals with one or two doses of vaccine, (with analogous compartments indexed by 1 or 2 respectively), see Fig. S1 and Vaccination section below.

We used the age-specific contact matrix $M$ for the US given in [12] and corrected for reciprocity. We assumed a baseline $R_0 = 3$ in absence of any social distancing interventions, and to simulate social distancing interventions, we modified the matrices given in [12] (matrices corresponding to contacts at “home”, “work”, “other locations” and “school”) according to table S3 to obtain, assuming 10% of the population has been infected and is recovered and immune, an effective reproduction number $R_{eff} = 1.2, 1, 4, or 1.7$. We used previously reported age-specific estimates of the severity of infections that require hospitalization and critical care given in [30] and compute the number of hospitalizations leading to death utilizing the rates given by [31]. These reports have different age brackets than those we utilize in our model, so we combined the brackets according to the proportion of the population in each bracket (e.g. for the oldest
group in our model, \( \geq 75 \), we did a weighted average of the rates in \([?]\) according to the relative percentages of the US population aged 75-80 and \( \geq 80 \). Once hospitalized, individuals are assumed no longer infectious. Table S2 summarizes the parameter values, ranges, and sources for the model.

Simulations were run with initial conditions set to a 10\% of the population has been infected and is currently immune, distributed proportionally to population size (pro-rata) and disease severity, respectively (additional scenario, 20\%, see Sensitivity Analysis). In addition, simulations were started assuming 1,000 current infections distributed among the infectious symptomatic and asymptomatic infectious compartments (compartments \( A_{ij}, A_{V,i}, I_{ij}, I_{V,i}, H_{ij}, H_{V,i}, C_{ij} \) and \( C_{V,i} \)).

### Vaccination

Following the ideas of Halloran et al. \([17]\), we assumed a leaky vaccine (that is, a vaccine that confers partial protection to all the vaccinees) that can have three effects on the vaccinated individuals. First, the vaccine can reduce the probability of acquiring a SARS-CoV-2 infection, (we denote this effect by \( \text{VE}_{\text{SUS}} \)). Second, the vaccine can also potentially reduce the probability of developing COVID-19 symptoms conditioned upon infection (referred as \( \text{VE}_{\text{SYMP}} \) below), or third, reduce the infectiousness of vaccinated individuals (referred as \( \text{VE}_I \) below), Fig. S2B. Here, we assume a multiplicative relationship between \( \text{VE}_{\text{DIS}}, \text{VE}_{\text{SUS}} \) and \( \text{VE}_{\text{SYMP}} \), so that

\[
\text{VE}_{\text{DIS}} = 1 - (1 - \text{VE}_{\text{SUS}})(1 - \text{VE}_{\text{SYMP}}).
\]

For each vaccination coverage and vaccination strategy considered, we computed within each age-group the fraction of susceptible individuals among all those individuals in that group who could have sought the vaccine (susceptible, exposed, infected pre-symptomatic, infected asymptomatic, and recovered asymptomatic populations), and utilized that fraction as the fraction of people who were actually vaccinated in each age-group, while assuming that the re-
maining vaccine would be wasted. Vaccination campaigns were modeled assuming 300,000 of vaccines delivered weekly, over the span of \( \sim 6 \) months (28 weeks). At this rate, 100\% of the population can be vaccinated over this time period with a single dose (50\% with two doses). We also analyzed alternative scenarios with 150,000 doses delivered weekly (corresponding to vaccinating 25\% of the population with two doses over the same time period) and instantaneous vaccination (as a proxy for fast vaccination campaigns). We modeled the vaccination campaigns by vaccinating first all the age-groups receiving two doses and then those receiving one dose, starting always with the oldest age-group and moving sequentially in decreasing order across the vaccine groups. The equations for this model are given by

Unvaccinated:

\[
\begin{align*}
\frac{dS_i}{dt} &= -\lambda S_i, \\
\frac{dE_i}{dt} &= \lambda S_i - \gamma E E_i, \\
\frac{dA_i}{dt} &= (1 - k) \gamma E E_i - \gamma A A_i, \\
\frac{dP_i}{dt} &= k \gamma E E_i - \gamma P P_i, \\
\frac{dI_i}{dt} &= \gamma P P_i - (1 - h) \gamma I I_i - h(1 - c)\sigma I_i - h c \sigma I_i, \\
\frac{dH_i}{dt} &= h(1 - c)\sigma I_i - \gamma H H_i, \\
\frac{dICU_i}{dt} &= h c \sigma I_i - \gamma ICU ICU_i, \\
\frac{dRA_i}{dt} &= \gamma A A_i, \\
\frac{dR_i}{dt} &= \gamma I I_i, \\
\frac{dRH_i}{dt} &= \gamma H H_i, \\
\frac{dRC_i}{dt} &= \gamma ICU ICU_i,
\end{align*}
\]
Vaccinated ($j = 1, 2$ denotes vaccination with one or two doses respectively):

