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Abstract 
Importance ​Population stratification of the adult population in Ontario, Canada by their risk of 
COVID-19 complications can support rapid pandemic response, resource allocation, and decision making. 
 
Objective ​To develop and validate a multivariable model to predict risk of hospitalization due to 
COVID-19 severity from routinely collected health records of the entire adult population of Ontario, 
Canada. 
 
Design, Setting, and Participants​ This cohort study included 36,323 adult patients (age ≥ 18 years) from 
the province of Ontario, Canada, who tested positive for SARS-CoV-2 nucleic acid by polymerase chain 
reaction between February 2 and October 5, 2020, and followed up through November 5, 2020. Patients 
living in long-term care facilities were excluded from the analysis. 
 
Main Outcomes and Measures ​Risk of hospitalization within 30 days of COVID-19 diagnosis was 
estimated via Gradient Boosting Decision Trees, and risk factor importance was examined via Shapley 
values. 
 
Results​ The study cohort included 36,323 patients with majority female sex (18,895 [52.02%]) and 
median (IQR) age of 45 (31-58) years. The cohort had a hospitalization rate of 7.11% (2,583 
hospitalizations) with median (IQR) time to hospitalization of 1 (0-5) days, and a mortality rate of 2.49% 
(906 deaths) with median (IQR) time to death of 12 (6-27) days. In contrast to patients who were not 
hospitalized, those who were hospitalized had a higher median age (64 years vs 43 years, p-value < 
0.001), majority male (56.25% vs 47.35%, p-value<0.001), and had a higher median [IQR] number of 
comorbidities (3 [2-6] vs 1 [0-3], p-value<0.001). Patients were randomly split into development 
(n=29,058, 80%) and held-out validation (n=7,265, 20%) cohorts. The final Gradient Boosting model was 
built using the XGBoost algorithm and achieved high discrimination (development cohort: mean area 
under the receiver operating characteristic curve across the five folds of 0.852; held-out validation cohort: 
0.8475) as well as excellent calibration (R​2​=0.998, slope=1.01, intercept=-0.01). The patients who scored 
at the top 10% in the validation cohort captured 47.41% of the actual hospitalizations, whereas those 
scored at the top 30% captured 80.56%. Patients in the held-out validation cohort (n=7,265) with a score 
of at least 0.5 (n=2,149, 29.58%) had a 20.29% hospitalization rate (positive predictive value 20.29%) 
compared with 2.2% hospitalization rate for those with a score less than 0.5 (n=5,116, 70.42%; negative 
predictive value 97.8%). Aside from age, gender and number of comorbidities, the features that most 
contribute to model predictions were: history of abnormal blood levels of creatinine, neutrophils and 
leukocytes, geography and chronic kidney disease. 
 
Conclusions ​A risk stratification model has been developed and validated using unique, de-identified, and 
linked routinely collected health administrative data available in Ontario, Canada. The final XGBoost 
model showed a high discrimination rate, with the potential utility to stratify patients at risk of serious 
COVID-19 outcomes. This model demonstrates that routinely collected health system data can be 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.23.20248783doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.23.20248783


successfully leveraged as a proxy for the potential risk of severe COVID-19 complications. Specifically, 
past laboratory results and demographic factors provide a strong signal for identifying patients who are 
susceptible to complications. The model can support population risk stratification that informs patients’ 
protection most at risk for severe COVID-19 complications.  
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Introduction 
As of 5 October 2020, over 35 million cases of confirmed coronavirus disease 2019 (COVID-19) and at 

least 1 million deaths had been reported worldwide ​[1]​. The COVID-19 outbreak has led to an increased 

demand for healthcare resources and a shortage of medical equipment and staff. Governments and 

healthcare organizations around the globe are currently working on containing and slowing down the 

spread of infections while trying to understand the risk factors associated with severe complications of 

COVID-19. It remains unclear which and how risk factors contribute to COVID-19 severity. Such 

understanding is crucial to help mitigate the healthcare system’s burden by prioritizing testing and 

resource allocation for those patients at the highest risk. Furthermore, now that vaccines are available ​[2]​, 

the ability to accurately estimate population risk can guide vaccine rollout strategies and return-to-work 

prioritization. 

