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Abstract

The effective reproduction ratio r(t) of an epidemic, defined as the average
number of secondary infected cases per infectious case in a population in
the current state, including both susceptible and non-susceptible hosts,
controls the transition between a subcritical threshold regime (r(t) < 1)
and a supercritical threshold regime (r(t) > 1). While in subcritical
regimes, an index infected case will cause an outbreak that will die out
sooner or later, with large fluctuations observed when approaching the epi-
demic threshold, the supercritical regimes leads to an exponential growths
of infection.

The super- or subcritical regime of an outbreak is often not distin-
guished when close to the epidemic threshold, but its behaviour is of ma-
jor importance to understand the course of an epidemic and public health
management of disease control. In a subcritical parameter regime unde-
tected infection, here called “imported case” or import, i.e. a susceptible
individual becoming infected from outside the study area e.g., can either
spark recurrent isolated outbreaks or keep the ongoing levels of infection,
but cannot cause an exponential growths of infection. However, when
the community transmission becomes supercritical, any index case or few
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“imported cases” will lead the epidemic to an exponential growths of infec-
tions, hence being distinguished from the subcritical dynamics by a critical
epidemic threshold in which large fluctuations occur in stochastic versions
of the considered processes.

As a continuation of the COVID-19 Basque Modeling Task Force,
we now investigate the role of critical fluctuations and import in basic
Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Recovered
(SIR) epidemiological models on disease spreading dynamics. Without
loss of generality, these simple models can be treated analytically and,
when considering the mean field approximation of more complex under-
lying stochastic and eventually spatially extended or generalized network
processes, results can be applied to more complex models used to describe
the COVID-19 epidemics. In this paper, we explore possible features of
the course of an epidemic, showing that the subcritical regime can explain
the dynamic behaviour of COVID-19 spreading in the Basque Country,
with this theory supported by empirical data data.

1 Introduction

The SHARUCD modeling framework developed within the Basque Modeling
Task Force (BMTF) to assist the Basque Health managers and the Basque
Government during the COVID-19 responses is an extension of the basic epi-
demiological Susceptible-Infected-Recovered (SIR-type) models, and was able
to describe the COVID-19 epidemic in terms of disease spreading and control,
providing projections on the national health systems necessities during the first
wave of the pandemic. The model was then refined to describe the disease
transmission during the country lockdown [1, 2, 4] and is used, up to date, to
monitor disease dynamics after social distancing measures started to be lifted
(from May 4 - phase 0 and from May 11 -phase 1 towards the “new normality”)
[5].

The lifting of the lockdown in summer 2020 led to an increase of the infection
rate with growth factors and momentary reproduction ratio hovering around
the epidemic threshold (of decrease to extinction versus exponential growths).
An import factor was included in the model dynamics after the full lockdown
lifting in July. Although this factor was not important during the exponential
growths phase in March, 2020, undetected imported infections play a major
role during the stochastic phase pre/post exponential phase, where only small
number of infections are detected. It refers to infected individuals (most likely
asymptomatic) coming from outside the studied population (either an infected
foreigner visiting the region or an infected Basque returning to the country) that
are not detected by the current testing strategy. Note that when the community
transmission is under control (social distancing, masks and hygienic measures),
the import factor does not contribute significantly to the epidemic, only starting
isolated outbreaks (variable sizes depending on the momentary infection rate),
but not driving the current epidemic into a new exponential growths phase.

The effective reproduction ratio r(t) threshold of an epidemic controls the
transition between a subcritical regime (below the epidemic threshold) and a
supercritical regime (above the epidemic threshold). While the super- or sub-
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critical regime of an outbreak is often not distinguished, its behaviour is of
major importance to understand the course of an epidemic since in subcritical
regimes, an index infected case will cause an outbreak that will die out sooner or
later, with large fluctuations observed when approaching the epidemic thresh-
old, while the supercritical regimes leads to an exponential growths of infection.
Although nowadays r(t) is largely used in the public media, an eventually bet-
ter measure of decline or increase of an epidemic is the exponential growth rate
λ(t), being negative below threshold or positive above threshold, see [2] for a
more detailed discussion.

As a continuation of the COVID-19 Basque Modeling Task Force (BMTF),
we now investigate the interplay of large fluctuations on disease spreading dy-
namics [6] and import in sub-threshold community spreading regime, charac-
terized by increased mobility but still under restrictions like wearing masks and
social distancing. Without loss of generality, we first describe the interplay be-
tween critical fluctuations and import in simple models of Susceptible-Infected-
Susceptible (SIS) and Susceptible-Infected-Recovered (SIR) types, taking into
account previous results on directed percolation [10, 9] and dynamical percola-
tion [7, 8], to characterize the dynamics of large fluctuations during an epidemic.
As this same dynamical behaviour is also observed in more complex models,
the results are then generalized to the current SHARUCD modeling framework
to explore possible features of the course of the COVID-19 epidemic in the
Basque Country. The analysis is mainly based on the development of severe
cases, i.e. hospitalizations, intensive care unit (ICU) admissions and deceased
cases, while the variation of total number of positive COVID-19 cases is largely
due to changes in testing capacities.

Sub-threshold community spreading leads to a decline in number of disease
cases, but a small import factor is able to ignite isolated outbreaks, occasion-
ally of large sizes, which can lead to a stationary number of new cases in mean
field approximation, even when large fluctuations around it are observed. These
fluctuations are larger when closer to the epidemic threshold and such increased
numbers of cases are treated by many people as “second waves” and compared
with the first exponential phase in March and April, 2020, where community
spreading was definitely well above the critical threshold. Here, we reserve this
term to a new exponential growths phase expected in a supercritical community
spreading regime, where the number of cases are significantly larger than the
actual cases referring to subcritical dynamics with import. The 20 days pre-
dictions provided to the Basque Health managers and the Basque Government
were obtained by assuming that the community transmission is under control,
below the threshold, not increasing to a new exponential phase at the time.
That has being proven to hold since August 2020 well into late October 2020.

With real data supporting the theory, in this paper we show that the sub-
critical regime can explain the dynamic behaviour of COVID-19 epidemic in
the Basque country, at least until end of October and beginning of November
2020, when new lockdown measures where implemented. This result might ex-
plain the COVID-19 epidemic behaviour in many other European regions as
well during the late summer period and autumn. The idea that this “second
wave” was under control as the new lockdown measures contribute to decrease

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 22, 2021. ; https://doi.org/10.1101/2020.12.25.20248840doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.25.20248840
http://creativecommons.org/licenses/by-nc-nd/4.0/


the community transmission ever more, eliminating larger subcritical fluctua-
tions, brings up the discussion of an eventually “third wave” while the control
measures are again relaxed. Here we also discuss the current epidemiological
scenario of COVID-19 in the Basque Country, showing that although it is still
early to know to which lower level the disease transmission will develop, the
current model continues to predict stationarity for all variables. Community
transmission might have reach the supercritical regime during winter due to well
known seasonal effect of other respiratory diseases if new lockdown measures
were not taken.

The presently updated version of this manuscript as of March 2021 add
to the original version of December 2020 a short discussion on reproduction
ratio r(t) hovering around the epidemic threshold, even though the community
spreading is constant below threshold β . βc, due to the fluctuations of isolated
outbreaks after imported index cases. Also added as appendix is an inspection
of COVID-19 data of some European countries between introduction in Spring
2020 until late autumn 2020.

