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Abstract

The interaction and possibly interference between viruses infecting a host popula-
tion is addressed in this work. We model two viral diseases with a similar transmission
mechanism and for which a vaccine exists. The vaccine is characterized by its cov-
erage, induced temporary immunity, and efficacy. The population dynamics of both
diseases consider infected individuals of each illness and hosts susceptible to one but
recovered from the other. We do not incorporate co-infection. Two main transmission
factors affecting the effective contact rates are postulated: i) the virus with a higher
reproduction number can superinfect the one with a lower reproduction number, and
ii) there exists some induced (indirect) protection induced by vaccination against the
weaker virus that reduces the probability of infection by the stronger virus. Our results
indicate that coexistence of the viruses is possible in the long term, even considering
the absence of superinfection. Influenza and SARS-CoV-2 are employed to exemplify
this last point, observing that the time-dependent effective contact rate may induce
either alternating outbreaks of each disease or synchronous outbreaks. Finally, for a
particular parameter range, a backward bifurcation has been observed for dynamics
without vaccination.
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1 Introduction

The interaction between viral species follows known patterns of coexistence. [1] were the first to
show that the inclusion of superinfection makes coexistence between competing species possible.
Superinfection is a process where a competitive hierarchy exists among a group of species that
compete for the same resources. In general (in the absence of vaccines or treatments), this hierarchy
facilitates coexistence and prevents competitive exclusion of the weaker species in a process that
is mainly driven by the relative magnitude of the reproduction numbers of both species [2] that
reflect the abilities to use a contested common resource.

The process of superinfection has been identified as a promoter of the coexistence of pathogen
strains in a given host population. The structure of the models that have been used to theoretically
demonstrate this property [1, 3, 4], has also been applied to explain the organization of community
structure for species that inhabit a common landscape but are not necessarily closely related [5].
For infectious diseases, the concept of superinfection has pervaded theoretical explanations for
coexistence, in the same host population, of variants of a given pathogen [6, 7]. The pioneering
model in [3] is about infectious diseases and has been used to explore a plausible hypothesis for the
length of the latent period of HIV before the onset of AIDS. Simultaneously, these same authors
[8] addressed the problem of community structure postulating a trade-off between colonization
and extinction [9] in the presence of a hierarchy of competitive abilities for the exploitation of
the resources in a common landscape. For acute respiratory infections, this competitive hierarchy
that henceforth we will call superinfection has been postulated to explain the alternating dynamics
between influenza and RSV (respiratory syncytial virus). It is known that the reproduction number
of influenza is higher than that of RSV. This fact, coupled with weather variability (seasonality),
induces alternating patterns where influenza and RSV infections have a limited temporal overlap
[6]. Seasonal influenza has a median basic reproduction number of 1.28 [10]; while for SARS-CoV-2,
the median R0 is 2.79 [11, 10]. This difference in transmission potential supports the assumption
that while competing for hosts, their common resource, the likelihood of long-term coexistence and
co-circulation is high and that this balance may be associated with superinfection.

Vaccines have a protective effect via immune responses or indirect effects by reducing the burden
of viral and bacterial respiratory diseases on individual patients, among others [12]. However, in
general, the impact of vaccination on the transmission of a viral disease starts slowly and builds
up over several months to reach target coverage levels. Vaccines are evaluated in terms of efficacy,
existing population immunity, coverage and temporary immunity, both natural and vaccine-induced,
reduction of mortality or infection risks [13]. Vaccines are applied in order to eradicate a disease.
However, this aim depends on many factors and may not be fully achieved.

The present work addresses the general theoretical problem of the co-circulation and long-term
persistence or eventual extinction of two viral respiratory infections subject to vaccination. In addi-
tion, we explore: i) the order relation between basic reproductive number and vaccine reproduction
number, and ii) the existence of backward bifurcation when vaccination is not considered. Finally,
we exemplify some of our results with the case of the developing ecological interaction between
SARS-CoV-2 and influenza.

The paper is organized as follows. In Section 2 we formulate our mathematical model. In
Section 3 we develop the local analysis, including cases of backward bifurcation. In Section 4, we
address a particular case, co-infection dynamics between influenza and SARS-Cov-2. Finally, in
Section 5 we draw some conclusions about this work.
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2 Mathematical model set-up

We formulate a mathematical model considering the simultaneous presence of two viruses and vacci-
nation for each one. We do not distinguish between viral subtypes and, therefore, we approximate
viral dynamics as if each of them were a single viral population. Both diseases are assumed to
present temporary immunity and, thus, the possibility of reinfections. The model is a coupled
system of two SIRS (susceptible-infected-recovered-susceptible) equations (Figure 1).

Figure 1: A compartmental mathematical model for two coupled SIRS. s, i, y, ri, ry, yri ,
iry and r represent the population of susceptible, infected by virus i, infected by virus y,
immune from virus i, immune from virus y, immune from virus i but infected with virus
y, immune from virus y but infected with virus i, and immune from both viruses. Here, rk
includes population recovered after infection and successfully vaccinated by virus k, where
k represents i or y viruses. Dashed blue lines represent vaccination dynamics for both
viruses and dashed red line denotes superinfection process.

