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Abstract 
Background 

Rapid advances in the past decade have shown that dysbiosis of the gut microbiome is a key hallmark of 

rheumatoid arthritis (RA). Yet, the relationship between gut microbiome and clinical improvement in RA 

disease activity remains unclear. In this study, we explored the gut microbiome of patients with RA to identify 

features that are associated with, as well as predictive of, minimum clinically important improvement (MCII) 

in disease activity. 

 

Methods 

Whole metagenome shotgun sequencing was performed on 64 stool samples, which were collected from 32 

patients with RA at two separate time-points. The Clinical Disease Activity Index (CDAI) of each patient was 

measured at both time-points to assess achievement of MCII; depending on this clinical status, patients were 

distinguished into two groups. Multiple linear regression models were used to identify microbial taxa and 

biochemical pathways associated with MCII while controlling for potentially confounding factors. Lastly, a 

deep-learning neural network was trained upon gut microbiome, clinical, and demographic data at baseline to 
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classify patients according to MCII status, thereby enabling the prediction of whether a patient will achieve 

MCII at follow-up. 

 

Results 

We determined that MCII status can explain a significant proportion of the overall compositional variance in 

the gut microbiome (R2 = 3.8%, P = 0.005, PERMANOVA). Additionally, by looking at patients’ baseline gut 

microbiome profiles, we observed significantly different microbiome traits between patients who eventually 

showed MCII and those who did not. Taxonomic features include alpha- and beta-diversity measures, as well 

as several microbial taxa, such as Coprococcus, Bilophila sp. 4_1_30, and Ruminococcus sp. Functional 

profiling identified thirteen biochemical pathways, most of which were involved in the biosynthesis of L-

arginine and L-methionine, to be differentially abundant between the MCII patient groups. In addition to these 

observations at baseline, we found microbiome features that vary differently in fold-change (from baseline to 

follow-up) between the two patient groups. These results could suggest that, depending on the clinical course, 

gut microbiomes not only start at different ecological states, but also are on separate trajectories. Finally, the 

neural network proved to be highly effective in predicting which patient will achieve MCII (balanced accuracy 

= 90.0%), demonstrating potential clinical utility of gut microbiome profiles. 

 

Conclusions 

Our findings confirm the presence of taxonomic and functional signatures of the gut microbiome associated 

with MCII in RA patients. Ultimately, the gut microbiome may aid in the development of non-invasive tools 

for predicting future prognosis in RA. 

 

Trial registration 
N/A 
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Background 
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by symmetric 

polyarticular inflammation and destruction primarily of the synovial joints, as well as of other organ systems 

[1]. The prognosis of RA has improved over recent decades in parallel with advancements in diagnosis and 

treatment, particularly the widespread use of biologic and targeted synthetic disease-modifying anti-rheumatic 

drugs (DMARDs) that enable many persons with RA to achieve low disease activity or clinical remission. 

However, the exact etiology and pathogenesis of RA are not yet fully understood [2]. In this regard, population-

based studies have provided promising evidence that genetic factors contribute to RA onset [3–7]; however, 

the low concordance rate of RA in monozygotic twins largely suggests the role of non-genetic, environmental 

factors influencing the incidence of RA [4]. These non-genetic factors include smoking history [8], acute 

infections [9], and oral and gut microbiota [10]. 

During the past decade, the role of the gut microbiome in RA pathogenesis has been demonstrated by 

several experimental studies [11–16]. For example, Maeda et al. have shown increased sensitivity to arthritis 

(via auto-reactive T cell activation in the intestine) in germ-free SKG mice following fecal microbiota 

transplantation from early RA patients [15]. In addition, another study reported that inflammatory arthritis was 

strongly attenuated in K/BxN mice under germ-free (GF) conditions; however, the introduction of segmented 

filamentous bacteria restored splenic auto-antibodies, serum auto-antibodies, and T-helper 17 (Th17) cells 

[12]. Moreover, the role of gut microbiome in RA pathogenesis is further supported by the attenuation of 

arthritis in Il1rn−/− mice by Tobramycin antibiotic treatment, which led to the decrease in relative abundances 

of gut commensals, such as Helicobacter, Flexispira, Clostridium, and Dehalobacterium [16]. 

Cross-sectional, human gut microbiome studies have elucidated the potential role of gut microbiome 

‘dysbiosis’ in RA [13,14,17,18]. A study by Chen et al. found lower gut microbial diversity and species 

richness among RA patients compared to healthy controls; interestingly, patients using methotrexate (MTX) 

and hydroxychloroquine (HCQ) were observed to have higher gut microbiome diversity and richness than 

patients not on these medications, possibly indicating partial restoration of normal gut microbiome features 

with these treatments [13]. Additionally, patients with RA displayed significant improvement in disease 

activity after being provided with probiotics containing Bacillus coagulans [19] or Lactobacillus casei [20,21], 

providing promising evidence towards probiotic therapies in RA treatment. Moreover, another study revealed 

significant associations between the relative abundance of gut microbial taxa (e.g., Euryarchaeota, 

Gammaproteobacteria, Erysipelotrichi, and Coriobacteriales) and the disease activity score on 28 joints 

(DAS28) [22]. Lastly, to demonstrate the potential of targeting the gut microbiome to modulate host immune 
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response and to treat arthritis, Marietta et al. have shown that enteral exposure to Prevotella histicola, which 

is a commensal bacterium, in humanized mice can suppress arthritis via mucosal regulation [23]. 

Certainly, there has been a vast array of recent animal-model studies, cross-sectional case-control 

studies, and clinical trials showing that a perturbed gut microbiome is a key hallmark of RA. Yet, despite this 

wide range of novel findings, the association of the gut microbiome with minimum clinically important 

improvement (MCII) in disease activity in RA patients has yet to be closely examined. The MCII represents 

the minimal meaningful change (reduction) in quantitative disease activity, and is relevant to patients in terms 

of improvement in disease symptoms and associated clinical parameters [24]. Although the primary goal in 

RA management is to achieve and sustain clinical remission or, at least, low disease activity, the MCII in 

disease activity is also frequently used in clinical settings to evaluate the initial response to treatments. For 

this, there exists a variety of measurements to quantify RA disease activity, including the Disease Activity 

Score on 28-joints (DAS28), the Simplified Disease Activity Index (SDAI), and the Clinical Disease Activity 

Index (CDAI) [25,26]. Among these quantitative indices, the CDAI is one of the most straightforward to use, 

as it is designed as a simple numerical addition of four components (clinician evaluator global assessment, 

patient global assessment, 28 swollen joint count, and 28 tender joint count), and does not require acute-phase 

reactant laboratory tests for its calculation [26]. 

As medicine evolves towards becoming a big data-centric and bioinformatics-driven discipline [27–

29], one of the most promising translational opportunities with gut microbiome datasets arises from their 

predictive capabilities. In particular, through integrating key biological features (e.g., taxa, functions, genes) 

of the microbiome with cutting-edge, machine-learning approaches, large-scale data from gut microbiome are 

positioned to inform various health and wellness applications, and to guide or complement clinical practice. 

To this point, the gut microbiome has been demonstrated in recent years to facilitate detection of disease [30–

34]; classification of disease subtypes and progression stages [35–37]; prediction of clinical outcomes and 

treatment efficacy [38–42]; personalized nutrition by prediction of postprandial glycemic response [43–45]; 

and estimation of chronological age [46]. Notably, in a recent study, by applying a random-forest machine-

learning model to stool metagenomic data from treatment-naive, new-onset RA patients, Artacho et al. found 

that gut microbiome can aid in the prediction of response to oral administration of methotrexate [47]. Taken 

together, these examples highlight the potential value of translating microbiome data into new prognostic tools 

for all areas of precision medicine. 