2 The role of import in epidemiological systems close
to the epidemic threshold

2.1 A general SIR epidemiological model with critical threshold
and import

Basic epidemiological systems which capture many important issues of disease
spreading dynamics can be phrased as SIR-type models, with a population of
N individuals divided into susceptible individuals S to an infectious disease
under consideration, infected individuals I and recovered individuals R which
are either immune against the disease during their entire life, like in childhood
diseases, or return to become susceptible again, often due to mutations of the
pathogens, or gradual waning immunity of the hosts.

In the studied population N , besides considering that infected individuals
transmit the disease to a susceptible individual, which then turn to be infected
as well, we also consider an import factor which refers to the possibility of
susceptible individuals inside the studied population becoming infected by an
undetected infection chain started outside the studied population, i.e. infected
individuals (most likely a mobile asymptomatic infected individual), either a
foreigner visiting the region or a local returning to the country without being
detected by the current testing strategy.

The basic model for the expected mean number of susceptible, infected and
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recovered individuals reads as follows

d

dt
S = αR− β

N
S(I + %N)

d

dt
I =

β

N
S(I + %N)− γI (1)

d

dt
R = γI − αR

with transition probabilities per time unit of infection rate β, recovery rate γ
and waning immunity rate α and as a less well studied feature the import ratio
%.

For our COVID-19 modeling framework we consider in the infection class I
a division into mild/asymptomatic individuals A and severe/hospitalized indi-
viduals H, as well as disease induced death D and intensive care unit admitted
patients U . These classes are recorded as incidences of cumulative cases C,
giving a SHARUCD modelling framework to be compared with the empirical
data at hand. For complete descriptions of this modelling framework and its
application to COVID-19 epidemic in the Basque Country, see [1, 2, 4, 5].

The above given dynamical system, Eq. (1), describes the mean field ap-
proximation of an underlying stochastic process given by the dynamics of prob-
abilities p(S, I,R). Since S(t) + I(t) + R(t) = N we only need to consider
p(S, I), and from this we can conclude R = N −S − I. The process is given by
the following governing equation system,

d

dt
p(S, I, t) = β

S + 1

N
((I − 1) + %N) p(S + 1, I − 1, t)

+γ(I + 1) p(S, I + 1, t) (2)

−
(
β
S

N
(I + %N) + γI

)
p(S, I, t)

called master equation in chemistry and physics and known, in mathematics, as
state discrete and time continuous Markov process, here for long term immunity
α→ 0, described in more detail e.g. in [6] and its references to earlier literature.

With an appropriate numerical scheme, the so-called Gillespie algorithm
also known as minimal process algorithm, we can immediately investigate the
qualitative behaviour of such an epidemiological system as shown in Fig. 1.

We start the simulations each time with one infected individual which acts as
a first index case for a small or larger outbreak, dieing out after some time due to
the infection rate being smaller than the recovery rate, i.e. the epidemiological
system is subcritical.

Even though the initial outbreak from this first index case terminates ear-
lier or later, due to the small probability to generate new index cases, new
outbreaks are generated by index cases from import %, often dieing out quickly
but occasionally causing big excursions into avalanches of large numbers of in-
fected, since the community spreading β is just below the threshold of negative
growth, i.e. ε := β − βc here with βc = γ is negative ε < 0, versus positive
growth where ε > 0.
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Figure 1: Ensemble of realizations of the number of infected with very wide
excursions into large outbreak regions. Parameters are in the subcritical regime
but close to the epidemiological threshold. Mean dynamics and variance dynam-
ics give the quantification of the fluctuations. Black line gives mean dynamics
of 〈I〉, and red line gives two standard deviations on top of the mean, obtained
from the variance dynamics of V (t) := 〈I2〉 − 〈I〉2. The large excursions of
some of the stochastic realizations indicate long tail distributions rather than
Gaussian distributions around the mean values (remembering that µ ± 2 · σ
gives roughly 95% of the Gaussian distribution). The essential parameters are
β = 0.95 · γ, close to the epidemiological threshold of β = βc = γ and small
import % = e−15.

This import factor was included in the SHARUCD modeling framework
right from the beginning of the pandemic, in March 2020, but the initially avail-
able data could not give any information at the starting of the epidemic, when
usually undetected imported infections play a major role on the development of
the outbreak. Although this factor was no longer important during the expo-
nential growth phase, it has become essential again during the lockdown-lifting
phase in summer/autumn 2020, to understand the dynamics in combination
with ε = β − γ . 0, the sub-threshold community spreading, whereas an al-
ready new “second wave” would lead with ε� 0 to a new exponential growth,
which was eventually to be expected in winter due to seasonality observed in
respiratory diseases, naturally increasing the community spreading β(t).

2.2 The SIS model with import and the SIR general epidemic
process (GEP): well studied limiting cases around critical-
ity

From the above described SIR model with import, Eq. (1), and its stochastic
counterpart, Eq. (2), some interesting simplified models can be derived as
special cases in certain dynamical regimes, which have been studied extensively
in the literature over decades.

From the SIR model with import the SIS model with import can be derived
by neglecting the recovered class or assuming the transition from R to S as
infinite α → ∞ and with conserved population size N = S(t) + I(t), hence
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S = N − I, given by its mean field deterministic version

d

dt
I =

β

N
(N − I)(I + %N)− γI (3)

and from this the corresponding stochastic process is easily elaborated as well
[11].

The SIS epidemiological model even without import is considered as a
paradigmatic system for a whole universality class in its dynamical behaviour
around the critical threshold, directed percolation [10], and the role of import
as a conjugated field around the critical behaviour was more recently investi-
gated in great detail in [9]. The behaviour of systems around critical thresholds
has been investigated in equilibrium thermodynamic systems like the Ising spin
system since a century and more recently the notions have been transfered to
non-equilibrium critical threshold behaviour, where the SIS model in its spa-
tially extended version is a prime example. The conjugated field in the Ising
model is an external magnetic field giving preference to one direction of mag-
netization of the system over the other.

The spatially extended SIS system in its simplest form is given by the
stochastic process with probabilities of configurations considering one or non
infected Ii at each site i of any network or spatial grid

d

dt
p (I1, I2, ..., IN , t)

=

N∑
i=1

β

 N∑
j=1

JijIj

 Ii p(I1, ..., 1− Ii, ..., IN , t)

+

N∑
i=1

γ(1− Ii) p(I1, ..., 1− Ii, ..., IN , t)

−
N∑
i=1

β
 N∑
j=1

JijIj

 (1− Ii) + γIi

 p(I1, ..., Ii, ..., IN , t)

again with infection rate β and recovery rate γ and an adjacency matrix Jij
specifying which network site j is neighbor to i and can be a link of infection,
see [6] for detailed description and further considerations of such systems. Any
more extended SIR system in spatially extended stochastic settings can be given
respectively, see e.g. [12].

Such systems show around the critical threshold a power law behaviour with
universal power law exponents numerically equal for whole classes of models
with only few common features like dimensionality, i.e. connectivity in gen-
eralized networks, and existence e.g. of absorbing states. In the case of the
universality class of directed percolation an absorbing state is needed, here in
the SIS system characterized by zero number of infected, from which no new
infection can be generated, see for a general discussion e.g. [9]. When the con-
nectivity of a spatial system or network is large enough the exponents reach
their mean field values which correspond to the dynamic behaviour of the above
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described non-spatial systems. This threshold of connectivity can be reached
either in regular spatial systems above a certain dimensionality, the critical di-
mension, in the case of directed percolation e.g. four dimensional systems, or
by spreading with jump distributions with diverging variance, i.e. Lévy flights
in superdiffusive spreading systems. On superdiffusive spreading in the frame-
work of the above mentioned Eq. (4) see e.g [13] and further references there,
and for the role of such superdiffusive connectivity in the transition between
spatial two-dimensional critical behaviour to mean field behaviour see as a very
recent publication [8].