\[
\begin{align*}
\frac{dS_{ij}}{dt} &= -\theta_j \lambda S_{ij}, \\
\frac{dE_{ij}}{dt} &= \theta_j \lambda S_{ij} - \gamma_E E_{ij}, \\
\frac{dA_{ij}}{dt} &= (1 - k\phi_j)\gamma_E E_{ij} - \gamma_A A_i, \\
\frac{dP_{ij}}{dt} &= k\phi_j\gamma_E E_{ij} - \gamma_P P_{ij}, \\
\frac{dI_{ij}}{dt} &= \gamma_P P_{ij} - (1 - h)\gamma_I I_{ij} - h(1 - c)\sigma I_{ij} - hc\sigma I_{ij}, \\
\frac{dH_{ij}}{dt} &= h(1 - c)\sigma I_{ij} - \gamma_H H_{ij}, \\
\frac{dICU_{ij}}{dt} &= hcs\sigma I_{ij} - \gamma_{C ICU} ICU_{ij}, \\
\frac{dRA_{ij}}{dt} &= \gamma_A A_{ij}, \\
\frac{dR_{ij}}{dt} &= \gamma_I I_{ij}, \\
\frac{dRH_{ij}}{dt} &= \gamma_H H_{ij}, \\
\frac{dRC_{ij}}{dt} &= \gamma_{C ICU} ICU_{ij},
\end{align*}
\]

where $\theta_1 = 1 - VE_{SUS_1}$, $\phi_1 = 1 - VE_{SYMP_1}$ and $\psi_1 = 1 - VE_{I_1}$ and $\theta_2 = 1 - VE_{SUS}$, $\phi_2 = 1 - VE_{SYMP}$ and $\psi_2 = 1 - VE_I$. The force of infection $\lambda$ is given by

\[
\lambda = \sum_{k=1}^{16} \beta \frac{M}{N_k} \left[ r_A (A_k + \psi_1 A_{k1} + \psi_2 A_{k2}) + r_P (P_k + \psi_1 P_{k1} + \psi_2 P_{k2}) + (I_k + \psi_1 I_{k1} + \psi_2 I_{k2}) \right].
\]

where $M$ is the sum of the contact matrices given [12] corrected for reciprocity and weighted by the multipliers given in table S3.

**Optimization**

**Objective functions:** We performed the optimization routine to minimize five different objective functions: cumulative number of infections, cumulative number of symptomatic infections, cumulative number of deaths, maximum number of hospitalizations not requiring intensive care.
and maximum number of hospitalizations requiring intensive care. For each of these, we ran
the deterministic model for 6 months (our time horizon).

**Optimization:** Our optimization routine was adapted from our previous work [11] and con-
sisted of two steps: first, we randomly selected 10,000 points on a coarse grid [50] of the unit
simplex in the vaccination group space (the set of vectors \((v_1, v_2, \ldots, v_5)\) with non-negative
entries such that \(\sum_{i=1}^{5} v_i = 1\)). The grid was chosen so that the unit simplex was divided into
0.05 units and was computed in Sage [51]. For each point in the coarse grid, the five objective
functions were evaluated. For each of these objective functions, we selected the best 25 deci-
sion variables obtained in the grid search, the pro-rata allocation vector, the high-risk allocation
vector and an additional 25 decision variables sampled uniformly from the unit simplex [52],
and used these 52 points as initial points for the Nelder-Mead minimizer implemented in SciPy
[53, 54]. Full details of the optimization routine can be found in [11].

**Sensitivity analysis**

**Results assuming asymptomatic infections are less infectious**

We repeated the main analysis assuming asymptomatic infections are 50% as infectious as
symptomatic infections. We found that our main results were very similar under this scenario:
the optimal allocation strategies depended mostly on the efficacy after the first dose, with allo-
cating vaccine in single-dose vaccination campaigns in a pro-rata fashion if the SDE was 60% of
the overall efficacy after two doses (\(\text{VE}_{\text{DIS1}}=63\%\)), Figs. S16 and S17. As expected, if asymp-
tomatic infections are less infectious, then a vaccine mediated mainly by reducing symptomatic
disease does have a significant impact in overall transmission, preventing as much as 89% of
total infections (100% coverage, high SDE), Fig. S18. Furthermore, under this scenario, such
a vaccine would avert slightly more deaths (a maximum of 84% averted deaths vs 80% in the
main scenario).

**Results assuming 20% of the population is already immune**

We repeated the main analysis assuming now that 20% of the population has been infected and are immune at the beginning of our simulations. The results were consistent with the main scenario, with optimal vaccination strategies favoring single-dose campaigns if the SDE is high (Fig. S19). In this scenario, (with $R_{\text{eff}} = 1.4$) the epidemic grows very slowly and in absence of vaccine, we only observe the exponential phase for the duration of our simulation. The optimal allocation strategy outperforms the other strategies in this scenario. For example, with enough coverage to vaccinate 50% of the population with a single dose, only the optimal allocation strategy contains the outbreak (Fig. S20).