In this study, by investigating the association of gut microbiome profiles from RA patients with MCII 

and with other patient factors, we demonstrate a computational approach for utilizing gut microbiome 
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information to identify which patients are likely to show clinical improvement independent of baseline clinical 

features. To this end, we collect shotgun stool metagenomes from a pilot cohort of 32 patients with RA at two 

separate time-points (i.e., baseline and follow-up). First, we examine the association of gut microbiome with 

MCII in RA disease activity. Our results show that the status of whether clinical improvement is achieved (or 

not) is a significant factor contributing to the variance in gut microbiome taxonomic composition. Next, for 

each time-point, we examine microbiome properties (alpha-and beta-diversity, microbial taxa, and biochemical 

pathways) that differentiate patients who eventually show clinical improvement from those who do not. 

Afterwards, we identify taxonomic and functional features whose magnitude and/or direction of change (from 

baseline to follow-up) varies differently between these two patient groups. Finally, we train a deep-learning 

neural network model on baseline microbiome, clinical, and demographic data to assess how well we can 

predict whether MCII in disease activity is attained. Encouragingly, we find that the neural network achieves 

a 90.0% balanced accuracy in leave-one-out cross-validation, with a compelling accuracy in those who showed 

clinical improvement (12 correctly predicted among 12 total). Overall, our study offers novel insights into how 

gut microbial signatures are connected to the trajectory of disease activity in RA, and provides proof-of-

concept evidence that accurately forecasting MCII from a stool sample may be possible. 

 

Methods 
Patient enrollment, eligibility criteria, and sample collection 

The study population consisted of consecutive patients with RA attending the outpatient practice of the 

Division of Rheumatology at Mayo Clinic in Rochester, Minnesota. Eligibility required patients to be adults 

18 years of age or older with a clinical diagnosis of RA by a rheumatologist on the basis of the American 

College of Rheumatology/European League Against Rheumatism 2010 revised classification criteria for RA 

[48]. Patients were excluded if they did not comprehend English; were unable to provide written informed 

consent; or were members of a vulnerable population (e.g., incarcerated subjects). On the other hand, patients 

were eligible irrespective of use of any particular medication. From the patients fulfilling the eligibility criteria, 

stool samples were collected from two outpatient visits approximately 6–12 months apart, and stored in the 

ongoing Mayo Clinic Rheumatology Biobank. Clinical and demographic data, including the numbers of tender 

and swollen joints, patient and evaluator global assessments, C-reactive protein (CRP, mg/L), smoking status, 

and titers for rheumatoid factor (RF, IU/mL) and anti-cyclic citrullinated peptide antibodies (ACPA), were 

collected from the electronic medical records. All patients provided written informed consent. The study was 

approved by the Mayo Clinic Institutional Review Board (no. 14-000616). 
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Determination of Minimum Clinically Important Improvement (MCII) in RA disease activity 

The CDAI of each patient was measured at two time-points. By taking into account the swollen joint count (of 

28 joints), tender joint count (of 28 joints), and the global assessments of disease activity (scored 0–10 on a 

visual analog scale) by both patient and clinician, the CDAI is scored on a scale ranging from 0 to 76 points 

[25]. The level of disease activity can be interpreted as low (2.9 ≤ CDAI ≤ 10), moderate (10 < CDAI ≤ 22), 

or high (22 < CDAI), while CDAI ≤ 2.8 indicates the state of remission [49]. A decrease in CDAI of at least 1 

for patients with low disease activity; of at least 6 for patients with moderate disease activity; and of at least 

12 for patients with high disease activity between two consecutive visits is considered as MCII in RA disease 

activity [24]. Based upon this criteria, the study participants can be partitioned into two groups: i) patients who 

showed clinical improvement (MCII+); and ii) patients who did not show clinical improvement (MCII-). 

 

Stool sample collection, DNA extraction, and shotgun metagenome sequencing 

Stool samples from patients with rheumatoid arthritis were stored in their house-hold freezers (-20°C) prior to 

shipment on dry ice to the Medical Genome Facility Research Core at Mayo Clinic (Rochester, MN). Once 

received, the samples were stored at -80°C until DNA extraction. DNA extraction from stool samples was 

conducted as follows: Aliquots were created from parent stool samples using a tissue punch, and the resulting 

child samples were then mixed with reagents from the Qiagen Power Fecal Kit. This included adding 60 uL 

of reagent C1 and the contents of a power bead tube (garnet beads and power bead solution). These were then 

vigorously vortexed to bring the sample punch into solution and centrifuged at 18000G for 15 min. From there, 

the samples were added into a mixture of magnetic beads using a JANUS liquid handler. The samples were 

then run through a Chemagic MSM1 according to the manufacturer’s protocol. After DNA extraction, paired-

end libraries were prepared using 500 ng genomic DNA according to the manufacturer’s instructions for the 

NEBNext Ultra library prep kit (New England BioLabs). The concentration and size distribution of the 

completed libraries were determined using an Agilent Bioanalyzer DNA 1000 chip (Santa Clara, CA) and 

Qubit fluorometry (Invitrogen, Carlsbad, CA). Libraries were sequenced at 23–70 million reads per sample 

following Illumina’s standard protocol using the Illumina cBot and HiSeq 3000/4000 PE Cluster Kit. The flow 

cells were sequenced as 150 × 2 paired-end reads on an Illumina HiSeq 4000 using the HiSeq 3000/4000 

sequencing kit and HiSeq Control Software HD 3.4.0.38. Base-calling was performed using Illumina’s RTA 

version 2.7.7. 
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Quality filtration of sequenced reads 

Sequence reads were processed with the KneadData v0.5.1 quality-control pipeline 

(http://huttenhower.sph.harvard.edu/kneaddata), which uses Trimmomatic v0.36 [50] and Bowtie2 v2.3.2 [51] 

for removal of low-quality read bases and human reads, respectively. Trimmomatic v0.36 was run with 

parameters SLIDINGWINDOW:4:30, and Phred quality scores were thresholded at ‘<30’. Illumina adapter 

sequences were removed, and trimmed non-human reads shorter than 60 bp in nucleotide length were 

discarded. Potential human contamination was filtered by removing reads that aligned to the human genome 

(reference genome hg19). 

 

Taxonomic and functional profiling of stool metagenomes 

Taxonomic profiling was performed using the MetaPhlAn2 v2.7.8 [52] phylogenetic clade identification 

pipeline with default parameters. Briefly, MetaPhlAn2 classifies metagenomic reads to taxonomies based on 

a database (mpa_v20_m200) of clade-specific marker genes derived from ~17,000 microbial genomes 

(corresponding to ~13,500 bacterial and archaeal, ~3,500 viral, and ~110 eukaryotic species). Microbes of 

viral origin and those that were labeled as either unclassified or unknown were excluded from further analyses. 

Afterwards, microbiome profiles were normalized using total sum-scaling (TSS) normalization to get the 

relative abundances (i.e., proportions) of microbial taxonomic ranks. 

Functional profiling of annotated MetaCyc biochemical pathways of stool metagenomes was quantified 

using the HUMAnN v2.8 pipeline [53] with default parameters and with the UniRef90 EC-filtered database 

integrated into the pipeline. Similarly to the case with taxonomic ranks, MetaCyc pathways unmapped or 

unintegrated onto the UniRef90 EC-filtered database were discarded from further analyses, and relative 

abundances of the remaining MetaCyc pathways were calculated using TSS normalization. 