 

A number of diagnostic and prognostic models for COVID-19 have been developed to support medical 

decision making ​[3]​. The majority of these models depend on clinical data obtained upon hospital 

admission (e.g. X-ray images, blood tests) as well as on demographic and medical records (age, 

comorbidity history) to make a prediction ​[4]​,​[5]​,​[6]​,​[7]​. Since these models can only be applied to 

patients already hospitalized for COVID-19, it is not possible to extend their use for the general 

population to identify individuals with the highest potential risk of hospitalization or death from 

COVID-19. Therefore, risk stratification models that depend only on historical medical records are 

necessary to fill this gap. Such models are particularly effective in countries with single-payer healthcare 

systems such as Canada, the United Kingdom and Australia since single-payer systems facilitate access to 

population-wide medical records. Access to extensive medical records is not limited to single-payer 

countries. However, databases of commercial insurance claim data are also available for large portions of 

the population in countries with private healthcare systems such as the United States. Consequently, we 

believe that with sufficient adaptation, our proposed model has wide applicability for assessing the risk of 

severe COVID-19 complications in the population using routinely collected data. 

 

The province of Ontario in Canada is one of a number of jurisdictions in the world that has linked medical 

records on its entire population due to its single-payer health system and robust infrastructure that links all 

residents through a unique identifier. Analyzing the medical records of Ontario’s population is 

particularly interesting due to its high diversity. Almost three in ten Ontarians identify as members of 
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visible minorities, with most of these individuals living in large metropolitan areas, such as the city of 

Toronto ​[8]​. Here, we leveraged this extensive and comprehensive data source from COVID-19 positive 

patients in Ontario to develop a machine learning model to predict the risk of COVID-19 hospitalization. 

Our methodology utilizes general medical and demographic attributes commonly collected in claims data 

in other countries, thus facilitating its repurposing in other jurisdictions. 

 

Methods 

Data Source and Study Population 
We obtained health administrative records from a comprehensive data repository held at ICES, a 

not-for-profit research institute in Ontario. To support COVID-19 research, ICES developed a 

high-performance infrastructure, the Health AI Data Analytics Platform (HAIDAP), as well as a 

continually-updated COVID-19 data resource. Using this resource, we identified all patients at least 18 

years of age who were enrolled in the Ontario Health Insurance Plan (OHIP), which covers all Ontario 

residents, and had nasopharyngeal swabs tested for severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) between February 2, 2020, and October 5 2020 (Figure 1). Patients were followed up 

through November 5, 2020 to allow a follow-up period of 30 days.  

 

Individual laboratory data from the Ontario Laboratories Information System (OLIS) to relevant datasets 

containing healthcare use, demographic, and geographic information using unique encoders and held at 

ICES. It is important to note that the OLIS data captures most SARS-CoV-2 but maybe missing results 

from certain private laboratories in the province, which may result in discrepancies between the number 

of cases in our study and those officially reported ​[9]​. This study was approved by the ICES Privacy and 

Compliance Office. This study followed the Transparent Reporting of a multivariable prediction model 

for Individual Prognosis Or Diagnosis (TRIPOD) reporting guideline ​[10]​. 

 

Definition of Index Date and Positive COVID-19 status 

Patients were defined as positive for COVID-19 if they had one viral RNA positive polymerase chain 

reaction (PCR) test during the observation period. The index date for all analyses was defined as the date 

of the first recorded positive test. 
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Adverse Outcome and Baseline Characteristics 

We determined the adverse outcome as hospitalization due to COVID-19 (ICD10 code U071) at or within 

30 days of the index date, since the median time to event from the index date and interquartile range 

(IQR) were 1 day and 0-5 days, respectively. We included baseline sociodemographic and clinical 

characteristics such as age, sex and comorbidity history (​Table 1​). 

Model development 

To ensure that only the most recent data prior to COVID-19 diagnosis were included in our model, we 

included medical records dated no later than 30 days prior to the index date and not earlier than 2 years 

before the index date (Figure 2). The 2-year window was selected due to the fact that the majority (>92%) 

of patients in our study cohort had at least two years of recorded clinical history in our database. Other 

windows were considered (3, 4, and 5 years), but we discarded them for not covering more than 90% of 

our patients. The 30-day buffer before the index date was applied to ensure that only historical medical 

records are used to make a prediction for each patient and not tests are done as a result of the COVID-19 

infection. 

