Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses ============================================================================================================================================ * Basavaraj Vastrad * Chanabasayya Vastrad * Iranna Kotturshetti ## Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened. Pathway and GO enrichment analyses of DEGs were performed. Furthermore, the protein-protein interaction (PPI) network was predicted using the IntAct Molecular Interaction Database and visualized with Cytoscape software. In addition, hub genes and important modules were selected based on the network. Finally, we constructed target genes - miRNA regulatory network and target genes - TF regulatory network. Hub genes were validated. A total of 891 DEGs 448 of these DEGs presented significant up regulated, and the remaining 443 down regulated were obtained. Pathway enrichment analysis indicated that up regulated genes were mainly linked with glutamine degradation/glutamate biosynthesis, while the down regulated genes were involved in melatonin degradation. GO enrichment analyses indicated that up regulated genes were mainly linked with chemical synaptic transmission, while the down regulated genes were involved in regulation of immune system process. hub and target genes were selected from the PPI network, modules, and target genes - miRNA regulatory network and target genes - TF regulatory network namely YWHAZ, GABARAPL1, EZR, CEBPA, HSPB8, TUBB2A and CDK14. The current study sheds light on the molecular mechanisms of sCJD and may provide molecular targets and diagnostic biomarkers for sCJD. Key words * sporadic Creutzfeldt-Jakob disease * ToppGene database * protein-protein interaction (PPI) network * bioinformatics tools * gene ontology enrichment analysis ## Introduction Prion diseases of human beings are linked with the aggregation in the brain of an abnormal, slightly protease-resistant isoform, of cellular prion protein (PrPC) [1]. Prion diseases are neurodegenerative diseases that affect human beings [2]. However, dissimilar with the most common diseases of this group, such as Alzheimer’s disease, Lewy body disorders and frontotemporal dementias [3]. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent human prion disease occurs through unknown origin [4]. sCJD is considered as a gene-related disease [5]. Expanding confirmation also has demonstrated that multiple genes and cellular pathways participate in the occurrence and advancement of sCJD [6-7]. Alteration and polymorhisum in prion protein was associated with progression of sCJD [8-9]. To date, a deficiency of understanding the accurate molecular mechanisms underlying sCJD development limits the ability to treat advanced disease. In recent years, microarray technology is now undergoing a revolution, which could be used on tissue or blood samples to diagnose key biomarkers and novel pathways in individual person [10-11]. Therefore, further knowledge of molecular mechanism associated in genetic expression disorder of sCJD, which is extremely key for the future advancement of diagnosis and treatment could be learned through this latest technology. Gene expression analysis [12] now is a popular approach to analyze the expression changes of gene in the advancement and progression of sCJD, comprehensively. In this current study, we downloaded the original gene expression dataset (GSE124571) from the Gene Expression Omnibus (GEO), which is repository leads to the archiving as a hub for microarray data deposit and retrieval. Gene expression profiles of brain tissue in patients with sCJD were compared with those in normal controls to diagnose the differentially expressed genes (DEGs). Selected DEGs were screened by pathway enrichment and gene ontology (GO) enrichment analysis. Subsequently, PPI network construction, module analysis, target genes - miRNA regulatory network construction and target genes - TF regulatory network construction were performed. Finally validation of hub genes was carried out. By using various bioinformatics tools, we may take a further insight of sCJD at molecular level and explore the potential diagnostic and prognostics biomarkers for the therapeutic strategies of sCJD. ## Materials and methods ### Microarray data