 

Permutational Multivariate Analysis of Variance based upon taxonomic composition of microbial 

communities 

Bray-Curtis distance matrices based on arcsine, square-root transformed relative abundances of microbial taxa 

(phylum to species) in stool metagenomes (collected at both clinical visits) were generated using the R ‘vegan’ 

package v2.5.6. A permutational multivariate analysis of variance (PERMANOVA) [54] was performed on 

the distance matrix using the ‘adonis2’ function. P-values for the test statistic (pseudo-F) were based on 999 

permutations to assess the contribution of clinical and demographic characteristics (age group [age < 64 years; 

age ≥ 64 years], sex [male; female], smoking status [smoker; non-smoker], use of conventional synthetic 
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disease-modifying anti-rheumatic drugs [csDMARDs], use of biologic disease-modifying anti-rheumatic 

drugs [bDMARDs], use of prednisone, and MCII patient group [MCII+; MCII-]) to the total variance in gut 

microbial community composition. (of note, categorical age group was used due to the uneven and skewed 

distribution of continuous age.) Intra-subject longitudinal variation was accounted for by constraining 

permutations to within visits using the ‘strata’ argument. Both marginal (i.e., univariate analysis) and adjusted 

(i.e., multivariate analysis controlling for multiple covariates simultaneously) models were used to evaluate 

percent variance and significance of associations between gut microbiome composition and patient factors. 

 

Comparisons of alpha- and beta-diversity between MCII patient groups 

Overall ecology of gut microbiomes was evaluated by calculating alpha-diversity (Fisher’s Index and richness) 

and beta-diversity (Bray-Curtis distance between all sample-pairs) based upon untransformed relative 

abundances of microbial species in each stool metagenome using the R ‘vegan’ package v2.5.6. Multiple linear 

regression models (MLRMs) were then constructed using the R ‘stats’ package v3.6.3 to determine the alpha-

diversity indices that were significantly different between MCII+ and MCII- groups. MLRMs were adjusted 

for clinical and demographic characteristics that explained significant (or nearly significant) proportions of the 

variance in gut microbial community composition. Mann-Whitney U test was used to evaluate the statistical 

significance of the difference in beta-diversity between the patient groups. 

 

Identification of differentially abundant microbial taxa and biochemical pathways between MCII 

patient groups 

To identify differentially abundant microbial taxa and biochemical pathways between MCII+ and MCII- 

groups (at either baseline or follow-up), MLRMs were constructed for arcsine, square-root transformed relative 

abundance of each taxon and pathway. Only taxa and pathways that were detected in at least a third of all 

samples were included for analysis (resulting in a total of 176 and of 262, respectively). All MLRMs were 

designed to model the relationship between a taxon/pathway and MCII patient group, while adjusting for 

clinical and demographic characteristics found to be significantly (or nearly significantly) associated with gut 

microbiome compositional variance according to the aforementioned PERMANOVA analysis. Taxa and 

pathways were considered as differentially abundant between the two MCII patient groups if the corresponding 

regression coefficient for the patient group was significant (P < 0.05). 
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Quantification of fold-change in gut microbial taxa and biochemical pathways 

Microbial taxa and biochemical pathways detected in at least a third of all samples were considered for the 

calculation of fold-change (log2(FC)) from baseline to follow-up visit. As log2(FC) cannot be applied to cases 

with zeros (which are often abundant in microbiome relative abundance data), a pseudo-count (1.0 × 10-5) was 

added to all relative abundances, as suggested by Kaul et al. [55]. Then, MLRMs were designed for each taxon 

and pathway to identify any significant differences (P < 0.05) in log2(FC) of relative abundances between the 

two MCII patient groups. All MLRMs were adjusted for clinical and demographic characteristics found to be 

significantly (or nearly significantly) associated with gut microbiome compositional variance according to the 

aforementioned PERMANOVA analysis. 

 

Construction of neural networks for predicting MCII and CDAI 

Two separate multi-layer (deep) feedforward artificial neural networks with stochastic gradient descent using 

back-propagation, which were provided by the Python version of the ‘H2O’ package v3.26.0.3, were 

constructed to meet the following two objectives (i.e., output layer): i) classify a patient as MCII+ or MCII- 

from all baseline gut microbiome (relative abundances of 176 taxonomic ranks and of 262 MetaCyc pathways), 

clinical (CDAI, use of medications [bDMARDs, csDMARDs, and prednisone], HAQ, pain, and CRP), and 

demographic data (age, sex, and smoking status). In other words, predict whether a patient will achieve MCII 

based on all identifiable baseline features. This model’s predictive performance was evaluated by leave-one-

out cross-validation on all baseline profiles; and ii) predict CDAI using the aforementioned microbiome, 

clinical (except for CDAI), and demographic data as input predictor variables for the neural network. Predictive 

performance of this model was evaluated by a leave-one-patient-out cross-validation method. More 

specifically, in each cross-validation loop, both samples from the same patient were allocated as an internal 

validation set, while all remaining samples were used as the internal training set for constructing the neural 

network to predict CDAI scores of the allocated two samples. For both objectives, the default input parameters 

were used for model-training except for the following: Epochs = ‘10,000’; and Random seed = ‘1234’. See 

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html for all parameters of the neural 

network and their default values. Data curation and model implementation was performed in Python v3.6.4 on 

individual cloud instances utilizing Amazon Web Services (AWS). 
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Results 

Study population 

From a total of 86 patients with RA whose blood and/or stool samples were stored in our ongoing biobank, we 

identified 51 patients who had at least two available stool samples collected at least 6 to 12 months apart (102 

total samples). From these 51 patients, we found 36 patients (72 samples) who had fully available clinical data 

(to assess CDAI and MCII) and demographic information at both clinical visits, thereby leading to the 

exclusion of 15 patients (30 samples). We excluded an additional 4 patients (8 samples) from further analysis 

because they were in clinical remission at both clinical visits. Hence, this retrospective, observational cohort 

study includes 32 participants (64 samples), of whom 65.6% (21 of 32) were female. 

At the time of baseline stool sample collection, the patients had established disease with a mean age of 

64.9 years (s.d. = 11.0), and a mean disease duration of 8.2 years (s.d. = 8.2). A summary of the patient 

enrollment, eligibility criteria, and sample collection protocol is provided in Methods. At baseline, all patients 

were on treatment with biologic disease-modifying anti-rheumatic drugs (bDMARDs, 46.9%), conventional 

synthetic disease-modifying anti-rheumatic drugs (csDMARDs, 87.5%), or prednisone (46.9%). For any 

medication, no association was found between its use at baseline and MCII in RA disease activity (Fig. S1). 

Baseline and follow-up visits were separated by a mean duration of 9.5 months (s.d. = 3.6 months), which was 

numerically longer for patients who attained MCII than for patients who did not attain MCII though not 

statistically significant (median 363 vs. 252 days, respectively; P = 0.08, Mann-Whitney U test). At all 

instances of stool sample collection, disease activity of patients varied from remission to high disease activity, 

with a mean CDAI of 16.3 (s.d. = 13.7) and 13.6 (s.d. = 11.6) at baseline and follow-up, respectively. 
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Figure S1. Overview of medication use by all 32 study participants. P-values from Fisher’s exact test (right) indicate 
statistical significance of association between MCII patient group and baseline medication use/non-use. No significant 
association for any medication was found. bDMARDs, biologic disease-modifying anti-rheumatic drugs. csDMARDs, 
conventional synthetic disease-modifying anti-rheumatic drugs. MCII, minimum clinically important improvement. 
MCII+, patients who showed MCII. MCII-, patients who did not show MCII. 
 