 

In addition to hospitalizations, we aggregated historical records of doctor visits, outpatient services, drug 

prescriptions, and laboratory results for each individual. For each type of laboratory result (blood and 

urine), we calculated absolute deviations from normal ranges and counted the number of abnormally high 

or abnormally low measurements recorded in the 2-year window prior to the index date. We excluded 

variables with records for less than 50% of the patients in our cohort. For example, visits to a nephrologist 

are only recorded for those patients seeking kidney care; thus if the variable “number of visits to a 

nephrologist in the last 2 years” is recorded for less than 50% of the patients, then this variable would be 

discarded from our model. The full list of independent predictor variables extracted from the COVID-19 

data source, as well as the fraction of patients lacking observations for each variable can be found in the 

Supplementary Table 1.  

 

An 80%/20% random split of the dataset (where each example corresponds to one patient) was used to 

define development and validation sets. The validation dataset was held back and not used for model 

training or tuning. For the final model, we built a Gradient Boosted Trees model using the XGBoost 
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algorithm ​[11]​. The set of variables included in our XGBoost model were selected using a backward 

search approach, and hyperparameter tuning (learning rate, maximum tree depth, number of trees, alpha 

and gamma) was done with the grid-search algorithm to maximize the cross validation area under the 

receiver operating characteristic curve (AUCROC). XGBoost allows explicit handling of missing values 

and thus we did not perform data imputation in our model. Finally, discrimination was evaluated by using 

the AUCROC, in which a value of 0.5 indicates no predictive ability and 1.0 indicates perfect 

discrimination. 

Results 

The ICES COVID-19 data source included 58,948 patients who tested positive for COVID-19 between 

February 2 and November 5, 2020. From these, we excluded patients with index date after October 5, 

2020 as well as those patients currently living in a long-term care facility. After exclusions, 36,323 

patients were included in our study cohort and followed up for 30 days (Figure 1). The hospitalization rate 

was 7.11% (2,583 hospitalizations) with median (IQR) time to event of 1 (0-5) day(s), and the mortality 

rate was 2.49% (906 deaths) with median (IQR) time to death of 12 (6-27) days after the index date. The 

median age of patients in the cohort was 45 years (IQR of 31-58). Table 1 shows the baseline 

characteristics for all patients in the cohort, and Table 2 shows the same characteristics for the 

development (29,058; 80%) and validation (7,265; 20%) datasets. 

 

XGBoost model 

We identified 18 important predictor variables of COVID-19 hospitalization and ranked them by their 

Shapley contribution score which measures the impact of the variable value on the model output ​[12] 

(Table 3 and Supplementary Figure 1). These variables are age, days since the last creatinine blood test, 

geographical latitude, days since the last basophils blood test, gender, number of doctor visits in the last 2 

years, number of comorbidities, number of different unique subclasses of drugs taken in the last 2 years, 

highest value of creatinine recorded in the last 2 years, number of radiology studies in the last 2 years, 

average value of neutrophils in blood in the last 2 years, the average value of leukocytes in blood in the 

last 2 years, number of creatinine blood test in the last 2 years, highest value of hemoglobin recorded in 

the last 2 years, history of chronic kidney disease, and days since the last mean corpuscular hemoglobin 

test in the last 2 years. 
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The final XGBoost model achieved high discrimination in the 5-fold cross-validation setting with a mean 

AUCROC of 0.852, and an AUCROC of 0.8475 in the held-out validation cohort. Figure 3A shows the 

ROC curve of the final model. The model also shows excellent calibration with R​2​=0.998, slope=1.01, 

and intercept=-0.01 (Figure 3B). Patients in the validation cohort with a score of at least 0.5 (n=2149, 

29.58%) had a 20.29% hospitalization rate compared with 2.2% hospitalization rate for those patients 

with a score less than 0.5 (n=5116, 70.42%). Furthermore, patients in the validation cohort scored at the 

top 10% represent 47.41% of actual hospitalizations, and those scored at the top 30% capture 80.56% of 

hospitalizations (Figure 4, top bar).  Interestingly, geographical latitude and laboratory test history were 

ranked among the top 10 predictors in our model (Supplementary Figure 1). Of note, blood biomarkers 

such as basophils, creatinine, and leukocytes were identified as important predictors, despite the fact that 

these are historical values and not measurements taken at admission ​[13]​. 

 

Comparison of XGBoost model recall against two empirical rules 

 
After vaccines with sufficient efficacy were announced in October and November of 2020​[14]​, 

governments of virtually all affected countries started to actively develop vaccine rollout and 

prioritization schedules ​[15,16]​. The most prevalent approach to assessing vaccine risk is to start with the 

oldest patients (especially those in the long term care facilities) that account for the majority of reported 

deaths, and healthcare workers that have a high risk of exposure​[17]​. However, after these two groups, no 

agreement has been reached on how to proceed with the rest of the population. Two factors that 

commonly influence expert recommendations are age and pre-existing conditions (comorbidities)​[18]​. 