We assume a constant total population, normalized to the total population N . In the presence
of vaccination against both viruses, the equations stand as:

s′ = µ−
[
βi(t)(i+ iry ) + βy(t)(y + yri)

]
s+ θiri + θyry + θr

− (µ+ φi + φy)s,

i′ = βi(t)(i+ iry )s− αβy(t)iy − (ηi + µ)i,

y′ = βy(t)(y + yri)s+ αβy(t)iy − (ηy + µ)y,

r′i = φis+ ηii− (1− pi)βy(t)(y + yri)ri − (φy + θi + µ)ri,

r′y = φys+ ηyy − βi(t)(i+ iry )ry − (φi + θy + µ)ry,

y′ri = (1− pi)βy(t)(y + yri)ri − (ωy + µ)yri ,

i′ry = βi(t)(i+ iry )ry − (ωi + µ)iry ,

r′ = ωyyri + ωiiry + φyri + φiry − (θ + µ)r,

(1)

In eq. (1), s, i, y, ri, ry, yri , iry and r are defined as described in Figure 1. Note that the
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immune population for each virus can be infected (vaccinated) by (against) the other virus. With
the aim of approximate the seasonal component that drives ILIs [14, 15, 16], for numerical analysis,
we assume that the effective contact rates for both viruses, βi(t) and βy(t), are time-dependent.
It is also assumed that virus y may potentially competitively exclude virus i from its host. The
effective contact rate of this transmission route is modulated by α, with 0 ≤ α ≤ 1 that we define
as the superinfection coefficient.

On the other hand, we define pi, 0 ≤ pi ≤ 1, to measure the indirect protective effects of i-
vaccinated individual against infection by virus y (e.g., as described for influenza and SARS-CoV-2
in [12], additionally [17], found a significant reduction in the odds of testing positive for COVID-19
in patients who received an influenza vaccine compared to those who did not receive the vaccine. In
pediatric populations, seasonal influenza and pneumococcal vaccination may have protective value
in symptomatic COVID-19 diseases [18]). This protective effect is modelled by a reduction of the
effective contact rate of virus y when in contact with an immune individual from virus i (ri). We
assume that there are reinfections by both viruses due to the non-lasting immunity conferred by
previous infections. Thus, θk is the loss of immunity rate related to virus k. To simplify the model,
we assume that θ, the loss of immunity rate once an individual becomes immune from both viruses,
is a constant and does not depend on the order of the infections. Other parameter descriptions are
shown in Table 1.

Parameter Parameter description Units

βk(t) time-dependent effective contact rate of virus k time−1

α reduction in susceptibility for superinfection
φk effective vaccination rate against virus of type k time−1

qEk
effective target coverage (ETC)

T time to achieve a coverage rate φk given qEk
time

pi protective effect against infection by the virus y
ηk recovery rates from virus k for primary infections time−1

ωk recovery rates from virus k for secondary infections time−1

θk loss of immunity rate related to virus k time−1

θ loss of immunity rate once an individual had both time−1

infections
µ natural mortality rate time−1

Table 1: Definition of model parameters for viral populations k = i and k = y.

We do not distinguish between vaccinated and recovered individuals. Instead, we collect im-
munized individuals into a single compartment; ri and ry contain, therefore, those individuals that
have either been vaccinated against virus i or virus y, respectively or that, alternatively, are re-
covered from a natural infection for either of these two viruses. This modeling choice reduces the
system’s dimensionality.

Effective target coverage definition We define the vaccination rate, φk where k denotes
either virus i or virus y as an effective vaccination rate. In other words, φk incorporates vaccine
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efficacy. Under vaccination, susceptible individuals are constantly leaving this compartment at a
rate −φkS. Thus the probability of having been vaccinated at time t is 1− exp(−φkt). Therefore,
if we wish that a proportion qEk

of the susceptible population is vaccinated at time T , then we set
a vaccination rate such that

φk = − log(1− qEk
)

Tk
, (2)

qEk
is the effective target coverage or ETC with time horizon Tk: if the vaccine has σk% efficacy

and we apply the vaccine to qk% of the population, then only a fraction qEk
= σkqk is effectively

protected where k = i denotes virus i and k = y denotes virus y.

3 Local analysis

First, we briefly characterize some basic properties of the solutions of model eq. (1).

Lemma 3.1 Let the initial condition s(0), i(0), y(0), ri(0), ry(0), yri(0), iry (0), r(0) ≥ 0. Then
the solution (s(t), i(t), y(t), ri(t), ry(t), yri(t), iry (t), r(t)) of eq. (1) is nonnegative for all t > 0.

The proof is immediate and follows from Proposition A.17 in Appendix A of [19].

3.1 Reproduction number

The disease-free equilibrium of eq. (1) always exists and it is given byE0 = (s∗, i∗, y∗, r∗i , r
∗
y, y
∗
ri , i
∗
ry , r

∗)
where

E0 =

(
s∗, 0, 0,

φis
∗

µ+ θi + φy
,

φys
∗

µ+ θy + φi
, 0, 0,

s∗

θ + µ

(
φiφy

µ+ θi + φy
+

φyφi

µ+ θy + φi

))
, (3)

with

s∗ =
H

H + (µ+ θ + φy) (µ+ θy + φi)φi + (µ+ θ + φi) (µ+ θi + φy)φy
,

where H = (µ+ θ) (µ+ θi + φy) (µ+ θy + φi). Note that the susceptible population at the disease-
free equilibrium depends on the parameters for coverage and immunity for both viruses .