Here we only consider the mean field versions of such epidemiological sys-
tems, since most of the time a high mixing of populations drive most real world
epidemiological systems towards the mean field behaviour, so that this is always
the starting point of any analysis, but we always consider the mean field dynam-
ics as limiting case of much wider dynamics in any connectivity stochastic sys-
tem, where around critical thresholds only few system properties are important
and any microscopic details become unimportant under the large fluctuations
observed around threshold. Further we consider the SIS dynamic as an initial
studying field since here many aspects at least in its mean field behaviour can
be studies analytically, developing the methodological terminology in a rigorous
and controlled way, and then relying in more complex systems increasingly on
numerical simulations and eventually approximations as in the case of critical
exponents derived from field theoretical analyses, known in theoretical physics
for many decades and increasingly being applied also to non-equilibrium phase
transitions.

In [10] the notion of stochastic processes like the SIS dynamics being in
one universality class with the same critical exponents for all models in this
class was established, and the exponents were characterized as being the ones
of “directed percolation”, i.e. percolation in spatial systems with certain di-
mensionality plus one dimension of time, which has one direction but does not
allow infection back in time. Its mean field dynamics is given by an equation
equivalent to Eq. (3) with % = 0. Small perturbations and scaling around
criticality can be investigated by including the import % > 0 as a conjugated
field, like an external magnetic field in the Ising spin universality class, as has
been extensively investigated in [9].

On the other hand another universality class has been attributed to the SIR
epidemiological system spreading from an initial source into a large or asymp-
totically infinite system of susceptible with critical exponents equal to the ones
observed in ordinary percolation for the remaining cluster of recovered after a
wave of infection spreading out, the universality class coined as “dynamical per-
colation”, see [7]. While this universality class has been studied in great detail
also for super-diffusive spreading giving an interpolation of dynamic behaviour
and hence critical exponents between purely local and mean field behaviour,
see e.g. [8] and many related references there, no consideration of the role of
import has come yet to light for the case of dynamical percolation, so that we
study here with the notions of the SIS system with import also now the SIR
initial spreading critical behaviour under the influence of import, in order to
understand qualitatively the behaviour in more complex models suitable for the
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description e.g. of the spreading of COVID-19 into an initially susceptible pop-
ulation with not yet having reached any solid evidence of growths restriction by
e.g. herd immunity which would ultimately limit the availability of “resources”
in form of susceptibles.

The SIR system in its spreading phase is again a limiting case of Eq. (1),
namely this ”general epidemic process” (GEP) [7] follows from the SIR model
via the limits of vanishing waning immunity α = 0 and vanishing import % = 0
as

d

dt
S = − β

N
SI

d

dt
I =

β

N
SI − γI (4)

d

dt
R = γI

hence leaves a remaining cluster of recovered R after the infected spread out,
which are not removed due to long lasting immunity, with a time scale α−1 →∞
much longer than the infection process. Again, spatially extended stochastic
versions of this GEP can be given, and its non-spatial stochastic and deter-
ministic mean field counter parts give a good analysis when the connectivity
between individuals is reasonably large.

2.3 The SIR model with import around the critical threshold

The stochastic realizations in Fig. 1 are obtained via the complete stochastic
process described by Eq. (2), such that the susceptible individuals could still
be burned out after a while, once a first index case and subsequent imports
start some outbreaks.

When we assume a large enough pool of susceptibles, as is done in the initial
disease spreading analysis in the GEP giving rise to criticality of “dynamical
percolation” type [7], we obtain from Eq. (2) by assuming that in the initial
phase of an epidemic with nearly the whole population still susceptible S/N ≈ 1
the dynamics for the number of infected is now given by

d

dt
p(I, t) = β(I − 1) p(I − 1, t) + β%N p(I − 1, t) + γ(I + 1) p(I + 1, t)

− (βI + β%N + γI) p(I, t) (5)

from which we can easily calculate the time dependent mean value 〈I〉 :=∑N
I=0 I p(I, t) and its variance V (t) := 〈I2〉 − 〈I〉2 analytically. The results

are given in Fig. 1 for the mean 〈I〉(t) as black line, and from the variance
V (t) we plot two standard deviation above the mean as red line. Since the
distribution is highly non-Gaussian we observe the mean close to the extinc-
tion boundary of zero numbers of infected and any lower variance cannot be
described by the above used method. Further the upper variance is exceeded by
many stochastic realizations in yellow, indicating a long tail distribution typical
for a system close to a critical threshold.
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The analytic expressions are for the mean number of infected, when starting
exactly with e.g. I(t0) = 1 infected,

〈I〉(t) = I(t0) · e−(γ−β)(t−t0) +
β%N

γ − β

(
1− e−(γ−β)(t−t0)

)
(6)

here organized for β < γ, hence controlled community spreading (but also
holding in the exponential growth case β > γ), and for the variance we have

V (t) = V (t0) · e−2(γ−β)(t−t0)

+

(
I(t0)

β + γ

γ − β
− β(β + γ)

(γ − β)2
%N

)
·
(
e−(γ−β)(t−t0) − e−2(γ−β)(t−t0)

)
+

βγ

(γ − β)2
%N ·

(
1− e−2(γ−β)(t−t0)

)
(7)

such that for subcritical behaviour β < γ both, mean value and variance, reach a
finite stationary state, namely the mean value 〈I〉∗ = β

γ−β ·%N and the variance

V ∗ = βγ
(γ−β)2

·%N . Hence no matter how large the import is, it will always reach

a finite level and not explode exponentially.
We first investigate how the behaviour changes for increasing import, see

Fig. 2 a). Also here the mean value and the variance reach a stationary state,
i.e. they level off after an initial increase, as long as the community spreading
is below the epidemiological threshold, i.e. the growth factor ε := β − γ < 0.
When the growth factor of community spreading is above the epidemiological
threshold, i.e. ε > 0, we observe exponential growth, see Fig. 2 c), not limited
by any exhaustion of susceptibles, since we assume S/N ≈ 1.

Then we investigate the dynamic behaviour of the system closer to criticality
under constant import, see Fig. 3. The closer we are to the critical threshold
with its linear growth the longer the mean values stay close to the critical
line, but then subcritically always level off to its stationary state, and above
threshold always finally explode into an exponential phase.

Finally at the critical threshold, i.e. β = βc = γ, we have a linear growth of
the mean number of infected with time, analytically given by

〈I〉c(t) = I(t0) + βc%N · (t− t0) (8)

hence in terms of critical behaviour a power law growth with mean field expo-
nent 1. Since 〈I〉c(t) ∼ t1 we also can infer for the mean number of recovered
〈R〉c(t) ∼ t2, due to the dynamic equation d

dt〈R〉 = γ〈I〉, which confirms the
scale-free dynamical behaviour in form of another power law, see Fig. 4, with
straight lines in double logarithmic plots for 〈I〉c(t) and 〈R〉c(t), and deviations
from this for values smaller and larger ε 6= 0.