Our model provides an alternative approach to leverage machine learning to predict a risk score for every 

patient. These risk scores can then be used to rank patients and prioritize vaccination. To compare 

commonly recommended risk factors, we constructed two empirical rules and applied them to the 

held-out validation cohort to see how many actual hospitalizations we could capture. These two empirical 

rules are: (1) rank patients by age and select the oldest patients; (2) rank patients by the number of 

comorbidities and select patients with the most comorbidities. 

 

We split the held-out validation cohort (n=7,265) into percentiles and calculated the recall at the top 10th 

(n=726), 20th (n=1,453), and 30th (n=2,180) percentiles after ranking the cohort according to our model 

or each empirical rule. The results of this comparison are shown in Figure 4. The final XGBoost model 

outperformed these rules across the top three percentiles with relative gains between 10% and 30%. These 
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results indicate that our model can more accurately identify people at high risk of severe complications 

from the COVID-19 infection. 

Discussion 

Principal findings 
 
We have developed and validated a Gradient Boosted Trees model for predicting the risk of COVID-19 

hospitalization in a cohort of patients in Ontario. Our model showed excellent calibration and a high 

discrimination performance consistent across 5-fold cross-validation cohorts, which was comparably 

superior to two empirical rules. We envision our model to be deployed and utilized by public health 

organizations, as opposed to by clinicians directly, to effectively plan resource allocation and vaccination 

campaigns. Interestingly, past laboratory test results contributed to model predictions and suggests that 

legacy blood tests can be leveraged as a proxy for future risk of COVID-19 hospitalization. We identified 

past neutrophil counts in blood as a strong contributor to our model predictions. These findings are 

consistent with recent studies documenting the role of excessive neutrophil counts in severe COVID-19 

pneumonia​[19,20]​. 

 

The availability of variables included in the final model is not limited to Ontario’s region, as these are 

variables readily available in most medical record and insurance claim databases around the world. Thus, 

our methodology could be extended for scoring populations and informing decision making in other 

jurisdictions outside of Ontario, Canada.  

 
Strengths and limitations 
 
Many recently developed prognostic models for COVID-19 rely on information that must be collected 

post-infection or at admission into a hospital ​[21,22]​. A key strength of our model is that it depends only 

on historical medical records and demographic variables available before infection. These are variables 

that are routinely collected and readily available in both public and private medical claims databases used 

across many countries. Furthermore, Ontario has a diverse population that covers a range of population 

groups and thus will likely have applicability outside of Ontario or could be easily adapted to score other 

populations. Although future work with an external dataset would be required to validate the model 

performance in other geographies, we have observed that models developed on these data can usually be 

repurposed to other jurisdictions ​[23–25]​. ​An important strength of our study is the use of Gradient 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.23.20248783doi: medRxiv preprint 

https://paperpile.com/c/2HuPhp/6jeq+yErm
https://paperpile.com/c/2HuPhp/doSH+e42A
https://paperpile.com/c/2HuPhp/0Kry+9npe+F4qI
https://doi.org/10.1101/2020.12.23.20248783


Boosted trees, which allow for highly interpretable models to yield novel insights and relationships 

among predictor variables. 

 

Our study has limitations. Although we have a diverse data source that captures all healthcare 

interactions, we are limited to some data elements that are not collected in routine data holdings. For 

example risk factors such as diet and physical activity associated with disease immunity ​[26]​ and not 

captured in our data. Furthermore, recent studies have identified genetic ​[27]​, transcriptomic ​[28]​, and 

proteomic ​[29]​ markers that play an important role in COVID-19 disease progression and outcome, but 

these data are not routinely collected at the population level and thus not included in our study. The 

incorporation of such factors, if available, could boost both accuracy and robustness across subgroups of 

patients in the population. 