In total, 12 of the 32 (37.5%) total study participants achieved MCII in RA disease activity at their 

follow-up visit. The average change in CDAI for these 12 patients was -16.7 (s.d. = 12.8) units, which was, as 

expected, significantly different from the average change in CDAI of 5.7 (s.d. = 8.9) units for the remaining 

20 of 32 (62.5%) patients who did not show improvement in RA disease activity (P = 6.9 × 10-6, Mann-

Whitney U test). We used Fisher’s exact test to identify significant differences in categorical variables (e.g., 

age group, sex, smoking status, medication use, presence of rheumatoid factor and of anti-cyclic citrullinated 

peptides antibodies), and Mann-Whitney U test to identify significant differences in continuous clinical 

measurements (CDAI, health assessment questionnaire [HAQ], swollen joint count [SJC], tender joint count 

[TJC], C-reactive protein [CRP], patient’s and physician’s health status assessment) between two patient 

groups: MCII+ (i.e., patients who showed MCII in disease activity based upon the change in CDAI from 

baseline to follow-up visit) and MCII- (i.e., patients who did not show MCII) (Table 1). At baseline, we found 

significant or nearly significant associations between MCII patient group (i.e., MCII+ and MCII-) and CDAI 

(P = 0.03), provider global evaluation of disease activity (md_vas) (P = 0.06), and CRP (P = 0.06). At follow-

up visit, we found the following factors to be significantly associated with MCII patient group: CDAI (P = 1.9 

× 10-3), change in CDAI from baseline (P = 6.9 × 10-6), pain (VAS) (P = 2.8 × 10-3), TJC (P = 0.01), patient 

global evaluation of disease activity (pt_vas) (P = 6.3 × 10-3), and provider global evaluation of disease activity 

(md_vas) (P = 0.01). 
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Table 1. Demographic and clinical characteristics of the study population. 

Patient characteristics 

Visit 1 (Baseline) Visit 2 (Follow-up) 

Minimum Clinically Important Improvement 

Patient Group* P-value** 

Minimum Clinically Important Improvement 

Patient Group* P-value** 

MCII+ (n = 12) MCII- (n = 20) MCII+ (n = 12) MCII- (n = 20) 

Duration between visits (days), median [Q1, Q3]a - - - 363.0 [302.5, 377.5] 252.0 [212.0, 341.3] 0.08 

Sex   0.70   0.70 

female, n (%) 7 (58.3) 14 (70.0)  7 (58.3) 14 (70.0)  

male, n (%) 5 (41.7) 6 (30.0)  5 (41.7) 6 (30.0)  

Age   0.27   0.27 

< 64 years, n (%) 3 (25.0) 10 (50.0)  3 (25.0) 10 (50.0)  

≥ 64 years, n (%) 9 (75.0) 10 (50.0)  9 (75.0) 10 (50.0)  

Smoking status   0.52   0.27 

smoker, n (%) 0 (0) 2 (10.0)  0 (0) 3 (15.0)  

non-smoker, n (%) 12 (100) 18 (90.0)  12 (100) 17 (85.0)  

Clinical measurements       
bCDAI, median [Q1, Q3] 19.8 [12.6, 30.1] 9.3 [6.4, 13.7] 0.03 2.7 [1.0, 7.7] 14.0 [10.1, 21.7] 1.9 × 10-3 

ΔCDAI, median [Q1, Q3] - - - -15.1 [-19.2, -10.0] 2.7 [-0.2, 9.8] 6.9 × 10-6 
cHAQ, median [Q1, Q3] 0.6 [0.4, 0.9] 0.8 [0.3, 1.1] 0.57 0.4 [0.3, 0.8] 0.7 [0.4, 1.2] 0.09 

pain (VASd 0–100 mm), median [Q1, Q3] 41.0 [11.8, 67.8] 26.5 [14.8, 56.3] 0.61 9.5 [8.0, 36.0] 63.0 [31.8, 78.5] 2.8 × 10-3 

28-swollen joint count (SJC), median [Q1, Q3] 6.5 [0.0, 13.3] 1.5 [0.0, 4.3] 0.12 0.0 [0.0, 2.0] 1.0 [0.8, 4.8] 0.08 

28-tender joint count (TJC), median [Q1, Q3] 4.5 [0.0, 15.0] 1.5 [0.8, 5.3] 0.45 0.0 [0.0, 0.5] 3.0 [2.0, 9.0] 0.01 
ept_vas, median [Q1, Q3] 45.5 [28.8, 59.0] 28.0 [14.5, 52.3] 0.56 10.5 [8.0, 35.0] 49.0 [32.0, 71.3] 6.3 × 10-3 
fmd_vas, median [Q1, Q3] 37.5 [21.3, 55.0] 20.0 [10.0, 25.0] 0.06 5.0 [0.0, 12.5] 25.0 [8.8, 50.0] 0.01 

Rheumatoid factor (RF)   0.43   0.43 

positive, n (%) 8 (66.7) 8 (40.0)  8 (66.7) 8 (40)  

negative, n (%) 3 (25.0) 7 (35.0)  3 (25.0) 7 (35.0)  

not available 1 (8.3) 5 (25.0)  1 (8.3) 5 (25.0)  

Anti-citrullinated protein antibodies (ACPA)   0.44   0.44 
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positive, n (%) 9 (75.0) 10 (50.0)  9 (75.0) 10 (50.0)  

negative, n (%) 3 (25.0) 8 (40.0)  3 (25.0) 8 (40.0)  

not available 0 (0) 2 (10.0)  0 (0) 2 (10.0)  
gCRP (mg/L), median [Q1, Q3] 5.9 [2.9, 18.3] 2.9 [2.9, 5.1] 0.06 2.9 [2.9, 4.3] 2.9 [2.9, 10.0] 0.77 

Treatment use       
hbDMARDs (user), n (%) 6 (50.0) 9 (45.0) 1 5 (41.7) 8 (40.0) 1 
icsDMARDs (user), n (%) 11 (91.7) 17 (85.0) 1 11 (91.7) 16 (80.0) 0.63 

Prednisone (user), n (%) 6 (50.0) 9 (45.0) 1 5 (41.7) 9 (45) 1 
aUpper and lower quartiles; bCDAI, Clinical Disease Activity Index; cHAQ, Health Assessment Questionnaire; dVAS, Visual Analogue Scale; ept_vas, Patient global evaluation 
of disease activity; fmd_vas, Provider global evaluation of disease activity; gCRP, C-reactive Protein; hbDMARDs, Biologic Disease-Modifying Anti-rheumatic Drugs 
(Abatacept, Adalimumab, Certolizumab, Etanercept, Infliximab, Rituximab, Tocilizumab); icsDMARDs, Conventional Synthetic Disease-Modifying Anti-rheumatic Drugs 
(Azathioprine, Hydroxychloroquine, Leflunomide, Methotrexate, Sulfasalazine); *Patients were stratified into two groups (MCII+ or MCII-) depending on whether minimum 
clinically important improvement (MCII) was achieved at follow-up visit; **Fisher's exact test and Mann-Whitney U test was used to test for statistical significance amongst 
categorical and continuous variables, respectively. 
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MCII patient group explains significant variance in gut microbial community composition 
We performed a PERMANOVA analysis to evaluate the patient characteristics that contribute to the variance in 

gut microbial communities of patients with RA (Methods). Using univariate (marginal) models, as well as 

multivariate (adjusted) models that jointly take into consideration all measurable factors, we considered MCII 

patient group, age group, sex, smoking status, baseline CDAI, and medication use (for csDMARDs, bDMARDs, 

and prednisone). Of note, we assume that the resulting percent variance explained by each variable in the adjusted 

model is statistically independent of other variables. 

We found that MCII patient group explained 3.8% of the total variance in gut microbial communities (P 

= 0.005, PERMANOVA; Table 2 and Fig. 1a), after controlling for age group, sex, smoking status, CDAI, use 

of csDMARDs (all of which explained significant or nearly significant variance in marginal models), and intra-

subject longitudinal variation. The adjusted model also showed that age group, use of csDMARDs, sex, smoking 

status, and CDAI explained 7.7%, 3.1%, 2.9%, 2.7%, and 2.3% of the total variance, respectively (Table 2 and 

Figs. 1b–f), indicating partial dependence of gut microbiome profiles among patients with RA on these other 

factors. However, treatment with bDMARDs (P = 0.23, PERMANOVA; Fig. 1g) or prednisone (P = 0.26, 

PERMANOVA; Fig. 1h) was not found to have any significant association with gut microbial community 

composition (Table 2). Taking into account these observations, we controlled for age group, use of csDMARDs, 

sex, smoking status, and CDAI in subsequent analyses for investigating the differences in gut microbiome profiles 

between patients of the MCII+ group and those of the MCII- group. 