For such spreading into an environment of abundant numbers of suscepti-
bles, already without import, one observes the asymptotic behaviour around
criticality given by

〈I〉(t, ε) ≈ tη̂ · F (εt1/ν̂) (9)

with critical power law exponents η̂ and ν̂, see e.g. [8] and there Eq. (15),
holding for small ε→ 0 and long times t→∞ and F a universal scaling func-
tion. The well established values of these critical exponents in 2-dimensional
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Figure 2: Mean dynamics and variance curves (µ± 2σ) and stochastic realiza-
tions of SIR model with import. Increased import % = e−12. Variation of β
with a) β = 0.9 · γ, b) β = βc = γ and c) β = 1.1 · γ.

spatially extended stochastic systems, respectively in mean field approximation
(m.f.) are

η̂d=2 = 0.5844 , η̂m.f. = 0 (10)

and
ν̂d=2 = 1.5078 , ν̂m.f. = 1 (11)

see [8], there Figs. 16 and 19. The mean field exponents can in complete agree-
ment also be read off from our analytical expression, Eq. (6) here. For the
scaling with import no such results are established, but our mean field approx-
imation gives also here an exponent of 1. The scaling with import however has
been well studied in the SIS case, and the exponents there are already in mean
field approximation more non-trivial, deviating from 0 or 1 and hence this SIS
case with import is a good studying field for the concepts described here, see
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Figure 3: For community infectivity very close to criticality β = 0.99 · γ and
β = 1.01 ·γ the solutions appear initially close to the critical line of β = βc = γ,
but finally level off subcritically again, respectively explode into the exponential
phase. Analytic mean field solution from bottom to top for β = 0.9 · γ, β =
0.99 · γ, β = βc = γ, β = 1.01 · γ and β = 1.1 · γ, in all cases import % = e−15

and N = 2 · 106 and γ = 0.05 d−1.

for a good exposure [9], but has to be distinguished from the present case of
relevance, the SIR system in the spreading regime of abundant numbers of sus-
ceptible individuals. A more complete discussion of the framework of scaling
around criticality can be found in the appendices.

2.4 A single stochastic realization of the subcritical SIR model
with import and estimation of its reproduction number r(t)
hovering around the epidemiological threshold

We finally give an example of a single stochastic realization of infected of the
subcritical SIR model with import with parameters as used in Fig. 1. This
example realization we then use as data set to analyze the momentary repro-
duction rate r(t) as described in detail in [2], and as commonly used nowadays
also in the public media to monitor the ongoing COVID-19 epidemical situation.

In Fig. 5 a) one of the realizations of the ensemble of Fig. 1 is shown and for
better orientation also the mean and two standard deviation lines. The present
realization is not untypical since it lies most of the time in the 95% confidence
interval and does not even show the often observed large deviations seen in
Fig. 1, though quite some realizations also die out quickly and eventually later
bounce back due to the small import probability. When we calculate from
such a realization of the subcritical process, remembering that β = 0.95 · γ <
βc, the reproduction ratio r(t) via a sliding window, as described in detail
in [2], we observe that due to the fluctuations in the numbers of infected the
measured reproduction ratio hovers around the epidemiological treshold of rc =
1, sometimes above and sometimes well below one, see Fig. 5 b). For graphical
reasons we only show the first 180 days, but the effect is well visible throughout
the entire time series from Fig. 5 a). The theoretical value for the reproduction
ratio of a simple SIR model without import is r = β/γ as long as the susceptibles
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Figure 4: The mean field solutions for subcritical, critical and supercritical SIR
models with infinite susceptible individuals in natural scale. a) Infected from
bottom to top for β = 0.9 · γ, β = 0.99 · γ, β = βc = γ, β = 1.01 · γ and
β = 1.1 · γ, in all cases import % = e−15 and N = 2 · 106 and γ = 0.05 d−1.
The critical curve shows 〈I〉(t) ∼ t. b) Recovered for the same parameters. The
critical curve shows 〈R〉(t) ∼ t2, which here in natural scale appears still as an
upward bent curve. In c) and d) the mean field solutions for subcritical, critical
and supercritical SIR models with infinite susceptibles in double logarithmic
scale. in c) for the infected with the critical curve in straight line, showing
ln(〈I〉(t)) ∼ 1 · ln(t), and in d) for the recovered, for which the critical curve
shows ln(〈R〉(t)) ∼ 2 · ln(t) which appears now also as straight line separating
the subcritical and the supercritical regimes.

are abundant and not show any signs of being burned out yet. This gives the
green line in Fig. 5 b) below the threshold value of rc = 1.

The simple SIR model without import has the reproduction ratio r = β/γ.
To measure r as indicator of the community spreading, i.e. if the epidemic
is growing or declining in a given study population, one would have to detect
every new imported case as index case and measure all secondary cases from
every index case, especially also the isolated index cases which create none or
eventually one secondary case, to obtain accurate statistics of the community
spreading and its capability of sustaining transmission or not.

This is practically near to impossible in COVID-19 due to many asymp-
tomatic cases never being detected. And any momentarily used empirical mea-
sure of the growth rate r tends to only account for the larger detected outbreaks
and does not distinguish between new community infected cases and cases from
any ”import probability”. Hence they tend to overestimate the reproduction
ratio r, as being defined as production of new cases in a given time interval
devided by the new cases in a previous time interval.

Especially when not distinguishing between community infected and import
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Figure 5: a) Single stochastic realization of the subcritical SIR model with
import and constant infection rate β < βc and b) from this calculated the mo-
mentary reproduction ratio r(t) hovering around the epidemiological threshold of
rc = 1, though the theoretical value for a simple SIR model is the fixed quantity
r = β/γ = 0.95 < 1 for community spreading (green line).

infected there appear conceptual problems: from a disease free state a single
infected new case gives an infinite reproduction ratio when taking the ratio of
new infected over previously infected [20] as basis for any reproduction ratio
calculation, i.e. r̂ = In+1/In.

The way forward here is to simply take the stationary solution of the SIR
system with import, which has on average as many cases in the new infection
period as in the previous infection period, hence the estimated reproduction rate
r̂ is exactly unity (r̂ := In+1/In = I∗/I∗ = 1). Still, the epidemiological system
is subcritical in the sense discussed above of not being exponentially increasing.
This shows once again the limitation of the concept of reproduction ratio, since
the imported cases are eventually reproduced outside the study population, but
do not give any indication of the system under study of exponentially growing or
exponentially declining dynamics. Only a response consideration, i.e. stochastic
excursion outside the stationary mean value and its time to relax to stationarity
could eventually give a better picture of the epidemiological dynamics inside
the study population.

In any case, all classical considerations of reproduction ratios are based on
initial estimations of exponential growth rates of infections, and insecurities
arise mainly from largely unknown next generation times [21], hence the expo-
nential growth rates are of primary interest and often more informative than
reproduction ratios [2]. Ultimately, the question of managing an epidemic is
about exponential growth up to exhaustion of susceptible or exponential decline
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towards a stationary state.
The present use of the term ”import” is quite broad and means any probable

infection of a susceptible of the study population by unknown or unreported
causes, may be by external infection, by unaccounted asymptomatic chains of
infection or even long range infections not accounted for in close contact tracing
considerations. Frequently, in field epidemiology of the present COVID-19 pan-
demic frustrations are expressed about the detection of many sparking events
not linked to any known and securely detected infection chains, highlighting
the need of describing such events statistically in the way done here.

From this observation follows clearly that for any epidemiological system
with community spreading just below the critical threshold it is difficult to esti-
mate the reproduction ratio since this would oscillate above and below threshold
due to purely stochastical fluctuations which are most pronounced around the
critical threshold. In COVID-19 we observe at the moment in many countries
reproduction ratios reported just above or below rc = 1 and relatively frequently
crossing the threshold.