Given the interaction of both viruses, their reproduction numbers give information on conditions
for coexistence, competitive exclusion, or extinction. In what follows, we give a first characterization
for these properties. When the diseases have not yet invaded the host population, but the host is
vaccinated against both viruses, we compute the vaccine reproduction number. We proceed as in
[20] to obtain:

F =


βis

∗ 0 0 βis
∗

0 βys
∗ βys

∗ 0
0 (1− pi)βyr

∗
i (1− pi)βyr

∗
i 0

βir
∗
y 0 0 βir

∗
y

 , V =


ηi + µ 0 0 0

0 ηy + µ 0 0
0 0 ωy + µ 0
0 0 0 ωi + µ

 ,

Here, s∗, r∗i and r∗y are defined in eq. (3). Then, the vaccine reproduction number is given by the
spectral radius of matrix FV −1:
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RV = max{Rvi, Rvy}, (4)

where the vaccine reproduction numbers for virus i (Rvi) and virus y (Rvy) are:

Rvi =
s∗βi
µ+ ηi

+
βir
∗
y

µ+ ωi
, Rvy =

s∗βy
µ+ ηy

+
(1− pi)βyr∗i
µ+ ωy

. (5)

Remark: In the absence of vaccination for either one of the viruses, and for constant effective

contact rates, the basic reproductive numbers are the classical expressions of an SIR epidemic, that
is

R0k =
βk

µ+ ηk
, k = i, y. (6)

From eqs. (5) and (6), the order relation kept by Rvk and R0k, with k = i, y, is not obvious.
For example, Figure 2 shows that taking µ = 0.000039139, βi = 0.3, βy = 0.2, ηi = 1/5, ηy = 1/14,
θ = 1/365, θi = 1/365, θy = 1/180, ωi = 1/7, ωy = 1/16, pi = 0.05. Varying both coverages qEk

from 1% to 99% (eq. (2)), it is possible that Rvk > R0k with k = i or y, i.e, vaccine application may
enhance rather than reduce the occurrence of an outbreak. It is therefore, important to find the
conditions that guarantee that only a reduction occurs, i.e., that Rvk < R0k. In Figure 2, the time
horizon to reach vaccination coverages against viruses i and y is fixed on four and three months,
respectively.

Figure 2: Basic reproduction number vs vaccine reproduction number. Panel A - virus
y. Panel B - virus i. In both cases, planes represent the basic reproduction number (6).
Vaccine reproduction numbers (5) are plotted as functions of the effective target coverage
(ETC).

We further characterize the relationship between these reproductive numbers.
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Lemma 3.2 Let Rvk and R0k be defined as in eqs. (5) and (6), respectively; and Mi = s∗+ (ηi+µ)
(ωi+µ)

r∗y

and My = s∗ +
(1−pi)(ηy+µ)

(ωy+µ)
r∗i .

a) min{Mi,My} > 1 if and only if Rvk > R0k, with k = i, y.

b) max{Mi,My} < 1 if and only if R0k > Rvk, with k = i, y.

Mi and My can be interpreted as the effective proportion of susceptible individuals available to
infection by virus i and y, respectively. This lemma underlines the dependence of the order relation
between the reproductive numbers Rvk and R0k, with k = i, y, on the pool of susceptible individuals
for each virus.

Lemma 3.3 The disease-free equilibrium E0 (eq. (3)) is locally asymptotically stable if and only if
Rv < 1.

The proof is given in Appendix A.

3.2 When R0k < Rvk

In lemma 3.2, we have shown that there is a range of parameter combinations such that R0k < Rvk,
with k = i, y, that is, where vaccination is not effective in reducing transmission. In this section we
explore this case. We fix µ = 0.000039139, α = 0.5, ηi = 1/5, ηy = 1/14, θ = 1/365, θi = 1/365,
ωi = 1/21, ωy = 1/56, pi = 0, φi = 0.001603, φy = 0.002341 and θy = 1/180. Thus, Mi = 1.131837
and My = 1.076793.

Figure 3 shows the asymptotic equilibria, when t = 36500, of i and y as function of Rvi and
Rvy. Both effective contact rates values are constant and defined such that 0.4 ≤ Rvi ≤ 1.6
and 0.5 ≤ Rvy ≤ 2, with the initial condition (s(0), i(0), y(0), ri(0), ry(0), iry(0), yri(0), r(0)) =
(0.8498, 0.0001, 0.0001, 0.1, 0.05, 0, 0, 0). Figure 3 illustrates that when Rvk > 1, with k = i, y, both
disease coexist. Moreover, there exist combinations of parameter values such that Rvi < 1 < Rvy
which also implies coexistence (Figure 3A). This phenomenon can be interpreted as a kind of rescue
effect of one virus by the other. Figure 3B also shows this phenomenon. Finally, when Rvk < 1,
with k = i, y, both disease go extinct.

Figure 4 shows a viral coexistence. Here, βi and βy are 0.19 and 0.07, respectively. This case
shows that even when both basic reproductive numbers R0k are less than one, both viruses persist
in the absence of vaccination. This pattern strongly indicates the existence of bi-stability and of a
backward bifurcation [21]. Figure 5 confirms the existence of bi-stability. Here, we fix initial con-
ditions (s(0), i(0), y(0), ri(0), ry(0), iry(0), yri(0), r(0)) = (0.8499 − y0, 0.0001, y0, 0.1, 0.05, 0, 0, 0).
When y0 = 0.0003 both viruses become extinct and the corresponding eigenvalues are (−0.04765819,
−0.01789628,−0.01003914,−0.00559469,−0.00277887,−0.00277887,−0.00146771,−0.00003914).
Coexistence is observed when y0 = 0.00032. For this behavior, the eigenvalues are (−0.1369964,
−0.04611382,−0.01838541,−0.00176767 + 0.01417291i,−0.00176767− 0.01417291i,−0.00038391 +
0.00493473i,−0.00038391− 0.00493473i,−0.00003914).

A backward bifurcation means that the reproduction number being less than unity becomes only
a necessary, but not sufficient condition, for disease elimination. To further explore the existence
of the backward bifurcation shown in Figures 4 and 5, we performed the numerical continuation of
the equilibrium points in appropriate parameter regions.
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Figure 3: Asymptotic equilibria for t = 36500, of i and y as functions of Rvi and Rvy.
Panel A: asymptotic prevalence of i. Panel B, asymptotic prevalence of virus y. In both
panels, the black arrow points to the threshold value of 1. There exist parameters values
allowing coexistence even if Rvk < 1, with k = i or y.