 

Table 2. Patient characteristics contributing to the variance in gut microbial community composition. 

Patient characteristicsφ 
Marginal model Adjusted model  

Variance (%) P-value# Variance (%) P-value# 
Age group 7.7 0.001 7.7 0.001 
MCII patient group 4.4 0.004 3.8 0.005 
csDMARDs 3.7 0.010 3.1 0.010 
Sex 3.1 0.024 2.9 0.014 
Smoking status 4.0 0.003 2.7 0.023 
CDAI 2.3 0.130 2.3 0.061 
bDMARDs 1.8 0.278 1.6 0.228 
Prednisone 1.7 0.332 1.6 0.260 
φEach patient characteristic was measured for 32 patients at both clinical visits. All 64 gut microbiome samples were 
analyzed simultaneously using Permutational Multivariate Analysis of Variance (PERMANOVA); #PERMANOVA 
was used to test for statistical association between corresponding patient characteristic and variance within microbiome 
composition. 
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Figure 1. Principal Coordinates Analysis (PCoA) ordination plots of gut microbiome samples from patients 
with RA (n = 32). PERMANOVA analysis finds that the variance in gut microbial community composition can 
be explained by (a) MCII patient group, (b) age group, (c) use of csDMARDs, (d) sex, (e) smoking status, and 
(f) CDAI, but by neither (g) use of bDMARDs nor (h) use of prednisone. All 64 gut microbiome samples (from 
32 patients at both clinical visits) were analyzed simultaneously using PERMANOVA, while intra-subject 
longitudinal variation was accounted for by constraining permutations to within visits. R2 and P-values derived 
from PERMANOVA. Each circle and triangle signifies baseline and follow-up, respectively. Lines connect time-
points of the same patients. Ellipses correspond to 80% confidence regions. MCII, minimum clinically important 
improvement. MCII+, patients who showed MCII. MCII-, patients who did not show MCII. Non-integer ‘n’ 
corresponds to cases wherein the patient reported differently at baseline than at follow-up. 
 

Gut microbial taxa show significant associations with clinical disease activity 

We investigated the association between the relative abundance of gut microbial taxa and quantitative disease 

activity (CDAI), while controlling for the aforementioned covariates. We found that thirteen taxa, including 

Erysipelotrichia (class); Bacteroidaceae (family); Anaerotruncus and Bacteroides (genus); Anaerotruncus 

colihominis, Clostridium spiroforme, and Pseudomonas mendocina (species), were significantly associated with 

CDAI (Fig. S2). Among these thirteen, ten microbial taxa were found to be positively correlated with CDAI, 

whereas three (Bacteroidaceae, Bacteroides, and Lachnospiraceae bacterium 3_1_46FAA) displayed negative 

correlations. 
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Figure S2. Microbial taxa having significant associations with Clinical Disease Activity Index (CDAI). Points within 
the scatter-plots represent gut microbiome samples (64 total samples from 32 patients at both clinical visits), while blue 
lines indicate the best fit. r corresponds to the Pearson correlation coefficient between CDAI and arcsine, square-root 
transformed microbial taxa relative abundance. P-value, which shows the significance of the association between CDAI and 
taxa abundance, corresponds to the regression model coefficient for CDAI in a mixed-effects linear regression model 
adjusting for fixed effects (age group, sex, smoking status, use of csDMARDs) and random effects (Patient ID). Taxonomic 
ranks: c, class; o, order; f, family; g, genus; s, species. 
 

Features of baseline gut microbiomes significantly differ between MCII+ and MCII- patient groups 

At baseline, we observed Bacteroidetes and Firmicutes as the most abundant phyla based upon relative 

abundances (Fig. 2a); Bacteroidales and Clostridialis as the most abundant orders (Fig. 2b); and Bacteroidaceae 

as the most abundant family (Fig. 2c). We next investigated the baseline gut microbiomes of all 32 patients to 

identify differences in ecological properties (e.g., alpha-/beta-diversity) or in individual taxonomic and functional 
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features between the two MCII patient groups. In effect, by knowing—albeit retrospectively—the clinical 

outcomes in advance, we have asked: on the basis of gut microbiome information, can differences at baseline not 

only provide hypotheses that connect gut microbiome to clinical improvement, but also reveal biomarkers 

predictive of the clinical course? To this end, we found higher species-level alpha-diversity, that is, Fisher’s Index 

(P = 0.002, MLRM; and Fig. 3a) and richness (P = 0.0004, MLRM; and Fig. 3b), and higher beta-diversity, that 

is, Bray-Curtis distances between all pairs of samples (P = 0.002, Mann-Whitney U test; and Fig. 3c) in the MCII+ 

group compared to the MCII- group. In addition, we sought to identify microbial taxa and microbiome-derived 

annotated MetaCyc biochemical pathways that were differentially abundant between the two MCII patient groups 

at baseline. Our analysis led to the following ten microbial taxa, all of which were found to be higher in the MCII+ 

group: Negativicutes (class), Selenomonadales (order), Prevotellaceae (family), Coprococcus (genus), 

Bacteroides sp. 3_1_19 (species), Bilophila sp. 4_1_30 (species), Blautia sp. KLE_1732 (species), Coprococcus 

comes (species), Ruminococcus sp. (species), and Streptococcus salivarius (species) (P < 0.05, MLRM; and Fig. 

3d). Moreover, we found thirteen MetaCyc pathways that were differentially abundant between MCII+ and MCII- 

groups at baseline (P < 0.05, MLRM; and Fig. 3e). Six of these pathways, which include multiple for 

tetrahydrofolate biosynthesis and L-methionine biosynthesis, were significantly higher in patients of the MCII+ 

group than in those of the MCII- group; in contrast, the remaining seven pathways, the majority of which being 

for L-arginine and L-ornithine biosynthesis, were more abundant in patients of the MCII- group. Taken together, 

our results show that gut microbiomes of the two diverging patient groups start at different ecological states even 

before reaching their clinical endpoints. 
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Figure 2. Stacked bar-plots showing the distribution of relative abundances of taxonomic ranks detected 
in baseline gut microbiomes. At (a) phylum-level, Bacteroidetes and Firmicutes were the two most abundant 
phyla. At (b) order-level, Bacteroidales and Clostridiales were most abundant. Among (c) families, 
Bacteroidaceae was the most abundant. 
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Figure 3. Differences in baseline gut microbiome features between MCII+ and MCII- patient groups. For 
alpha-diversity, significantly higher species-level (a) Fisher’s Index (P = 0.002, MLRM) and (b) richness (P = 
0.0004, MLRM) were observed in the MCII+ group. (c) In regard to beta-diversity, a higher distribution of Bray-
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Curtis distances between all sample-pairs was found in the MCII+ group (P = 0.002, Mann-Whitney U test). (d) 
Ten microbial taxa were identified as differentially abundant between the two patient groups (P < 0.05, MLRM). 
All ten were significantly higher in abundance in the MCII+ group. (e) Thirteen MetaCyc biochemical pathways 
were found to be differentially abundant. Except for beta-diversity, multiple linear regression models (MLRMs) 
were designed to test for the statistical significance of the relationship between MCII patient group and 
microbiome features, while controlling for patient factors (age group, sex, smoking status, CDAI, and use of 
csDMARDs) reported at baseline. P-value corresponds to the regression model coefficient for MCII patient group. 
*, 0.01 ≤ P < 0.05; **, 0.005 ≤ P < 0.01. MCII, minimum clinically important improvement. MCII+, patients who 
showed MCII. MCII-, patients who did not show MCII. Taxonomic ranks: c, class; o, order; f, family; g, genus; 
s, species. MetaCyc pathways: A, L-homoserine and L-methionine Biosynthesis; B, L-tryptophan Biosynthesis; 
C, L-methionine Biosynthesis I; D, Superpathway of Tetrahydrofolate Biosynthesis and Salvage; E, 
Formaldehyde Assimilation III; F, Superpathway of Tetrahydrofolate Biosynthesis; G, Adenine and Adenosine 
Salvage III; H, CMP-3-deoxy-D-manno-octulosonate Biosynthesis I; I, L-arginine Biosynthesis IV; J, L-arginine 
Biosynthesis I; K, L-arginine Biosynthesis III; L, L-arginine Biosynthesis II; M, L-ornithine Biosynthesis. 
 