3 COVID-19 epidemiological dynamics in Euskadi,
Páıs Vasco: from the initial phase up to after the
summer lockdown lifting

To model the dynamics of the epidemiological spreading of COVID-19 during
its initially exponential growth phase and into the lockdown control phase we
developed earlier a modelling framework on the basis of simple SIR-type models,
refining to distinguish severe hospitalized cases from mild or even asymptomatic
cases, which might also at times go unnoticed, in a SHAR-type model [4], and
then adjusted to describe additionally available data on intensive care unit
(ICU) admitted cases and deceased in the final framework of SHARUCD models
[1, 2]. Detailed descriptions of models and their adjustments to available data
from the Basque Country can be found in [5].

At the time we included formally already an “import term” as described in
the SIR-type models above, but did not have sufficient information to infer its
role in the dynamics, first due to the large exponential growth and later due
to travel restrictions and a largely controlled system with very low community
spreading, well below the epidemiological threshold. Hence in this initial phase
no import had to be added to explain the ongoing dynamics.

After the lifting of the lockdown measures in summer 2020 an increase of
severe cases was observed, but then leveling off to relatively stable values, while
the increased testing capacities led to a strong increase of positive PCR tested
cases, however mostly cases with mild symptoms or even asymptomatic. Re-
cently, levels of around 80% of asymptomatic cases have been reported among
positive tested [19]. Isolated outbreaks were increasingly detected. In order to
adjust our models to this new scenario given by the data at hand, a new level
of import, from the time of releasing the lockdown, was included, and also a
changing detection rate of mild or asymptomatic cases were investigated. A dy-
namical behaviour analogously to what we observed analytically in the simplest
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SIR-type models with import close to the critical threshold, but still subcriti-
cally, was found. Further we assume that import starts mainly by asymptomatic
infection, since symptomatic and severe cases would be restricted from mobility
or restrict themselves easier than unnoticed infections.

Below we describe briefly the updated models and their dynamical be-
haviour, comparing with data up to end of October 2020, until then no real
signs of a new exponential phase of epidemiological growth were predicted for
the Basque Country and so far not observed. The dynamics follow pretty closely
the pattern which would be expected from the simple models of SIR-type under
import with sub-threshold community spreading, including the large stochastic
fluctuations of a system close to criticality. A more detailed analysis of such
rather large and complex systems as the SHARUCD-type models can only be
performed in due time and will be reported as results to come in. Note, however,
that the qualitative description given here describes the epidemiological system
much better than any model with a second exponential phases, i.e. adjusting
the community spreading with every new stochastic fluctuation.

3.1 Model update of SHARUCD to include analysis of isolated
outbreaks after lockdown lifting

The model to analyze isolated outbreaks contains now import to asymptomatic
infection after lifting of lockdowns and increased detection of asymptomatic due
to intensified contact tracing

d

dt
S = −β S

N
(H + φA+ (1− η)%N)

d

dt
H = η(1− ν)β

S

N
(H + φA)− (γ + µ)H

d

dt
A = (1− η)β

S

N
(H + φA+ %N)− γA

d

dt
R = γ(H + U +A) (12)

d

dt
U = νηβ

S

N
(H + φA)− (γ + µ)U

d

dt
CH = η(1− ν)β

S

N
(H + φA)

d

dt
CA = ξ(1− η)β

S

N
(H + φA+ %N)

d

dt
CR = γ(H + U + ξA)

d

dt
CU = νηβ

S

N
(H + φA)

d

dt
D = µ(H + U)

with time dependent infection rate β, and now also increased import % and
increased detection of asymptomatic cases ξ.

The import is increased from zero initially %0 = 0 to a level %1 > 0 with
sigmoidals σ+ and σ− as previously the infection rate β [1]. We have increasing
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Figure 6: Cumulative cases updated for a) positive tested, b) hospitalized, c)
ICU admitted and d) deceased cases, until end of October 2020.

sigmoidal σ+(x) := 1/(1 + e−x) and decreasing sigmoidal σ−(x) := 1/(1 + ex).
Due to changing PCR-testing strategies, from previously only testing severe

cases and now mainly contact tracing finding many more asymptomatic cases,
the detection ratio of asymptomatic was increased, i.e. the parameter ξ similarly
to the increased import %. Hence we have β(t) as described earlier, and now
also %(t) and ξ(t) as time dependent parameters, changing once to a higher level
when the lockdown was lifted in summer 2020.

Critical fluctuations explain the at the moment mainly observed isolated
outbreaks, since community spreading, measured by the infection rate β is still
slightly below the threshold value β2 < βc, but imported cases, measured by
%, are occasionally sparking larger outbreaks of mainly asymptomatic or mild,
and occasionally also via these producing few sever case, since β2 ≈ βc. This
explains the small numbers of severe cases at the moment, but a strong increase
in asymptomatic or mildly infected due to the increased success of systematic
contact tracing.

3.2 Real data supporting theory: subcritical regime to explain
COVID-19 spreading in the Basque Country

Rather than a new exponential growth phase, the recent data from the Basque
Country show small increases in sever cases to its leveling off, from August 2020
to at least end of October 2020, portrayed already as a “second wave”. These
data described well the predicted spreading observed in a subcritical regime
with finite import factor included in the model after the first lockdown was
lifted. As for now, the SHARUCD modeling framework continues to predict
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stationarity for all variables. It is, however, still early to know to which lower
level the disease transmission will develop, as community transmission is even
lower due to the second lockdown. Nevertheless, the community spreading
could be expected to increase significantly at the onset of the respiratory disease
season in winter.
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Figure 7: Incidences updated for a) positive tested, b) hospitalized, c) ICU ad-
mitted and d) deceased cases, until end of October 2020. Here we see the initial
increase to a second phase, of disease spreading from late July and August 2020
on, so called “second wave”, but then the leveling off to a stochastic fluctuating
stationary behaviour.

Fig. 6 shows the comparison between the stochastic SHARUCD model re-
alizations (mean are plotted as light blue line) and empirical data (cumulative
cases are shown as black dots), described earlier in [1], where all basic parame-
ters are kept from the calibration during the initial phase of the epidemic. We
also show the daily incidences of positive PCR tested persons in Fig. 7 a), the
hospital admissions in b), the ICU admissions in c) and the deceased cases in
d). Empirical data are plotted as black line, mean are plotted as light blue line
and the 95% confidence intervals (CI) are plotted in light purple (shadow). The
observed dynamics are described by severe cases of hospitalized and ICU ad-
missions as well as the deceased cases increasing during the initial exponential
growth in March 2020, decreasing significantly during the first lockdown, i.e.
the controlled phase from April to the end of July 2020. From the beginning of
August onwards, after the complete lockdown lifting, a slight increase in cases
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are observed, leveling off to stationarity with constant number of cases, with
large fluctuations around the mean. However, the number of cases are in the
range of the predicted 95 % CI of the stochastic SHARUCD model, which are
themselves subject to fluctuations since the CI are calculated directly from the
ensembles of stochastic realizations.

These qualitative behaviour of a slight increase followed by settling into a
fluctuating stationary state is observed and hold for a long time, from August
to end of October 2020, when the new lockdown was implemented, in very good
agreement with the critical behaviour in the simple SIS and SIR systems under
the influence of a conjugate field of import. The empirical data support this the-
ory, preliminarily analyzed in Section 2 of this manuscript. The term “import”
is used here as described in mathematical terms, any transition of susceptibles
without any detected contact with an infected from the study-population, a
quite broad definition, but well distinguished now in the new phase after lifting
of the lockdown from any large supercritical increase of community spreading.