Figure 4: Coexistence of viruses i and y when 1 < Rvi, Rvy. A) Virus i, B) Virus y. Solid
red lines: with vaccination. Dotted blue lines, no vaccination. Coexistence occurs even in
the absence of vaccination. In the inset dots represent reproduction numbers for virus y,
and crosses represent reproduction numbers for virus i. Color codes: Red vaccination is
applied, blue, no vaccination.

Figure 6 shows the numerical continuation of the equilibrium points of coexistence and extinc-
tion for both viruses without vaccination. The continuation is carried out by varying the values
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Figure 5: Bi-stability when R0k < 1, with k = i, y. Red line represents coexistence of both
viruses. Blue line shows extinction. The inset is a zoom of the extinction dynamics.

of βk so that R0k is below and above unity. All numerical results were implemented in Matcom
(Matlab tool) [22].

Figure 6 illustrates the numerical continuation of equilibrium points for viral coexistence and
extinction of both viruses (in the absence of vaccination), projected on the plane βk and virus k
for k = i, y. Parameter values are βi = 0.19, α = 0.5, θi = 1/365, θy = 1/180, θ = 1/365, ηi = 1/5,
ηy = 1/14, ωi = 1/21, ωy = 1/56, pi = 0. Figure 6A shows that the continuation extinction curve of
both viruses given by s is locally stable (solid line) up to the value βy = 0.0714676, corresponding
to a reproduction number of R0y = 1.0054. In curve s as the virus y infection rate increases,
the disease-free equilibrium curve becomes unstable (dashed line). The coexistence curve of both
viruses denoted by iy, is locally stable (solid line) for βy ∈ [0.05814, 0.2697] or, equivalently for
0.81 < R0y < 3.77.

In Figure 6B, we show the numerical continuation of equilibrium points: for viral coexistence
and extinction of both virus projected on the plane i− βy. The disease-free equilibrium branch s,
is locally stable (solid line) until R0y = 1.0054. The stability interval of the branch with the two
virus present, iy (solid line) is 0.81 < R0y < 3.79. Figs. 6C-D illustrate the numerical continuation
of equilibrium points (coexistence and extinction of both virus) projected on the planes y− βi and
i− βi, respectively. In both, the disease-free equilibrium branch s is locally stable (solid line) until
R0i = 1.09, the stability of the coexistence curve starts at R0i = 0.502.

In all cases, we show that a stable coexistence equilibrium exists together with a disease free
equilibrium when R0k < 1. The usual causes of backward bifurcation in some standard deterministic
models are imperfect vaccination [23, 24], the existence of exogenous re-infections [25] or vaccine-
derived immunity waning at a slower rate than natural immunity [26], the role of re-infection [27],
among others [28]. Since the recovery rate from the second infection for both viruses is smaller
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than the recovery rate from the first infection, the influx to the pool of susceptibles occurs in a
time window larger than expected if only one infection were present. This continuous and extended
influx generates a backward bifurcation. Therefore the vaccination strategy must be efficient (large
coverage in as short a time as possible), to prevent the increase in the pool of susceptibles that may
lead to undesirable outcomes.
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Figure 6: Numerical continuation of equilibrium points for viral coexistence and extinction
of both viruses without vaccination as a function of effective contact rate βk and virus k. s
represents the continuation extinction curve of both viruses and iy the coexistence curve.
A) s and iy projected onto the plane βy and y. B) Plane βy and i. C) Plane βi and y. D)
Plane βi and i.

In general, as superinfection increases in strength (α increases), we observe a corresponding slight
decrease in the number of superinfected ( with virus i) hosts and an increase in the superinfector
(with virus y). This is consistent with standard results, [1, 3, 4]. However, there exist parameter
values where an increase of α produces an unexpected change in disease dynamics.

Figure 7 shows the effect of increasing superinfection (α) for a particular initial conditions
and parameter values. As an example we take (s(0), i(0), y(0), ri(0), ry(0), iry(0), yri(0), r(0)) =
(0.8496, 0.0001, 0.0003, 0.1, 0.05, 0, 0, 0). Other parameters are as in Figure 5 to insure that R0k < 1,
with k = i, y. Apparently, there is a threshold value for α that switches the dynamics from
coexistence to extinction in both viruses. For example, if we consider α = 0.5 the corresponding
eigenvalues are (−0.04765819,−0.01789628,−0.01003914,−0.00559469,−0.00277887,−0.00277887,
−0.00146771,−0.00003914) which is consistent with the behavior shown in Figure 7. On the other
hand, when α = 0.4, we observed coexistence and the corresponding eigenvalues are (−0.1369048,
−0.04614704,−0.01837886,−0.00176734 + 0.01417675i,−0.00176734− 0.01417675i,−0.00038428 +
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0.00493486i,−0.00038428− 0.00493486i,−0.00003914).

Figure 7: Effect of increasing the superinfection index (α) when R0k < 1, with k = i, y.
A) Virus i, B) Virus y. Extinction occurs when α = 0.45, 0.50, 0.55 and 0.60. Coexistence
occurs for α = 0.25, 0.30, 0.35 and 0.40. s represents the extinction curve of both viruses
and xy the coexistence curve.