In contrast to the case at baseline, we observed no significant differences in species-level Fisher’s Index 

(P = 0.07, MLRM), richness (P = 0.20, MLRM), and Bray-Curtis distances between all sample-pairs (P = 0.31, 

Mann-Whitney U test) between the two MCII patient groups at follow-up visit (Figs. S3a–c). However, we found 

eight taxa to be differentially abundant: Negativicutes (class), Selenomonadales (order), Prevotellaceae and 

Veillonellaceae (family), and Veillonella (genus) were higher in the MCII+ group; and Bacteroides uniformis, 

Clostridium leptum, and Erysipelotrichaceae bacterium 6_1_45 (species) were higher in the MCII- group (P < 

0.05, MLRM; Fig. S3d). Furthermore, we identified seven differentially abundant biochemical pathways (P < 

0.05, MLRM; Fig. S3e), among which those for glycogen degradation, putrescine biosynthesis, polyamine 

biosynthesis, sulfate assimilation, and cysteine biosynthesis were higher in the MCII+ group. 
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Figure S3. Differences in gut microbiome features between MCII patient groups at follow-up visit. In the gut 
microbiomes of patients with RA at follow-up, species-level (a) Fisher’s Index (P = 0.07, MLRM), (b) richness (P = 0.20, 
MLRM), and (c) Bray-Curtis distances between all sample-pairs (P = 0.31, Mann-Whitney U test) were not found to be 
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significantly different between the MCII+ and MCII- patient groups. (d) Eight microbial taxa and (e) seven MetaCyc 
biochemical pathways were identified as differentially abundant between the two MCII groups while controlling for patient 
factors (age group, sex, smoking status, CDAI, and use of csDMARDs) reported at follow-up. Microbial taxa and 
biochemical pathways were considered as differentially abundant if the regression model coefficient for MCII patient group 
was significant (P < 0.05). MCII, minimum clinically important improvement. MCII+, patients who showed MCII. MCII-, 
patients who did not show MCII. Taxonomic ranks: c, class; o, order; f, family; g, genus; s, species. 
 

Gut microbiome taxa and functions show significant differences in fold-change from baseline to follow-up 

between MCII patient groups 

We examined the longitudinal variation in relative abundances (i.e., fold-change from baseline to follow-up) of 

microbial taxa and of biochemical pathways. From this, we sought to identify differences in how the gut 

microbiome changes in association with clinical outcomes (i.e., showing clinical improvement or not). First, we 

found that patients of the MCII+ and MCII- groups showed significant fold-change differences in the following 

six microbial taxa (P < 0.05, MLRM; Fig. 4a, Fig. S4a): i) fold-change in Oscillibacter (genus) was higher in the 

MCII+ group. This result suggests that Oscillibacter increases in relative abundance more highly and/or 

frequently in the MCII+ group compared to the MCII- group; and ii) fold-changes in Coprococcus (genus), 

Ruminococcus (genus), Clostridium leptum (species), Oscillibacter sp. KLE_1728 (species), and Streptococcus 

thermophilus (species) were higher in the MCII- group. More specifically, these five taxa increases in relative 

abundance more highly and/or frequently in the MCII- group than in the MCII+ group.  

In the MCII+ group, the relative abundances of four taxa (Coprococcus, Ruminococcus, Clostridium 

leptum, Oscillibacter sp. KLE_1728) decreased from baseline to follow-up (median log2(fold-change) ≤ -0.1), 

whereas Oscillibacter increased in abundance (median log2(fold-change) ≥ 0.1) (Fig. 4a, Fig. S4a). In the MCII- 

group, the relative abundances of four taxa (Coprococcus, Ruminococcus, Clostridium leptum, Streptococcus 

thermophilus) increased from baseline to follow-up (median log2(fold-change) ≥ 0.1), while Oscillibacter 

decreased in abundance (median log2(fold-change) ≤ -0.1). Strikingly, these observations imply that the changes 

in relative abundances of Coprococcus, Oscillibacter, Ruminococcus, and Clostridium leptum (from baseline to 

follow-up) in the MCII+ group and those in the MCII- group generally diverged in opposite directions. 

Next, we identified thirteen biochemical pathways having significantly different fold-changes between 

the two MCII patient groups (P < 0.05, MLRM; Fig. 4b, Fig. S4b): i) five pathways, including those involving 

sugar metabolism (e.g., fucose and rhamnose degradation, heptose derivative biosynthesis, GDP-mannose 

biosynthesis), had higher fold-changes in the MCII+ group; and ii) eight pathways, the majority of which for 

amino acid metabolism (e.g., aromatic amino acid biosynthesis, L-homoserine and L-methionine biosynthesis), 

had higher fold-changes in the MCII- group. 
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As seen for microbial taxa, changes in relative abundance of four of these thirteen biochemical pathways 

were in opposite directions in the two patient groups: ADP-L-glycero- & beta-D-manno-heptose Biosynthesis 

(Fig. 4b, Pathway B) generally increased and decreased in the MCII+ and MCII- group, respectively; myo-, chiro- 

and scyllo-inositol Degradation (Fig. 4b, Pathway F), Chorismate Biosynthesis from 3-dehydroquinate (Fig. 4b, 

Pathway G), and Superpathway of Aromatic Amino Acid Biosynthesis (Fig. 4b, Pathway H) generally decreased 

and increased in the MCII+ and MCII- group, respectively. Although it is yet uncertain why the relative 

abundances of these particular microbial taxa and biochemical pathways increase (or decrease) in one patient 

group but decrease (or increase) in the other, such analyses into the changes of distinct gut microbiome features, 

and how these changes are relevant to clinical improvement, can reveal important additional insights not provided 