 
 
Conclusions 
 
Our model has the potential utility to directly inform public health decision making and vaccination 

campaigns without relying on empirical measures ​[30]​[31]​[32]​. Our model has considerable strengths, 

including the ability to perform risk stratification at a population-wide level, for being based on an 

accurate and explainable algorithm, and finally for demonstrating the potential use of legacy laboratory 

data as a proxy for potential risk of severe COVID-19 complications. These risk stratification models are 

currently not in practice in our setting to support health system decision-making for COVID-19. We 

envision our model to provide a  more effective way to use routinely collected data to support strategies 

that protect patients most at risk for serious COVID-19 complications and more careful and precise 

management for those at low risk.  
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Figures 

 
 
Figure 1 - Study design​. The ICES COVID-19 cohort was last updated on November 7th 2020 and it 
includes patients with index (diagnosis) dates between February 2 2020 and November 5th 2020. Patients 
with an index date after October 5, 2020 or currently living in a long-term care facility were excluded. 
Included patients were followed up for 30 days for the outcome of hospitalization due to COVID-19. 
 

 
Figure 2 - Electronic medical records used for model development ​. The date of COVID-19 diagnosis 
is used as the index date. From this date, a look-ahead period of 30 days is used to look for the outcome of 
hospitalization related to COVID-19. Besides including demographics, independent predictor variables 
were constructed by aggregating two years of medical records (e.g. past healthcare utilization, laboratory 
results, drug prescriptions) up to 30 days before the index date. The complete list of predictor variables 
calculated can be found in Supplementary Table 1. 
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Figure 3 - XGBoost model performance ​. The final model was trained with 18 features extracted from 
the ICES COVID-19 data source. (A) The blue line shows the receiver operating characteristic curve 
(ROC). (B) Calibration curve of final XGBoost model on the validation dataset. AUC: area under the 
curve 
 

 
Figure 4 - Comparison of recall at top percentiles ​. The final XGBoost model recall (percentage of true 
hospitalizations recovered in validation dataset) was compared against two empirical rules (ER). 
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Tables 
 
Table 1 - Baseline characteristics of patients included in this study 
 

Baseline 
characteristic 

All patients (N 
= 36,323) 

Hospitalized 
(N=2,583) 

Not 
hospitalized 
(N=33,740) 

Standardized 
Difference 

(Hospitalized - 
Not 

Hospitalized) 

Age, Median 
(IQR) 45 (31-58) 64 (54-77) 43 (30-56) 1.175 

Number of 
comorbidities, 
Median (IQR) 1 (0-3) 3 (2-6) 1 (0-3) 0.935 

Male, No. 
(percent) 17,428 (47.98) 1,453 (56.25) 15,975 (47.35) 0.179 

Female, No. 
(percent) 18,895 (52.02) 1,130 (43.75) 17,765 (52.65) -0.179 

Asthma, No. 
(percent) 5,460 (15.03) 480 (18.58) 4,980 (14.76) 0.103 

Cancer, No. 
(percent) 1,453 (4.0) 297 (11.5) 1,156 (3.43) 0.311 

Chronic Heart 
Failure, No. 

(percent) 831 (2.29) 275 (10.65) 556 (1.65) 0.381 

COPD, No. 
(percent) 1,959 (5.39) 457 (17.69) 1,502 (4.45) 0.432 

Diabetes, No. 
(percent) 5,273 (14.52) 940 (36.39) 4,333 (12.84) 0.568 

Hypertension, 8,994 (24.76) 1,477 (57.18) 7,517 (22.28) 0.763 
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Table 2 - Baseline characteristics of patients in the training and test sets 
 

No. (percent) 

Hospitalized 
due to 

covid-19, No. 
(percent) 2,583 (7.11) 2,583 (100) 0 (0) N/A 

Died from 
covid-19, No. 

(percent) 906 (2.49) 543 (20.98) 364 (1.08) 0.67 

Baseline 
characteristic 

Development 
set (N=29,058) 

Validation set 
(N=7,265) 

Standardized 
Difference 

Age, Median 
(IQR) 44 (31-58) 45 (31-58) -0.015 

Number of 
comorbidities, 
Median (IQR) 1 (0-3) 1 (0-3) -0.009 

Male, No. 
(percent) 13,995 (48.16) 3,433 (47.25) 0.018 

Female, No. 
(percent) 15,063 (51.84) 3,832 (52.75) 0.003 

Asthma, No. 
(percent) 4,376 (15.06) 1,084 (14.92) 0.004 

Cancer, No. 
(percent) 1,163 (4) 290 (3.99) 0.001 

Chronic Heart 
Failure, No. 