4 A particular case: Influenza and SARS-CoV-2

The year 2020 and early 2021 have been atypical, at least in two ways. One is the SARS-CoV-2
pandemic becoming the dominant and most prevalent respiratory viral infection from the beginning
of 2020. The other is the characteristic absence of a significant number of influenza cases; influenza
activity has been almost null in the southern hemisphere and now in the northern, while the
SARS-CoV-2 pandemic is active [29]. Figure 8 exemplifies this in the case of Mexico. The winter
months (Northern hemisphere) did not produce influenza outbreaks concurrent with COVID-19
resurgence and, thus, hospital capacity in Mexico and elsewhere was not compromised [30, 31]. A
possible explanation for the absence of influenza is that the measures are taken to prevent COVID-
19 (social distancing, mask use, etc.) also prevent influenza transmission. These measures have
limited ability to stop the COVID-19 (aerosols) but may be quite effective at preventing influenza
transmission. Nevertheless, the occurrence of a syndemic episode with co-circulating influenza and
SARS-CoV-2 viruses is still a potential reality.

In this section, Eq. (1) is used to explore co-circulation dynamics between SARS-CoV-2 and
influenza. Given that, to date, there exist no evidence to suggest that a COVID-19 infection has
been observed to displace an influenza infection, we consider α = 0. Baseline parameters are given
in Appendix B.1.
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Figure 8: Atypical influenza evolution. Number of weekly influenza confirmed cases by
epidemiologcal week from 2017 to 2021. Notice that the number of cases since the 22nd
epidemiological week (late May 2020) is almost zero, which is atypical compared to previous
years.

4.1 Reproduction numbers, vaccine efficacy, effective coverage and tem-
porary immunity

The dependence of the vaccine reproduction number (eq. (4)) on vaccination coverage and tem-
porary immunity is explored now. For the rest of this section, we fix µ = 0.000039139, ηi = 1/5,
ηy = 1/14, θ = 1/365, θi = 1/365, ωi = 1/5 and ωy = 1/14. The ETC for vaccine k (qEk

) deter-
mines the corresponding φk through eq. (2), with k = i, y. We fix the effective transmission rates
to βi = 0.32 and βy = 0.15.

Figure 9 shows RV as function of ETC for SARS-CoV-2 (qEy ) achieved in three months (see
eq. (2)) and the average duration of immunity by SARS-CoV-2 (θ−1y ). The protective effect of the
influenza vaccine (pi) are also left free to vary. As expected, the maximum value of Rv is achieved
when there is not vaccination, that is, qEy

= 0. Likewise, we also observe that as increases pi the
maximum value of Rv is lower.

The effect of the vaccine efficacy and time horizon over vaccine reproduction numbers are
presented in Appendix B.2.

4.2 Transmission reduction by vaccination (Rvk < R0k)

Numerical explorations of eq. (1) allows us to postulate the diagram in Figure 10. We observe
that when both vaccine reproductive numbers are less than one, both epidemics die out. When
only one of the vaccine reproductive numbers is greater than one, then the virus associated with
that reproductive number persists and the other goes extinct. Finally, if both vaccine reproductive
numbers are greater than one, coexistence of both diseases ensues. In Appendix B.3 we present
numerical simulations in support of our results of this section.
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Figure 9: Vaccine reproduction number as a function of coverage and average duration of
immunity for SARS-CoV-2. A) No protection from influenza vaccination (pi = 0). B) 50%
protection (pi = 0.5). C) Full protection (pi = 1). Target coverage (TC) for influenza is
35% in 4 months with a vaccine efficacy of 50%. Note that the greater pi is, the higher the
reduction in RV .

4.3 Seasonal contact rates

Finally, we address the issue of the long-term dynamics of the interactions between the two viruses.
Seasonal variability is important to explain intra-annual fluctuations of viral populations [6, 7].
We incorporate seasonality using a periodic effective contact rate βk(t) = βk(1 + ε cosωt) where
ω = 2π

365 for an annual period; βk is the baseline constant effective contact rate for virus k and
ε is the amplitude of the seasonal variation (strength of the periodic forcing, 0 < ε < 1). Due
to the higher reproduction number, the lack of previous immunity, the absence of antivirals or
scarce vaccines, the equal and homogeneous effect of NPIs on reducing the effective contact rate,
henceforth we consider SARS-CoV-2 as the competitively dominant virus in this interaction with
influenza. This behavior is similar to the RSV over influenza.

Figure 11 illustrates alternation patterns between influenza and SARS-CoV-2. Here, parameter
values are βi = 0.45, βy = 0.22, α = 0, θi = 1/365, θy = 1/180, θ = 1/365, ηi = 1/5, ηy = 1/14,
ωi = 1/5, ωy = 1/14, pi = 0.5, ε = 0.8, qi = 0.2, qy = 0.3. Figure 11A shows that influenza and
SARS-CoV-2 have stronger outbreaks every two years in an alternating sequence. This behavior is
related to a reduction in susceptibility and an increase in the strength of the periodic forcing under
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Figure 10: Summary of the asymptotic dynamics when varying both vaccine reproduction
numbers. Scenarios for SARS-CoV-2 and influenza when Rvk < R0k, with k = i, y.

a vaccination scheme. Note also that SARS-CoV-2 peaks are weaker every two years when they
coincide with stronger influenza outbreaks and vice versa, suggesting competition for hosts.

Figs. 11B-C show that this alternating sequence can be preserved even under vaccination for
both viruses. Thus, in this scenario, every two years, the amplitude of the primary infections of
both viruses is alternatively greater and, also, that this behavior may indeed correspond to the
competitive alternation of both viruses.

Other patterns, between both viruses, are shown in Section B.4.

5 Conclusions

Influenza and SARS-CoV-2 will likely be co-circulating in the near future in many countries. How-
ever, vaccination campaigns have not begun at the same time. For example, in the Northern
hemisphere the influenza vaccination campaign started in the Fall 2020, but that for SARS-CoV-2
has begun in early 2021 in many part of the World. Therefore, it is important to carefully plan vac-
cination campaigns and to define a realistic and sufficient coverage to avoid the situation described
in the first paragraphs of this section.