by cross-sectional datasets. 
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Figure 4. MCII+ and MCII- groups display significantly different fold-changes in microbial taxa and 
biochemical pathways from baseline to follow-up. (a) Six microbial taxa showed significant differences in 
fold-changes (from baseline to follow-up) between the MCII+ and MCII- patient groups (P < 0.05, MLRM). 
Relative abundances diverged in opposite directions in four taxa: Oscillibacter increased (decreased) in relative 
abundance from baseline to follow-up visit in the MCII+ (MCII-) patient group, while the relative abundances of 
Coprococcus, Ruminococcus, and Clostridium leptum decreased (increased) at the follow-up visit in patients of 
the MCII+ (MCII-) group. (b) Thirteen MetaCyc biochemical pathways were identified as having significantly 
different fold-changes between the two patient groups (P < 0.05, MLRM). Pathway B increased (decreased) in 
relative abundance from baseline to follow-up in the MCII+ (MCII-) group; in contrast, the relative abundance of 
pathways F, G, and H decreased (increased) at the follow-up visit in the MCII+ (MCII-) group. P-values shown 
above the box plots were found using multiple linear regression models (MLRMs) designed to test for the 
statistical significance of the relationship between MCII patient group and fold-change in relative abundances of 
microbial taxa/pathways. These models were controlled for the following patient factors: age group, sex, smoking 
status, duration (days) between baseline and follow-up visits, baseline CDAI, and use of csDMARDs. *, 0.01 ≤ P 
< 0.05. Taxonomic ranks: c, class; o, order; f, family; g, genus; s, species. MetaCyc pathways: A, Superpathway 
of Fucose and Rhamnose Degradation; B, ADP-L-glycero- & beta-D-manno-heptose Biosynthesis; C, Pyridoxal 
5'-phosphate Biosynthesis I; D, GDP-mannose Biosynthesis; E, Seleno-amino Acid Biosynthesis; F, myo-, chiro- 
and scillo-inositol Degradation; G, Chorismate Biosynthesis from 3-dehydroquinate; H, Superpathway of 
Aromatic Amino Acid Biosynthesis; I, Tetrapyrrole Biosynthesis I; J, L-homoserine and L-methionine 
Biosynthesis; K, Superpathway of L-methionine Biosynthesis; L, L-methionine Biosynthesis I; M, Superpathway 
of S-adenosyl-L-methionine Biosynthesis. 
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Figure S4. Microbial taxa and biochemical pathways whose change in relative abundance from baseline to follow-
up vary differently between MCII patient groups. (a) Six microbial taxa (Coprococcus, Oscillibacter, Ruminococcus, 
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Streptococcus thermophilus, Clostridium leptum and Oscillibacter sp. KLE 1728) displayed significantly different fold-
changes between the two MCII patient groups. (b) Thirteen MetaCyc biochemical pathways (Superpathway of Aromatic 
Amino Acid Biosynthesis, Superpathway of Fucose and Rhamnose Degradation, L-methionine Biosynthesis I, Pyridoxal 
5'-phosphate Biosynthesis I, Superpathway of S-adenosyl-L-methionine Biosynthesis, L-homoserine and L-methionine 
Biosynthesis, Tetrapyrrole Biosynthesis I, Myo-, chiro- and scillo-inositol Degradation, Superpathway of L-methionine 
Biosynthesis, GDP-mannose Biosynthesis, Chorismate Biosynthesis from 3-dehydroquinate, ADP-L-glycero-&beta-D-
manno-heptose Biosynthesis and Seleno-amino Acid Biosynthesis) showed significantly different fold-changes between the 
two patient groups. Points connected by gray lines indicate stool metagenome (gut microbiome) samples from the same 
patient at two clinical visits. MCII+, patients who showed MCII. MCII-, patients who did not show MCII. Visit 1: baseline; 
Visit 2: follow-up. Taxonomic ranks: c, class; o, order; f, family; g, genus; s, species. 
 

Gut microbiome is a predictive marker for clinical improvement and clinical disease activity in patients 

with RA 

Having the capability to reliably predict whether a patient will show clinical improvement—independent of prior 

treatment and clinical course—would address what has been a steep challenge in the clinical practice of RA. As 

described above, we identified differences in baseline gut microbiome properties between MCII+ and MCII- 

patient groups. As an extension of these findings, we next turned to the question of how accurately baseline gut 

microbiome profiles and clinical and demographic data, combined with a machine-learning approach, can predict 

MCII class for a particular patient or group of patients; this essentially enables us to forecast whether a patient 

will have a good prognosis, that is, achieving MCII or not. To this end, we used a neural network classification 

model that incorporates baseline microbiome, clinical, and demographic data as the input variables to classify 

patients into one of the two MCII patient groups (Fig. 5a; Methods). The neural network model was able to 

distinguish the two groups with reasonably high prediction accuracy in leave-one-out cross-validation: a balanced 

accuracy (i.e., average of the proportions of MCII+ and MCII- samples that were correctly classified) of 90.0%, 

as the classification accuracy for the MCII+ and MCII- group was 100.0% (12 of 12) and 80.0% (16 of 20), 

respectively (Fig. 5b). Encouragingly, we were able to correctly predict MCII in all twelve patients who did 

indeed show clinical improvement. 
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Figure 5. Performance evaluation of neural network-based prediction models in determining minimum 
clinically important improvement and disease activity score (CDAI). (a) A neural network model was 
designed to classify patients into one of two MCII patient groups using baseline gut microbiome, clinical, and 
demographic input features. In leave-one-out cross-validation, this resulted in (b) a confusion matrix of model 
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predictions showing an overall classification accuracy of 87.5% and a balanced accuracy of 90.0%. MCII+, 
patients who showed MCII. MCII-, patients who did not show MCII. (c) A ranked-order of model input features 
(total: 448) based upon their scaled (from 0 to 1) importance showing that microbiome data were much more 
influential contributors to the neural network’s decision-making process than clinical and demographic 
information. Far left: ranked most important; far right: ranked least important. (d) Another neural network model 
was constructed to predict CDAI from the same input variables (excluding CDAI) in leave-one-patient-out cross-
validation. (e) CDAI predictions were made on both samples from the same left-out patient in each cross-
validation loop (see Methods). In the scatter-plot, predictions made across all 32 iterations of cross-validation 
are shown simultaneously. Overall correlation between observed and predicted scores: Spearman’s ρ = 0.37 (P = 
0.003; 95% confidence interval: [0.12, 0.58]). Dashed violet line indicates ‘y = x’, i.e., an exact match between 
the observed and predicted values. 
 

Next, by finding which input features were the most informative in the classification process, we rank-

ordered all features based upon their scaled importance as determined by the neural network. We found that the 

top-ranked features were mainly composed of taxonomic and functional components from gut microbiome data 

(Fig. 5c). Of note, the top five important features were the Sucrose Degradation III pathway, Parabacteroides sp. 

D25 (species), Roseburia (genus), Fatty Acid & beta-oxidation II pathway, and Biotin Biosynthesis I pathway. 

Surprisingly, data from clinical and demographic characteristics were ranked much lower; the highest ranked 

non-microbiome feature was related to the use of csDMARDs, which was ranked 78th (out of 448) in regards to 

feature importance, followed by sex (female), which was ranked 87th. 

Having shown that gut microbiome data can be used to predict whether (or not) a patient will show MCII, 

we developed another neural network model to evaluate how well the aforementioned predictor variables can 

predict CDAI (Fig. 5d; Methods). The direct prediction of a clinical disease activity score using gut microbiome 

has yet to be performed in any chronic disease, although a previous study by Tedjo et al. used a Random Forests 

classifier with operational taxonomic units (OTUs) of the gut microbiome in Crohn’s Disease to differentiate 

between active disease and remission [56]. By using a leave-one-patient-out cross-validation scheme, wherein 

predictions in each cross-validation loop were made on both samples from a single left-out patient (Methods), 

we found that our neural network achieved a moderate, yet significant, correlation between observed (actual) and 

predicted CDAI (Spearman’s ρ = 0.37, P = 0.003; Fig. 5e). Interestingly, the predicted CDAI fits a lower slope 

compared to the slope of an exact match between observed and predicted values. CDAI beyond ~15 were under-

predicted, whereas CDAI below ~15 were over-predicted; this threshold could possibly indicate a breakpoint at 

which our model exhibits different relationships between the response and predictor variables. In summary, the 

gut microbiome shows promise as a non-invasive screening tool for predicting clinical improvement and perhaps 

also for monitoring RA disease activity. 
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Discussion 

To the best of our knowledge, this is the first study to date that uses shotgun metagenomic sequencing of stool to 

investigate the ties between the gut microbiome and MCII in RA disease activity. This study addresses the 

following key questions: What are the distinct microbes and functions that define gut ecologies in patients who 

achieve MCII compared to patients who do not? Are these specific gut microbiome “signatures” predictive of 

MCII? Or in other words, how well does the gut microbiome forecast the trajectory of RA disease activity 

irrespective of prior clinical course? To this end, we compared the baseline gut microbiome compositions between 

RA patients who eventually showed improvement in disease activity and those who did not. First, we found that 

the status of MCII is a significant contributor to the variation in gut microbiome community composition. Next, 

a more detailed examination of baseline gut microbiomes allowed us to identify higher species-level alpha-

diversity and beta-diversity in the MCII+ group (i.e., patients who showed MCII) than in the MCII- group (i.e., 

patients who did not show MCII). Additionally, we identified several microbial taxa and microbiome-derived 

MetaCyc biochemical pathways as differentially abundant between the two MCII patient groups. Furthermore, 

we observed several taxa and pathways as having significant differences in fold-change (from baseline to follow-

up) between the two patient groups. Lastly, we demonstrate that the integration of gut microbiome and machine-

learning technology could theoretically be an avenue for the prediction of disease course in RA. More specifically, 

by incorporating baseline microbiome, clinical, and demographic data into a deep-learning neural network, we 

were able to effectively classify patients into their MCII+ or MCII- group, thereby allowing us to forecast MCII 

in patients with RA. With further development, such prognostic biomarkers could identify patients who will 

achieve MCII earlier on and spare them the expense and risk of aggressive therapies; conversely, such tools can 

detect patients whose disease symptoms are less likely to improve, and perhaps allow clinicians to target and 

monitor them more closely. In all, our proof-of-concept study targets a significant unmet medical need in RA, 

and demonstrates the utility of the gut microbiome for the precision medicine era. 