A final word has to be given to the rather untypical behaviour of the positive
detected cases, shown in Fig. 7 a). We could only describe the empirical data by
increasing vastly the detection rate of asymptomatic, which does not affect at all
the other variables in b) to d). We might have even underestimated the initial
level of asymptomatic cases in spring 2020, when only severe cases were tested
via PCR due to the limited testing capacity at that time. The situation has
changed significantly and with many asymptomatic cases detected by increased
community testing, screening campaigns and a better contact tracing strategy.
Like that, to describe quantitatively the behaviour of detected positive cases
the SHARUCD model must be adjusted to changing testing capacities rather
than the disease dynamics itself, i.e, by increasing the community transmis-
sion, which is reflected in the severe cases dynamics. The predicted qualitative
behaviour is consistent with the theory with positivity rates kept stable, even
with an increased testing capacity.

The situation is feared to change again during the onset of the respiratory
disease season, when community spreading might increase naturally without
any behavioural control changes, such that community spreading could push the
system above threshold into a real new exponential phase, visible in semilog-
arithmic plots, as we showed for the first exponential phase in [1]. Hence,
a “real second wave” as observable in SIR systems with recurrent outbreaks
could describe the disease spreading behaviour in a supercritical community
transmission regime.

As the Basque Country faces a second lockdown phase since October 27,
2020, this danger has rather decreased, and the system might be controlled just
below the epidemiological threshold for a longer time, with large fluctuations
to be expected. That is because the second lockdown and the control measures
to avoid COVID-19 have not only decreased the community transmission even
more, but also affected the transmission of other respiratory diseases that might
occur as a smaller outbreak than observed in years prior to the COVID-19
pandemic.

From our analysis we conclude that a mild control to keep the system suf-
ficiently below threshold to avoid large critical fluctuations, but allowing a
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smooth economic recovery and better planing of necessary long term mainte-
nance activities in many areas of life is the way to decrease disease speeding
impact on our society, until reaching the herd immunity threshold by vacci-
nation strategies [14, 15]. Our analysis is based on the observation from the
empirical data and our models that natural herd immunity due to burn out
of susceptibles is not yet close to be reached, though we have since the be-
ginning taken large proportions of asymptomatic infected into account aside
the severe cases. So the assumption of abundance of susceptibles is still giving
good results, as shown here. And research questions remain as to which extend
classical vaccines against COVID-19 [14] with comparable efficacies as other
vaccines developed over decades for different diseases [16, 17, 18] will be needed
for effective control or new vaccine lines can keep their promising high efficacies
even in continued evaluation over the next year.
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Appendices:

A Analytical solutions for the SIS model with im-
port %

In this appendix we give the analytical time dependent solution of the SIS
system with import in its mean field approximation, which then can be analyzed
further in terms of scaling behaviour around the critical threshold in the next
appendices. This system has a paradigmatic status for such investigations of
scaling around criticality, being an important member of the universality class
of directed percolation, whereas the SIR system in its spreading regime into an
abundant environment of susceptibles is a member of the dynamic universality
class, which has attracted somehow less attention, but seems more relevant in
real epidemiological settings as discussed here in the main text.

The SIS-system model with import İ = (β/N)(N − I)(I + %N)− γI can be
given in reduced form as

d

dt
I = ε̃I − β̃I2 + %̃ (13)

with ε̃ := β(1− %)− γ, β̃ := β/N and %̃ := β%N .
Here we explore the possibility of an analytical solution analogously to the

basic SIS model without import, as long as possible to understand the structure
of the analytic solution. The solution of the SIS model with vanishing import
% = 0 is given by

I(t) =
I∗

1−
(

1− I∗

I0

)
e−ε(t−t0)

(14)

with I∗ := (1− γ/β)N , ε := β − γ and initial condition I0 := I(t0).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  50  100  150  200

I/
N

 (
t)

t

Figure 8: Analytical solution I(t) in red, compared with the numerical solution
via integration of the dynamics İ = ε̃I − β̃I2 + %̃ in black.

An analogous calculation gives for the case of non-vanishing import the
result of

I(t) =
I+ − I−

1−
(

1− I+−I−
Y0

)
e−ε̌(t−t0)

+ I− (15)

with the shifted constants, as compared to the vanishing import case, a := 1
2
N
β ε̃,

c :=

√(
1
2
N
β ε̃
)2

+ %N2, giving I+ := a + c and I− := a − c, further Y0 :=
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I(t0)− I− and ε̃ := β(1− %)− γ and for the exponential rate ε̌ :=
√
ε̃2 + 4β2%

with solutions given numerically in Fig. 8. Equivalent solutions and further
considerations on the stochastic version of the SIS system with import have
been reported in [11] with e.g. highly non-Gaussian stationary distributions
close to the epidemic threshold of extinction.

B Unifying framework for criticality in epidemiolog-
ical systems

When it comes to threshold behaviour in epidemiological systems it has been
for a long time established that the so-called ”general epidemic process” (GEP),
describing the infection of susceptible individuals and their subsequent recovery
(SIR), falls into the universality class of dynamical percolation with some of
the critical exponents agreeing with ordinary bond percolation [7], while for
the simplest epidemiological model, with only susceptibles being infected and
infected becoming directly susceptible again without recovering (SIS), falls into
the universality class of directed percolation [10].

The additional effect of import in this simplest SIS case has more recently
been investigated in detail as ”conjugated field”, like in equilibrium phase tran-
sitions an external magnetic field influencing the critical behaviour of spin sys-
tems [9].

Of major importance in the spreading of epidemiological systems is the be-
haviour in two dimensional space or in case of long ranging contacts or homoge-
neous mixing the mean field behaviour. We will consider the critical exponents’
values in these two cases. Recently, for the SIR-type models the interpolating
behaviour between mean field behaviour and purely local spreading in two di-
mensions due to super-diffusive spreading has been investigated by Grassberger
[8] in great detail.

We will first investigate the SIS model with import, for which a complete
analytic solution can be given in mean field approximation, both for the static
stationary behaviour as well as for the dynamic time dependent solution. This
establishes the critical exponents and universal scaling functions in its mean
field approximation.

Then we investigate the SIR model with import in the same way, where
the stationary state solution can be calculated as well, when we assume waning
immunity in addition to the GEP model, which has by default no transition
from recovered to susceptibles again, hence no nontrivial stationary state. The
inclusion of waning immunity allows to compare directly the critical behaviour
of SIS and SIR models with import for very long times t→∞, having the same
stationary exponents in mean field approximation.

In the limit of vanishing waning immunity α we can analyze for large pop-
ulation size N and hence susceptibles in abundance S/N ≈ 1 the critical be-
haviour, which is again the same in the SIS and the SIR case, and holds for
epidemiological systems in their initial phase of exponential growth supercrit-
ically or exponential decline subcritically, as well for vanishing import as for
import larger than zero. This is the scenario described in the main text.
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B.1 SIS and SIR epidemic models and their stationary be-
haviour

The full SIR model with import is given by

d

dt
S = αR− β

N
S(I + %N)

d

dt
I =

β

N
S(I + %N)− γI (16)

d

dt
R = γI − αR

from which the SIS model can be derived by neglecting the recovered class or
assuming the transition from R to S as infinite α → ∞ and with conserved
population size N = S(t) + I(t), hence S = N − I, given by

d

dt
I =

β

N
(N − I)(I + %N)− γI . (17)

Further the general epidemic process (GEP) follows from the SIR model via
the limits of vanishing waning immunity α = 0 and vanishing import % = 0 as

d

dt
S = − β

N
SI

d

dt
I =

β

N
SI − γI (18)

d

dt
R = γI .