Our results show that the parameters related to SARS-CoV-2, such as the average time of
loss immunity, effective target coverage, and protective effect against infection by the coronavirus,
all are relevant in reducing the vaccine reproduction number (Figure 9). To date, there are some
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Figure 11: Alternation patterns. A) Annual prevalence cycles for primary influenza in-
fections (blue line) and primary SARS-CoV-2 infections (dashed blue line). B) Annual
cycles for primary (orange dashed line) and secondary (orange line) influenza infections.
C) Annual cycles for primary (black dashed line) and secondary (black line) SARS-CoV-2
infections.

parameter estimates for SARS-CoV-2 that remain unknown like temporary immunity and the large
uncertainity of vaccine availability for developing or poor countries.

Our model also shows, as expected, that asymptotic behavior is closely associated with the
vaccine reproduction number for each type of virus. For example, when considering realistic pa-
rameters for influenza and SARS-CoV-2, Figure 10 shows that if the vaccine reproduction number
for influenza is greater than one and the vaccine reproduction number for SARS-CoV-2 is less than
one, then influenza persists, and SARS-CoV-2 is eradicated. Coexistence sets in when both vac-
cine reproductive numbers are above one. This may happen as a consequence, for example, of low
coverage or the time horizon for achieving it is large.

We have also numerically explored the behavior of our model with time-dependent effective
contact rates. We consider it relevant because COVID-19 is a new disease with a transmission
route similar to other viral infections, and in consequence, seasonal variability can explain future
behaviors when considering co-circulation dynamics.

In general, we observe that influenza epidemics have less amplitude and show inter-epidemic
periods with very low prevalence, whereas SARS-CoV-2 epidemics are broader in amplitude and
show a clear endemic phase between outbreaks. In the simulated scenarios, we have observed that
the prevalence of secondary cases (hosts that are susceptible to one but have recovered from the
other virus) of both viruses decreases. The simulations assume an effective contact rate for influenza
higher than that of SARS-CoV-2; however, the force of infection of this last virus (the one with
the higher reproduction number) is much greater since the infection rate depends on the number of

15

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2021. ; https://doi.org/10.1101/2020.12.29.20248953doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.29.20248953
http://creativecommons.org/licenses/by/4.0/


contacts per unit time, but also on the infection probability per contact and the infectious period
which are different for both viruses. Also, we have found that the transmission patterns lead to
alternation of patterns where influenza and SARS-CoV-2 have stronger outbreaks every two years
in an alternating sequence, suggesting competition for hosts (see Figure 11).

In a more theoretical and general case, our results show that the vaccine reproduction number
for some parameter combinations can be higher than the basic reproduction number opening up the
possibility of the undesired outcome where vaccination may have a negative public health impact
than otherwise at the population level. This outcome underlines the importance of the design of
the vaccination strategy and of the availability of vaccines. Figure 2 shows that a low ETC may
push the vaccine reproduction number above the basic reproduction number, resulting in a higher
prevalence than the case without vaccination. This low ETC case is unrealistic in most contexts but
could be of consequence in critical settings such as war, social disturbance, and natural disasters
where coverage may fall short of the desired target.

Finally, in the absence of vaccination, we have shown that there are conditions under which
the basic reproductive numbers do not need to be greater than one for both diseases to coexist
(Figure 4). The above confirms the existence of bistability and of a backward bifurcation where
for this special case, the recovery rate from the second infection for both viruses is slower than the
recovery rate of the first infection. For this same situation, when R0k < 1 k = i, y, there are initial
conditions where superinfection can switch the stability of equilibria: low α gives coexistence and
higher α, extinction (see Figure 7).
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Appendix A Local stability of disease-free equilibrium

To prove lemma 3.3, we compute the jacobian matrix of eq. (1) and evaluate it at disease-free
equilibrium E0 (eq. (3)). Thus:

JE0 =

(
A B
C D

)
,

where,
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A =


− (µ+ φi + φy) −βis∗ −βys∗ θi

0 βis
∗ − (ηi + µ) 0 0

0 0 βys
∗ − (ηy + µ) 0

φi ηi − (1− pi)βyr∗i − (φy + θi + µ)

 ,

B =


θy −βys∗ −βis∗ θ
0 0 βis

∗ 0
0 βys

∗ 0 0
0 − (1− pi)βyr∗i 0 0

 , C =


φy −βir∗y ηy 0
0 0 (1− pi)βyr∗i 0
0 βir

∗
y 0 0

0 0 0 φy

 ,

D =


− (φi + θy + µ) 0 −βir∗y 0

0 (1− pi)βyr∗i − (ωy + µ) 0 0
0 0 βir

∗
y − (ωi + µ) 0

φi ωy ωi − (θ + µ)

 .

Then, the characteristic polinomial of the JE0
is

pJE0
(λ) = pi(λ)× py(λ)× p1(λ),

with

pi(λ) = λ2 −
[
βis
∗ − (ηi + µ) + βir

∗
y − (ωi + µ)

]
λ+ (ηi + µ) (ωi + µ) (1−Rvi) ,

py(λ) = λ2 − [βys
∗ − (ηy + µ) + (1− pi)βyr∗i − (ωy + µ)]λ

+ (ηy + µ) (ωy + µ) (1−Rvy) ,

p1(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4.

a1 = A1 +B1 + C1 +D1,

a2 = A1(B1 + C1 +D1) + C1D1 +B1(C1 +D1)− φyθy − φiθi,
a3 = A1(C1D1 +B1(C1 +D1)− φyθy) +B1C1D1 − 2φyφiθ − φyθyD1

− φiθi(C1 +D1),

a4 = A1B1C1D1 −A1φyφiθ −A1D1φyθy − φiC1(θiD1 + θφy),

where
A1 = φy + θi + µ, B1 = φy + φi + µ, C1 = φi + θy + µ, D1 = θ + µ.