We identified several microbial taxa at baseline, including Coprococcus, Bilophila sp. 4_1_30, and 

Prevotellaceae, to have significantly different relative abundances between the MCII+ and MCII- patient groups. 

Coprococcus was found to be relatively higher in the MCII+ group compared to the MCII- group. Microorganisms 

of this genus are known to produce butyrate, which is known for its anti-inflammatory effects [57–63]. For 

example, a study in mice showed that butyrate can suppress inflammation by inhibiting histone deacetylases 

(HDACs) in bone marrow cells [58]. Previously, the administration of an HDAC inhibitor in vivo was found to 

promote the production and suppressive function of Foxp3+ regulatory T (Treg) cells [64]. The anti-inflammatory 

effect of butyrate was also shown in Staphylococcus aureus cell-stimulated human monocytes, to which adding 
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butyrate led to a reduction and increase of proinflammatory cytokine IL-12 and anti-inflammatory cytokine IL-

10, respectively [59]. In addition, Bilophila sp. 4_1_30 was found to be higher in patients of the MCII+ group. 

The role of Bilophila species in inflammatory or auto-immune diseases is not yet fully understood. A couple of 

studies have shown the positive association of Bilophila species (in particular B. wadsworthia) with pro-

inflammatory immune responses [65,66], while another study has shown that Bilophila species have negative 

associations with LPS-induced, TNFɑ-mediated immune responses in whole blood peripheral blood mononuclear 

cells [67]. Lastly, Prevotellaceae was also found to have greater abundance in the MCII+ group. Some species in 

this family are known for their pro-inflammatory effects [68,69]; therefore, this observation possibly suggests 

that host immune responses to Prevotellaceae are specific to particular species and/or strains [70]. 

In addition to baseline differences in microbial taxa between the MCII+ and MCII- groups, we observed 

differences in the abundances of thirteen biochemical pathways at baseline. Eight of these differentially-abundant 

pathways are involved in the biosynthesis of amino acids, such as arginine, methionine, ornithine, and tryptophan. 

All two pathways involved in methionine biosynthesis were found to be more abundant in the MCII+ group. 

Interestingly, dietary supplementation with high levels of methionine has been shown to attenuate arthritis 

severity in arthritic rats, and also to increase levels of serum Insulin-like Growth Factor-1 (IGF-I) [71]; and to 

this point, IGF-I was previously found to be significantly lower in female patients with RA than in controls [72]. 

Alternatively, all four arginine biosynthesis pathways were of lower abundance in the MCII+ group. A recently 

published study has shown that restriction of arginine improves outcome in multiple murine arthritis models by 

controlling the metabolism and formation of multi-nuclear giant cells [73]. Collectively, our results implicate 

various aspects of the gut microbiome with improvement in chronic, debilitating symptoms in RA, raising the 

interesting possibility of intervening on these markers, e.g., introducing specific desirable bacterial strains into 

the gut or targeting certain microbial metabolic pathways as a basis for drug development. 
Several limitations should be acknowledged when interpreting our results. First and foremost, the 

relatively small sample size used in our study limits generalization of the findings to the broader range of RA 

conditions. It was beyond the scope of this observational cohort study to restrict the time of follow-up between 

clinical visits, leading to variability in the duration of follow-up. While this study is the first to associate gut 

microbiome signatures with MCII in RA, we do note that our results were derived from a pilot cohort of 32 

patients; therefore, conducting more analyses and validation on larger cohorts with pre-specified clinical 

endpoints is the crucial next step to strengthen and confirm our findings. Second, our results could be influenced 

by confounders inherent to our cohort of patients. We do acknowledge that there may be geographical/cultural 

biases in our results, since the patients included in this study are mostly from the midwest region of the United 
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States. Our statistical methods to identify associations between the gut microbiome and MCII were controlled for 

age, sex, smoking status, baseline disease activity, follow-up duration, and medication use. However, dietary 

habits were not assessed, which is a variable well known to influence the composition of the gut microbiome 

[74,75]. Importantly, we were not able to statistically control for patient BMI, as current height and weight were 

found to be missing in several patient records. Of note, obesity is not only strongly tied to gut microbiome [76–

78], but also known as a prognostic factor in RA. More specifically, patients with obesity have been found to be 

less likely to respond to disease-modifying therapy [79]. How much BMI plays a role in shaping the current 

results will be addressed in our future studies. Third, as is often the case in retrospective cohort studies, we cannot 

completely eliminate the possibility of patient selection bias. For example, patients may not elect to return for a 

follow-up visit depending on a certain disease severity. Additionally, among the patients whose clinical samples 

were available in our biobank, some clinical/demographic data were incomplete for both time-points. Such 

reasons result in exclusion of these patients from our study, and therefore may bias the type of patients who were 

analyzed. Fourth, all descriptions of annotated biochemical pathways of the gut microbiome allude to functional 

potential, that is, functional possibilities derived from genetic content. We did not employ transcriptomics or 

proteomics technologies to assess enzyme abundances; metabolomics to detect small-molecules; or cellular 

assays to determine metabolic flux. However, these are all promising methods that we can later use to obtain 

much richer insight into how microbial metabolism affects RA disease course. Fifth, clearly our study cannot 

provide causal mechanisms underlying the associations between the gut microbiome and MCII in RA disease 

activity. However, a closer investigation on particular microbial taxa or microbiome-derived pathways identified 

in our study may provide a promising launchpad for future studies delving into specifically how alterations in the 

gut microbiome influence RA-associated changes in human physiology or in systemic, chronic inflammation. 

Sixth, all predictions regarding MCII patient group and CDAI were performed in cross-validation on the original 

discovery cohort. It remains to be seen how well the robustness of our prediction models will hold up when 

demonstrated on an independent validation cohort once available. Finally, although we found that the gut 

microbiome is surprisingly predictive of MCII, our study is limited by the fact that we collected stool samples 

and assessed patients’ disease activity at only two time-points. It could be possible that associations between gut 

microbiome and MCII may not persist past the second visit. Surely, future studies extending this current work 

will need to entail having larger cohorts, patients with new onset RA, and several longitudinal sample collections, 

while considering more potentially confounding factors (e.g., geography, race/ethnicity, diet, and lifestyle). 
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Conclusions 

Several aspects of the gut microbiome are associated with future prognosis in RA, providing motivation for further 

studies on the effect of intestinal microflora and various patient factors on autoimmune response and clinical 

course. Additionally, shotgun metagenomic sequencing of microbial communities in stool samples can serve as 

an effective and reliable predictor of whether patients with RA will achieve clinically important improvement in 

disease activity. Therefore, learning to better “read” the gut microbiome and its changes, as well as mapping its 

complex relationship with disease symptoms, may provide a promising route for making more accurate clinically-

informed decisions for RA patients. Ultimately, we expect our work to be one cornerstone for a suite of new, 

omics-based clinical tools to aid in early detection, diagnosis, prognosis, and treatment in RA. Looking ahead, 

possible solutions to treat chronic auto-immune or inflammatory diseases could well involve modifying the gut 

microbiome to an ecological state primed to enhance clinical outcome. 
 

Availability of data and materials 
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