And finally the case of infinitely many susceptibles available in an infinite pop-
ulation of size N , hence the case of S/N ≈ 1, now including again import % > 0,
is in mean field approximation simply given by

d

dt
I = β

S

N
(I + %N)− γI

(19)

≈ (β − γ)I + β%N

as a basic model for any spreading of infection in a susceptible population with
no limiting availability of resources, here the susceptibles, and including import.

For the SIS model with import we have the stationary state

I∗

N
=

1

2

(
1− γ

β
− %
)

+

√
1

4

(
1− γ

β
− %
)2

+ % (20)

and for the SIR model with import and waning immunity analogously

I∗

N
=

1

2

(
α

γ + α

(
1− γ

β

)
− %
)

+

√
1

4

(
α

γ + α

(
1− γ

β

)
− %
)2

+
α

γ + α
· %

(21)
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In both cases we have for vanishing import % = 0 and in the case of the SIR
for positive waning immunity α > 0 the scaling

I∗

N
∼ εβ̂ (22)

with ε := β − βc. In mean field approximation we have βc = γ an for finite
import % > 0 and vanishing ε = 0

I∗

N
∼ %β̂/σ̂ (23)

with critical exponents β̂ and σ̂. To distinguish the epidemiological parameters
β, γ etc. from the also used Greek letters in the literature of non-equilibrium
phase transitions, we use β̂ etc. for the critical exponents. The notation of
exponents otherwise is close to the ones defined in [9], which are often close to
other references, but not always, in part depending how close the notations are
to earlier established equilibrium phase transition notations, as e.g. sketched
again in [9] or earlier percolation literature and its adaptation [10, 7], and
developed from there [8].

The above given scaling of the power laws hold for the SIS system, and also
for the SIR system when we have non-vanishing waning immunity α > 0, since
only then a non-trivial stationary state is possible.

B.2 Dynamical behaviour and scaling

For the SIS-system we have a complete time-dependent analytical solution, and
hence can also investigate rigorously the scaling with time going to infinity
t → ∞ along the analysis with the other static parameters ε → 0 and import
%→ 0.

The basic reduced model of the SIS-system with import we have from the
original model İ = (β/N)(N − I)(I+%N)−γI as given in Eq. (3) the dynamic
equation

d

dt
I = ε̃I − β̃I2 + %̃ (24)

with ε̃ := β(1− %)− γ, β̃ := β/N and %̃ := β%N . The time dependent solution
is given in Appendix A.

This establishes the scaling behaviour around criticality for the density of
infected I

N (ε, %, t) as scaling ansatz

I

N
(ε, %, t) ∼ λ−β̂ ·G(aεελ, a%%λ

σ̂, attλ
−ν̂) (25)

with critical exponents β̂, σ̂ and ν̂, where here the time exponent sometimes
called ν|| is ment, and a common scaling quantity λ and amplitudes a for the
respective parameters ε, % and t, and a universal function G, see [9] for more
details.

Fixing λ e.g. via the condition aεελ := 1, hence λ = (aεε)
−1 gives the

qualitative asymptotic behaviour (now not taking the amplitudes into account
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any more, since we deal with individual models where G can include the explicit
constants) as

I

N
(ε, %, t) ≈ εβ̂ ·G(1, %ε−σ̂, tε−ν̂) (26)

modulo amplitudes a.
Respectively fixing λ via a%%λ

σ̂ := 1 gives

I

N
(ε, %, t) ≈ %β̂/σ̂ ·G(ε%−1/σ̂, 1, t%ν̂/σ̂) (27)

and for scaling with time t

I

N
(ε, %, t) ≈ t−β̂/ν̂ ·G(εt1/ν̂ , %tσ̂/ν̂ , 1) (28)

or at criticality and vanishing import, hence G(0, 0, 1) = const.,

I

N
(ε = 0, % = 0, t) ≈ t−α̂ (29)

hence as commonly used exponent α̂ = β̂
ν̂ .

From inspection of the time dependent solution for I/N we can read off the
critical exponents in mean field approximation

β̂m.f. = 1 , ν̂m.f. = 1 , σ̂m.f. = 2 (30)

and hence also with α̂ = β̂
ν̂

α̂m.f. = 1 (31)

see e.g. [9].
For two-dimensional spatially explicit models in this universality class of

directed percolation we have the exponents

β̂d=2 = 0.583 , ν̂d=2 = 1.295 , σ̂d=2 = 2.178 (32)

and hence α̂d=2 = 0.45, hence for spatially extended versions of SIS models
with import as well [9].

For the SIR model we do not have any time dependent analytically closed
expression even in mean field approximation at hand, but the stationary state
scaling already indicates that the above mentioned critical behaviour also should
hold here, as long as waning immunity is non-vanishing and time dependence
ultimately is determined close to this stationary state behaviour.

However, for the initial spreading in very large systems and not yet rele-
vant waning immunity, i.e. mathematically α = 0, and system size N going
to infinity and hence infinitely many susceptibles available, there has been sug-
gested another scaling in so-called spreading experiments for the general epi-
demic process GEP, see [7]. A simple mean field analysis we sketch now in the
next subsection.
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B.3 SIR spreading in simplified mean field approximation, GEP
limit

The SIR epidemic model as well as any other with susceptibles in abundance,
hence S/N ≈ 1, is given by

d

dt
I = β

S

N
(I + %N)− γI ≈ εI + %̃ (33)

with ε = β − βc = β − γ and %̃ = β%N → 0, hence in the limit of N →∞, but
%→ 0 faster (which can be to some extend cast into finite size scaling [9]).

We have the time dependent solution

I(t) = I(t0) · e−(γ−β)(t−t0) +
%̃

γ − β

(
1− e−(γ−β)(t−t0)

)
(34)

and at criticality ε = 0 we have the solution

Ic(t) = I(t0) + %̃ · (t− t0) (35)

hence at criticality and vanishing import % = 0 the dynamical behaviour

Iε=0,%=0,t ≈ tη̂ (36)

with a new critical exponent η̂, see [8] with value in mean field approximation

η̂m.f. = 0 (37)

(which is identified with θ̂ in [9]) and in two spatial dimensions

η̂d=2 = 0.584 (38)

see [8], including interpolating behaviour for super-diffusive spreading from
mean field behaviour to purely local spreading in two dimensions, GEP with
ordinary percolation identifiable [7]

I(ε, %, t) ≈ tη̂ ·G(εt1/ν̂ , %tµ̂/ν̂ , 1) (39)

hence mean field exponents η̂ = 0, ν̂ = 1 and µ̂ = 1 as can be seen from the
time dependent solution in mean field approximation (with µ̂ = 1 unequal σ̂
from the SIS case).

C Data collapse plots for scaling analysis

Data collapse plots confirm the scaling behaviour as described above and charac-
terize the self-similarity close to critical thresholds. We describe in the following
only the principles as they can already be seen from the mean field analysis.
But all holds for spatial and network systems and can experimentally be inves-
tigated without analytic solutions at hand, see e.g. various such plots in [9, 7]
and many other research publications.
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C.1 Static scaling in SIS with import for stationary solution

For the static behaviour of the SIS model with import we have for the density
the explicit solution, see Eq. (20), given by

I∗

N
=

1

2β
(β − γ − β%) +

√
1

4β2
(β − γ − β%)2 + % (40)

=
1

2β
(ε− β%) +

√
1

4β2
(ε− β%)2 + %

=
I∗

N
(ε, %)

and close to criticality ε = 0 and % = 0

I∗

N
(ε, %) =

1

2β
ε+

√
1

4β2
ε2 + % +O(%) +O((ε%)

1
2 )

≈ 1

2β
ε+

1

2β
|ε| ·

√
1 + 4β2

%

ε
(41)
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Figure 9: Stationary state density I∗/N varying with β for %1 = 0.1, %2 = 0.05,
%3 = 0.01 and %4 = 0.001.