(percent) 668 (2.3) 163 (2.24) 0.004 

COPD, No. 
(percent) 1,549 (5.33) 410 (5.64) -0.014 

Diabetes, No. 
(percent) 4,202 (14.46) 1,071 (14.74) -0.008 

Hypertension, 
No. (percent) 7,181 (24.71) 1,813 (24.96) -0.006 
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Table 3 - Variables included in final XGBoost model ranked by Shapley values of importance 
 

Hospitalized 
due to 

covid-19, No. 
(percent) 2,043 (7.03) 540 (7.43) -0.016 

Died from 
covid-19, No. 

(percent) 719 (2.47) 187 (2.57) -0.006 

Predictor variable Shapley value 

Age 0.7567 

Days since last creatinine 
blood test 0.1320 

Geographical latitude 0.1299 

Days since last basophils test 0.1196 

Male 0.1196 

Number of family doctor 
visits in the last 2 years 0.1165 

Number of comorbidities 0.1072 

Number of unique drug 
subclasses taken in the last 2 
years 0.0845 

Highest recorded level of 
creatinine in the last 2 years 0.0773 

Number of diagnostic 
radiology studies received in 
the last 2 years 0.0381 

Average measurement of 
neutrophils in blood in the 
last 2 years 0.0289 

Number of doctor visits in 
the last 2 years 0.0237 

Median level of neutrophils 
in the last 2 years 0.0165 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.23.20248783doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.23.20248783


 

  

Average level of leukocytes 
in the last 2 years 0.0144 

Number of creatinine tests in 
the last 2 years 0.0144 

Highest recorded level of 
hemoglobin in blood in the 
last 2 years 0.0021 

History of chronic kidney 
disease 0.0021 

Days since last mean 
corpuscular hemoglobin test 0.0010 
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TRIPOD checklist 

Section/
Topic Item 

Development (D) 
or Validation 

(V)? 
Checklist item Comment 

Title 1 D;V 

Identify the study as 
developing and/or 
validating a 
multivariable 
prediction model, the 
target population, and 
the outcome of the 
predicted 

Title specifies development of model and 
abstract indicates the target population 
and the outcome 

Abstract 2 D;V 

Provide a summary of 
objectives, study 
design, setting, 
participants, sample 
size, predictors, 
outcome, statistical 
analysis, results, and 
conclusions Abstract summarizes each of these items 

Backgro
und 3a D;V 

Explain the medical 
context (including 
whether diagnostic of 
prognostic) and 
rationale for 

Introduction section explains each of 
these items 
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developing or 
validating the 
multivariable 
prediction model, 
including references 
to existing models 

Objective
s 3b D;V 

Specify the 
objectives, including 
whether the study 
describes the 
development or 
validation of the 
model or both 

Introduction section specifies each of 
these items 

Methods: 
Source 
of Data 

4a D;V 

Describe the study 
design or source of 
data (e.g. randomized 
trial, cohort, or 
registry data), 
separately for the 
development and 
validation data sets, if 
applicable 

The Methods section describes the 
source of data under "Data source and 
Study population" 

4b D;V 

Specify the key study 
dates, including start 
of accrual; end of 
accruall and, if 
applicable, end of 
follow-up 

The Methods section specifies the study 
dates under "Data source and Study 
population" 

Participa
nts 

5a D;V 

Specify key elements 
of the study setting 
(e.g., primary care, 
secondary care, 
general population) 
including number and 
location of centers 

The Methods section specifies setting 
(general population of Ontario) dates 
under "Data source and Study 
population" 

5b D;V 

Describe elegibility 
criteria for 
participants 

The Methods section describes eligibility 
criteria under "Data source and Study 
population" 

5c D;V 

Give details of 
treatments received, 
if relevant Not applicable 

Outcome 6a D;V 

Clearly define the 
outcome that is 
predicted by the 

The Methods section defines the 
outcome under "Adverse outcome and 
baseline characteristics" 
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prediction model, 
including how and 
when assessed 

6b D;V 

Report any actions to 
blind assessment of 
the outcome to be 
predicted Not applicable 

Predictor
s 

7a D;V 

Clearly define all 
predictors used in 
developing the 
multivariable 
prediction model, 
including how and 
when they were 
measured 

The Results sections defines all 
predictors used under "XGBoost model" 

7b D;V 

Report any actions to 
blind assessment of 
predictors for the 
outcome and other 
predictors Not applicable 

Sample 
size 8 D;V 

Explain how the study 
size was arrived at 

The Results section explains the size of 
the study sample in the first paragraph 