We observe that a1, a2, a3, a4 > 0 and a1a2a3 − a23 − a21a4 > 0. Hence, p1(λ) satisfying the
RouthHurwitz criterion. In consequence, all roots of p1(λ) have negative real parts. Likewise, it
is clear that all roots of pk(λ) are negative if and only if Rvk < 1, with k = i, y. Therefore, all
eigenvalues of JE0

have negative real parts if and only if Rv < 1.

Appendix B Influenza and SARS-CoV-2

B.1 Model parametrization

To explore numerical scenarios from Influenza and SARS-CoV-2, we estimate the baseline parame-
ters from bibliographical sources. According to [32], for seasonal influenza the median reproduction
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number is 1.28 and that for SARS-CoV-2 is 2.79, but sources report large variability [33]. Likewise,
[10] citing several sources, reports an R0 for influenza in the range 1.06–3.4 with a mean of 1.68.
The same source gives an incubation period in the range of 1–6.3 days with a mean of 2.61 and an
infectious period (ηi) range of 1–9 days with a mean of 4.58 days. For SARS-CoV-2, [34] reports
an incubation period of 3 to 4 days and an infectious period (ηy) of 4–5 days but [10] gives an
incubation period in the range 1.9 to 14.7 days with a mean of 5 days, and an infectious period in
the range 7–35 days with a mean of 15.2 days.

Influenza vaccine efficacy varies every year. For 2019–2020 the [35] reports σi = 0.29 but in 2010-
2011 σi = 0.6. [36, 37] have argued that efficacy declines because of waning immunity that may
last 6 months for influenza A(H1N1) and influenza B and at least 5 months for influenza A(H3N2).
Besides this reported efficacies we are postulation a parameter pi that mimics a protective role
conveyed by influenza vaccination against SARS-CoV-2 infection. This hypothesis is based on the
work of [38] that reports that protective influenza vaccination does not negatively affect the risk of
contracting coronaviruses. We explore the possibility that the effect is positive, thus conferring a
reduction in the risk of SARS-CoV-2 infection.

For SARS-CoV-2, several vaccines have been deployed with efficacies in the range of 50-95%
with more likely scenarios of 70%. The Pfizer, Moderna vaccines have efficacies at the upper end of
this interval. Astra-Zeneca vaccine efficacy is around 75%. On the other hand, coverage has three
basic scenarios: low 20%, medium 50%, and high 80%. Given the form in which we are modeling
coverage, we set up scenarios where the above percentages are reached after T = 90, 180 and 365
days. We assume that SARS-CoV-2 immunity ranges from half a year to lifelong, with a more likely
scenario of one year. These estimates are largely based on data on immunity to other coronaviruses
[39]. Currently, whether past infections will prevent severe COVID-19 on re-infection to SARS-
CoV-2 is not known.

B.2 Reproduction numbers, vaccine efficacy, effective coverage and tem-
porary immunity

Figure B.2.1: behavior of the vaccine reproduction number (purple surface) and vaccine repro-
duction number for SARS-CoV-2 (orange surface) for , θy = 1/180, vaccine efficacy is 95% (Fig-
ure B.2.1A) and target coverage is 20% (Figure B.2.1B). Other parameters as in Figure 9. Both
figures show the importance of a quick vaccination campaign (time horizon close to zero) to effec-
tivelly reduce Rvy. Figure B.2.1A: there is a threshold value of target coverage after which Rv is
constant. (Rvi does not depend on target coverage and time horizon for SARS-CoV-2 vaccination).
Figure B.2.1B shows a similar behavior for SARS-CoV-2 vaccination decreases.

B.3 Transmission reduction by vaccination (Rvk < R0k)

To illustrate some specific scenarios of Section 4.2, we fix µ = 0.000039139, α = 0, ηi = 1/5,
ηy = 1/14, θ = 1/365, θi = 1/365, ωi = 1/5, ωy = 1/14, pi = 0.5, φi = 0.001603, φy = 0.002341
and θy = 1/180. The effective contact rates are constant but different in each scenario.

Figure B.3.1 shows SARS-CoV-2 persistence. βi and βy are 0.3 and 0.2, respectively, giving
Rvi < 1 < Rvy. In Figure B.3.1A red line represents dynamics under vaccination. Blue lines,
without vaccination. Vaccine coverage reduces the prevalence of SARS-CoV-2, with the extinction
of influenza (Figure B.3.1A). Influenza persists and SARS-CoV-2 goes extinct when Rvy < 1 < Rvi.
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Figure B.2.1: Reproduction number behavior. A) Reproduction numbers as a function of
target coverage and time horizon for SARS-CoV-2 vaccination. B) Reproduction numbers
as a function of vaccine efficacy and time horizon for SARS-CoV-2 vaccination. Target
coverage for influenza is 35% in 4 months with a vaccine efficacy equal to 50%.

Figure B.3.1: Extinction of influenza and persistence of SARS-CoV-2 with simultaneous
vaccination. In the inset dots represent SARS-CoV-2 reproduction numbers, and crosses
influenza reproduction numbers. Color codes: Red vaccination is applied, blue, no vacci-
nation. A) Proportion of individuals infected with influenza. B) Proportion of individuals
infected with SARS-CoV-2. Solid red lines represent disease dynamics when vaccination
for both viruses is simultaneous. Dashed blue lines show dynamics without vaccination.