From the second line in Eq. (41) we see that for % = 0 we have the power
law

I∗

N
(ε, % = 0) ≈

(
1

2β
ε

)1

= (aε ε)
β̂ (42)

and for ε = 0 the power law

I∗

N
(ε = 0, %) ≈ %

1
2 = (a% %)

β̂
σ̂ (43)

and from the scaling ansatz

λβ̂ · I
N

(ε, %) ∼ G(aεελ, a%%λ
σ̂) (44)

with a%%λ := 1, hence fixing λ as λ = (a%%)−1/σ̂ we obtain for the data collapse
plot

(a%%)−β̂/σ̂ · I
N

(ε, %) ∼ G(aεε(a%%)−1/σ̂, 1) (45)
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Figure 10: a) Scaling function G(x, y = 1) = x/2 +
√
x2/4 + y, and data

collpapse of the stationary state density I∗/N for %1 = 0.1, %2 = 0.05, %3 = 0.01
and %4 = 0.001, and ε varied from ε = −0.5 to ε = 1, hence β = γ + ε
varies from β = 0.5 to β = 2. b) Same for ln(G). In both cases we use x :=

aεε(a%%i)
−1/σ̂ and y := ln

(
(a%%i)

−β̂/σ̂ · I∗N (ε, %i)
)

with I∗

N = 1
2β (β − γ − β%) +√

1
4β2 (β − γ − β%)2 + % and aε = 1/β and a% = 1, β̂ = 1 and σ̂ = 2. Here we

simply use γ = 1, hence time scales with inverse recovery rate.

with the universal scaling function in mean field approximation

G(x, y) =
1

2
x+

√
1

4
x2 + y (46)

with the factor of 1/2 to normalize to G(0, 1) = 1.
Then we plot Eq. (45) for x(ε) := aεε(a%%i)

−1/σ̂ for various values of %i and

varying continuously ε the quantity y := ln
(

(a%%i)
−β̂/σ̂ · IN (ε, %i)

)
, using the

logarithm only to obtain reasonable numbers. The sequence of imports follows
%i → 0. For comparison we also plot

ln(G(x, 1)) = ln

(
1

2
x+

√
1

4
x2 + 1

)
(47)

to which the data collaps converges for small ε and small %i.

C.2 Dynamical scaling with time of the SIS model with import

For % = 0 we have the scaling of t · I/N(ε, % = 0, t) = F (εt) as given in the
following graphics.

We use here for simplicity the dynamical equation for the densities of in-
fected I/N(t) given by

d

dt

(
I

N

)
= ε̃ · I

N
− β̃

(
I

N

)2

+ %̃ (48)

and for vanishing import % = 0 the values ε̃1 = −0.1, and −0.05, −0.01 and
then positive 0.01, 0.05 and ε̃6 = 0.1. Initially we have half the population
infected, I(t0)/N = 0.5.

This means, the values for β1 are β1 = 0.9 · γ, then 0.95, 0.99, 1.01, 1.05
and 1.1 in the case of vanishing import % = 0, see Fig. 11, when using γ = 1.
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Figure 11: For vanishing import % = 0 we have the time dependence a) in
natural scale b) in double logarithmic scale and in c) as scaling of data collapse.
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Figure 12: For vanishing distance to criticality ε = 0 we have the time depen-
dence a) in natural scale b) in double logarithmic scale and in c) as scaling of
data collapse.

For vanishing distance to criticality along ε = β−γ, we have %1 = 0.2, then
0.1, 0.05, 0.01, 0.005 and 0.001., see Fig. 12. Hence for the scaling with % and
vanishing distance to criticality ε = 0 we obtain similar data collapse plots,
as well as for their combinations, i.e. non-vanishing import and non-vanishing
distance to criticality. Likewise the spreading in the GEP can be analyzed
analogously, giving the universal function and the respective universal critical
exponents, as used in the main text.
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C.3 Spanish data and other European countries

In Figure 13 we plot histograms of weekly new positive cases (yellow), hospi-
tal admissions (red), ICU admissions (purple), and deaths (black) associated
to COVID-19 for Spain, the Netherlands, Belgium, and France. Data were
collected from the website of the European Centre for Disease Prevention and
Control (ECDC) [22]. Hospital and ICU admissions were reported per 100,000
people and were here rescaled according to the total population of each cor-
responding country (as of the end of 2019) as reported in the ECDC data
spreadsheets. The first epidemiological week of 2020 for which data was avail-
able varied between countries (hospitalizations: week 5 Spain, week 11 Belgium
and France, week 7 Netherlands; ICU admissions: week 5 Spain, week 22 Bel-
gium, week 9 Netherlands, week 11 France) while the last considered week in
this work for all countries was week 44 (ending on October 31st 2020).
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Figure 13: Weekly positive cases, hospitalizations, ICU cases, and deaths in a)
Spain, b) Belgium, c) the Netherlands, and d) France until the end of epidemi-
ological week 44 (31st of October) of 2020.

Figure 14 shows histograms of weekly positive cases (yellow) and PCR tests
performed (light blue) for the same countries. To better understand changes in
the number of positive cases versus testing capacity over time, we superimpose
the percentage (red lines) of positive tests over the total number of tests per-
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formed obtained from the histogram data for each considered week. Once again
the first epidemiological week of 2020 for which data on testing was available
varied between countries (week 18 Spain, week 9 Belgium and France, week 11
Netherlands) while the last considered week for all countries was week 44.
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Figure 14: Weekly positive cases and number of PCR tests performed in a)
Spain, b) Belgium, c) the Netherlands, and d) France until the end of epidemi-
ological week 44 (31st of October) of 2020. The percentage of positive tests
(red lines) was computed by dividing the number of weekly positive cases by the
number of total PCR tests performed in the same week multiplied by 100.

Finally, in Figure 15 we show the evolution throughout the year 2020 of the
case-fatality ratio (CFR) for the considered countries. The value of the CFR
was obtained by dividing cumulative deaths by cumulative positive cases and
multiplying the result by 100 for CFR given in per cent. Cumulative data were
computed from daily data on positive cases and deaths once again obtained by
the ECDC COVID-19 dataset webpage for all countries [22].

In conclusion we observe that though the detected infected cases increased
in the countries investigated here in the second half of the year 2020 to a large
amount, but severe cases did not keep the same increase, hence increased testing
capacities detected mainly mild or asymptomatic cases which previously in the
first half of the year 2020 would have gone unnoticed. Large increases of detect-
ing mild or asymptomatic cases consequently also decreased the case fatality
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Figure 15: Evolution of the case-fatality ratio for Spain, the Netherlands, Bel-
gium, and France until the end of October 2020.

ratios in the various countries, eventually converging to similar magnitudes re-
flecting biological universality of this measure, whereas the large differences in
the various countries since the beginning of the epidemic seem to have reflected
differences is detection of mild cases and initial fluctuations of cases in various
outbreaks in the different countries.
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