Missing 
data 9 D;V 

Describe how missing 
data were handled 
(e.g., complete-case 
analysis, single 
imputation, multiple 
imputation) with 
details of any 
imputation method 

No missing data were imputed in this 
study since our modeling approach 
(XGBoost) handles missing data 
automatically 

Statistica
l analysis 
methods 

10a D 

Describe how 
predictors were 
handled in the 
analyses 

The Results section describes the 
predictors and how they were handled 
under "XGBoost model" 

10b D 

Specify type of 
model, all 
model-building 
procedures (including 
any predictor 
selection), and 
method for internal 
validation 

The Results section specifies the model 
type 

10c V 
For validation, 
describe how the 

The Results section describes the model 
validation under "XGBoost model" 
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predictions were 
calculated 

10d D;V 

Specify all measures 
used to assess model 
performance and, if 
relevant, to compare 
multiple models 

The Results section specifies the 
performance metrics under "XGBoost 
model" and the model comparions under 
"Comparison of XGBoost model recall 
against two empirical rules" 

10e V 

Describe any model 
updating (e.g., 
recalibration) arising 
from the validation, if 
done No model updating was done 

Risk 
groups 11 D;V 

Provide details on 
how risk groups were 
created, if done No risk groups were created 

Develop
ment vs. 
validatio

n 12 V 

For validation, 
indentify any 
differences from the 
development data in 
setting, eligibility 
criteria, outcome, and 
predictors 

Table 2 outlines the baseline 
characteristics of patients included in the 
development and the validation sets 

Results: 
Participa

nts 

13a D;V 

Describe the flow of 
participants through 
the study, including 
the number of 
participants with and 
without the outcome 
and, if applicable, a 
summary of the 
follow-up time. A 
diagram may be 
helpful 

The Results section describes the flow of 
participants 

13b D;V 

Describe the 
characteristics of the 
participants (basic 
demographics, 
clinical features, 
available predictors), 
including the number 
of participants with 
missing data for 
predictors and 
outcome 

Table 1 describes the characteristics of 
patients and Supplementary Table 1 
describes the fraction of patients in the 
population with missing data for each of 
the variables 
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13c V 

For validation, show a 
comparison with the 
development data of 
the distribution of 
important variables 
(demographics, 
predictors and 
outcome) 

Table 2 describes the characteristics of 
patients in the development and 
validation datasets 

Results: 
Model 

develop
ment 

14a D 

Specify the number of 
participants and 
outcome events in 
each analysis Table 2 specifies these 

14b D 

If done, report the 
unadjusted 
association between 
each candidate 
predictor and 
outcome Not applicable 

Results: 
Model 

specificat
ion 

15a D 

Present the full 
prediction model to 
allow predictions for 
individuals (i.e., all 
regression 
coefficients, and 
model intercept or 
baseline survival at a 
given time point) Not applicable 

15b D 
Explain how to use 
the prediction model Not applicable 

Results: 
Model 

performa
nce 16 D;V 

Report performance 
measures (with 
Confidence Intervals) 
for the prediction 
model The Results section reports these 

Results: 
Model 

updating 17 V 

If done, report the 
results from any 
model updating (i.e. 
model specification, 
model performance) Not applicable 

Discussi
on: 

Limitatio
ns 18 D;V 

Discuss any 
limitations of the 
study (such as non 
representative 
sample, few events 

The Discussion section outlines 
limitations of the study 
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per predictor, missing 
data) 

Discussi
on: 

Interpret
ation 

19a V 

For validation, 
discuss the results 
with reference to 
performance in the 
development data, 
and any other 
validation data 

The Results section shows performance 
of model in the development set vs. the 
validation set 

19b D;V 

Give the overall 
interpretation of the 
results, considering 
objectives, limitations, 
results from similar 
studies, and other 
relevant evidence 

The Discussion section provides the 
overall interpretation of the results 

Discussi
on: 

Implicati
ons 20 D;V 

Discuss the potential 
clinical use of the 
model and 
implications for future 
research 

The Discussion section outlines the 
implications for future research and 
potential use at the public health level 

Supplem
entary 

Informati
on 21 D;V 

Provide information 
about the availability 
of supplementary 
resources, such as 
study protocol, web 
calculator, and data 
sets 

Supplementary resources are indicated 
under Supplementary Information 

Funding 22 D;V 

Give the source of 
funding and the role 
of the funders for the 
present study 

Funding is outlined under "Funding 
Statement" 
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