Figure B.3.2: βi and βy are 0.35 and 0.2, so both reproductive numbers greater than one. En-
demic equilibrium levels in the presence of vaccination are reduced compared to the no vaccination
case (dashed blue lines).
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Figure B.3.2: Coexistence of influenza and SARS-CoV-2. A) Proportion of infected indi-
viduals with influenza. B) Proportion of infected individuals with SARS-CoV-2. Solid red
lines: vaccine application. Dashed blue lines: no vaccination.

B.4 Seasonal contact rates

Figure B.4.1: alternating outbreaks. βi = 0.4, βy = 0.2, α = 0, θi = 1/365, θy = 1/365, θ = 1/365,
ηi = 1/5, ηy = 1/14, ωi = 1/5, ωy = 1/14, pi = 0.5, ε = 0.9. Figure B.4.1A: time trajectory of
both viruses with vaccination. Outbreaks alternate in time with influenza oscillations presenting
narrower amplitudes. In contrast, SARS-CoV-2 outbreaks are broader. Both present inter-epidemic
periods with very low prevalence. Epidemic outbreaks do not overlap. In secondary infections the
alternation of patterns persists but prevalence of both viruses decreases (see Figs. B.4.1B-C): the
effect of the vaccine is observed in SARS-CoV-2 and influenza, according to the magnitude of the
first outbreak of primary and secondary infections of both viruses.

Every year influenza arrives in waves with each new influenza epidemic produced, in general, by
a different viral strain in a process of lineage or variant replacement [40]. To mimic this situation
in a simple, yet reasonable way, we aggregate all the influenza strains as a single influenza epidemic
and allow for reinfections given the assumption that temporary immunity against influenza lasts
one year. With this simplification, our model produces an annual pattern driven by the yearly
weather variability.

Figure B.4.2A: Vaccination induces a synchronized oscillatory pattern in both viruses now
strongly associated to the strength of the periodic forcing. This periodic behavior is also reflected
in secondary infections (see Figs. B.4.2B-C). For this scenario, parameter values are βi = 0.48,
βy = 0.25, α = 0, θi = 1/365, θy = 1/180, θ = 1/365, ηi = 1/5, ηy = 1/14, ωi = 1/5, ωy = 1/14,
pi = 0.5, ε = 0.5 qi = 0.2, qy = 0.3.

B.5 Sensitivity analysis

For completeness, a variance based sensitivity analysis known as Sobol method [41, 42] was con-
ducted to evaluate the parameters’ influence on the model’s state variables. A global sensitivity
analysis assumes that the output of a system is a function of a set of inputs (parameters). By
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Figure B.4.1: Alternating outbreaks. A) Numerical simulation of primary influenza in-
fections (blue dashed line) and primary SARS-CoV-2 infections (blue line). B) Primary
(dashed orange line) and secondary influenza (orange line) infections. C) Primary (dashed
black line) and secondary SARS-CoV-2 infections (black line).

assuming that the vector of parameters is a random variable, the output is also a random variable.
The total variability of the output, induced by the variability of the inputs, is decomposed in pro-
portions associated with individual or sets of parameters. The higher the proportion of variability
caused by changes in a specific parameter, then the higher the sensibility of the model to that
parameter. θ, θi, θy, φi, φy, pi, βi, βy vary uniformly in the ranges presented in Table B.5.1, while
parameters ηi = 1/5, ηy = 1/14, ωi = 1/5 and ωy = 1/14 are held constant.

Parameter Lower bound Upper bound

pi 0 1
βi 0 0.4
βy 0 0.3
φi 0 1/180
φy 0 1/365
θ 1/540 1/180
θi 1/540 1/180
θy 1/365 1/180

Table B.5.1: Parameter ranges for the sensitivity analysis.

Figure B.5.1: Sobol indices for primary infections of both virus. For influenza (i), βi is the
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Figure B.4.2: Synchronized outbreak patterns. A) Annual prevalence cycles for primary
influenza infections (blue dashed line) and primary SARS-CoV-2 infections (blue line)
B) Annual cycles for primary (orange dashed line) and secondary (orange line) influenza
infections. C) Annual cycles for primary (black dashed line) and secondary (black line)
SARS-CoV-2 infections.

most important parameter, with its individual influence decreasing over time. φi is the second
most influential parameter followed by βy. This implies that changes in vaccination schemes are
indeed important to control influenza. In the case of the SARS-CoV-2 (y) virus, the most domi-
nant parameter is βy while the influence of the others is very small. Figure B.5.2: Sobol indices
for secondary infections. It can be seen that the influence of the parameters on primary and sec-
ondary infections of influenza are very similar.In the case of SARS-CoV-2 secondary infections, the
protective effect gained from influenza (pi) is only below βy in terms of importance.

We also perform a sensitivity analysis for the vaccine reproduction numbers Rvi and Rvy,
Figure B.5.3. For each disease, the parameter that changes the most the reproduction number
is the corresponding contact rate. The other parameters that show an important effect are the
vaccination coverage φi and φy which, of course, depend on the corresponding ETC qEi and qEy .
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Figure B.5.1: Sensitivity analysis. Left panels show the first order Sobol indices for the
individual effects on influenza prevalence i (upper left panel) and SARS-CoV-2 prevalence
y (lower left panel) at each point in time. Right panels show total Sobol indices, for the
effect of each parameter and its interactions with all other parameters.
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Figure B.5.2: Sensitivity analysis. Left panels show the first order Sobol indices for the
individual effects on secondary influenza prevalence iry (upper left panel) and secondary
SARS-CoV-2 prevalence yri (lower left panel) at each point in time. Right panels show
total Sobol indices, for the effect of each parameter and its interactions with all other
parameters.

Figure B.5.3: Sensitivity analysis for the vaccine reproduction numbers for influenza Rvi

(A) and SARS-CoV-2 Rvy (B).
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