The gene expression profile dataset GSE124571 [13] was downloaded from the GEO database ([www.ncbi.nlm.nih.gov/geo/](http://www.ncbi.nlm.nih.gov/geo/)) [14]. The platform for GSE124571 is GPL14951, [Human] Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip. The platform files and raw data were downloaded as TXT files. Only data from sCJD and normal control samples were extracted and further analyzed. ### Data Preprocessing and DEG Screening The R software package beadarray was used to preprocess the downloaded original TXT data. This process involved background adjustment, normalization and expression calculation. Probes not matching any known genes were deleted, and the mean was determined, when numerous probes were balanced to the same gene. The probe ID was converted into gene symbol and saved in a TXT file. The DEGs of sCJD and normal control samples were identified using the R bioconductor package limma [15]. Genes with an adjusted p value < 0.05, |logFC| > 0.856 for up regulated genes and |logFC| > −0.84 for down regulated genes were considered DEGs. ### Pathway enrichment analysis of DEGs To analyze the identified DEGs at the functional level, BIOCYC ([https://biocyc.org/](https://biocyc.org/)) [16], Kyoto Encyclopedia of Genes and Genomes (KEGG) ([http://www.genome.jp/kegg/pathway.html](http://www.genome.jp/kegg/pathway.html)) [17], Pathway Interaction Database (PID) ([https://wiki.nci.nih.gov/pages/viewpage.action?pageId=315491760](https://wiki.nci.nih.gov/pages/viewpage.action?pageId=315491760)) [18], REACTOME ([https://reactome.org/](https://reactome.org/)) [19], GenMAPP ([http://www.genmapp.org/](http://www.genmapp.org/)) [20], MSigDB C2 BIOCARTA (v6.0) ([http://software.broadinstitute.org/gsea/msigdb/collections.jsp](http://software.broadinstitute.org/gsea/msigdb/collections.jsp)) [21], PantherDB ([http://www.pantherdb.org/](http://www.pantherdb.org/)) [22], Pathway Ontology ([http://www.obofoundry.org/ontology/pw.html](http://www.obofoundry.org/ontology/pw.html)) [23] and Small Molecule Pathway Database (SMPDB) ([http://smpdb.ca/](http://smpdb.ca/)) [24] pathway analysis were performed using ToppGene ([https://toppgene.cchmc.org/enrichment.jsp](https://toppgene.cchmc.org/enrichment.jsp)) [25]. ToppGene is an updated web server which provides a comprehensive set of functional annotation tools for researchers to understand biological meanings behind a large list of genes. In this current study, we analyzed the candidate DEGs that were importantly up and down regulated, and P < 0.05 was set as the threshold value. ### Gene ontology (GO) enrichment analysis of DEGs GO enrichment analysis ([http://www.geneontology.org/](http://www.geneontology.org/)) [26] is progressively tested for functional studies of large-scale genomic or transcriptomic data, which constitute three separate ontologies such as biological process (BP), molecular function (MF), and cellular component (CC). The usual up regulated and down regulated genes were analyzed using ToppGene ([https://toppgene.cchmc.org/enrichment.jsp](https://toppgene.cchmc.org/enrichment.jsp)) [25], an online program that provides a complete set of function annotation tools for investigators to understand the biological meaning lists of genes. GO enrichment an analysis was performed using ToppGene. P < 0.05 was considered to indicate statistically significant difference. ### Protein–protein interaction network (PPI) and modular analysis To study the interactive relationships among the DEGs, a PPI network of up and down regulated genes were constructed using the IntAct Molecular Interaction Database ([https://www.ebi.ac.uk/intact/](https://www.ebi.ac.uk/intact/)) [27], which integrates different PPI databases such as Molecular INTeraction Database (MINT, [https://mint.bio.uniroma2.it/](https://mint.bio.uniroma2.it/)) [28], UniProt ([https://www.uniprot.org/](https://www.uniprot.org/)) [29], Interologous interaction database (I2D, [http://ophid.utoronto.ca/ophidv2.204/](http://ophid.utoronto.ca/ophidv2.204/)) [30], InnateDB ([https://www.innatedb.com/](https://www.innatedb.com/)) [31], MatrixDB ([http://matrixdb.univ-lyon1.fr/](http://matrixdb.univ-lyon1.fr/)) [32] and The International Molecular Exchange Consortium (IMEx, [http://www.imexconsortium.org/](http://www.imexconsortium.org/)) [33]. Then, the PPI network was visualized using the Cytoscape software ([http://www.cytoscape.org](http://www.cytoscape.org)) [34]. In this network, each node is a DEG (up or down regulated genes), and the connections between nodes represent the interactions between these genes. PPI network topological properties nodes such as node degree [35], betweenness [36], stress [37], closeness [38] and clustering coefficient [39] were calculated. Modular analysis was conducted with the Molecular Complex Detection PEWCC1 [40] (version 1.3) app of Cytoscape software, and an PEWCC1 score > 2 was set as the cut-off criterion. ### Construction of target genes - miRNA regulatory network miRNet ([https://www.mirnet.ca/](https://www.mirnet.ca/)) [41] is a comprehensive database of miRNAs, which hosts predicted as well as validated miRNA binding sites. miRNet compares the identified miRNA binding sites with the results obtained from ten established target gene – miRNA prediction databases such as TarBase ([http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index](http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index)) [42], miRTarBase ([http://mirtarbase.mbc.nctu.edu.tw/php/download.php](http://mirtarbase.mbc.nctu.edu.tw/php/download.php)) [43], miRecords ([http://miRecords.umn.edu/miRecords](http://miRecords.umn.edu/miRecords)) [44], miR2Disease ([http://www.mir2disease.org/](http://www.mir2disease.org/)) [45], HMDD ([http://www.cuilab.cn/hmdd](http://www.cuilab.cn/hmdd)) [46], PhenomiR ([http://mips.helmholtz-muenchen.de/phenomir/](http://mips.helmholtz-muenchen.de/phenomir/)) [47], SM2miR ([http://bioinfo.hrbmu.edu.cn/SM2miR/](http://bioinfo.hrbmu.edu.cn/SM2miR/)) [48], PharmacomiR ([http://www.pharmaco-mir.org/](http://www.pharmaco-mir.org/)) [49], EpimiR ([http://bioinfo.hrbmu.edu.cn/EpimiR/](http://bioinfo.hrbmu.edu.cn/EpimiR/)) [50] and starBase ([http://starbase.sysu.edu.cn/](http://starbase.sysu.edu.cn/)) [51]. The target gene – miRNA pairs were visualized by Cytoscape software ([http://www.cytoscape.org](http://www.cytoscape.org)) [34]. ### Construction of target genes - TF regulatory network NetworkAnalyst ([https://www.networkanalyst.ca/](https://www.networkanalyst.ca/)) [52] is a web based tool which can search transcription factors for the input up and down regulated genes as well as assess the effect of a transcription factor on the expression of the target genes. In this study, the transcription factors of the target genes were predicted from NetworkAnalyst database which ingrates TF database ChEA ([http://amp.pharm.mssm.edu/lib/chea.jsp](http://amp.pharm.mssm.edu/lib/chea.jsp)) [53] and target genes - TF regulatory network was constructed and visualized by Cytoscape software([http://www.cytoscape.org](http://www.cytoscape.org)) [34]. ### Validation of hub genes Receiver operating characteristic (ROC) curves were used to analyze the potential clinical significance of these hub genes as molecular prognostic markers in sCJD. Based on the obtained optimal prognostic gene biomarkers for sCJD, we established the GLM (generalized linear models) was a managed learning model by using the pROC package [54] in R software. The prognostic ability of this models was accessed by obtaining the area under a ROC curve (AUC), accuracy, sensitivity and specificity. P<0.05 was considered to indicate a statistically significant difference. ## Results ### Identification of DEGs in sCJD After gene expression profile data processing and standardization, we screened DEGs in GSE124571 dataset using integrated bioinformatics analysis and the results are shown in Fig. 1A and Fig. 1B. The limma package of the R software identified 891 DEGs (Table 1), with the cutoff standard of P value < 0.05, |logFC| > 0.856 for up regulated genes and |logFC| > −0.84 for down regulated genes; 448 of these DEGs presented significant up regulated, and the remaining 443 down regulated. Fig. 2 presents the volcano plot of DEGs for data set. A cluster heatmap developed with R software showed the distribution of all up and down regulated genes (Fig. 3 and Fig. 4). ![Fig. 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F1.medium.gif) [Fig. 1.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F1) Fig. 1. Box plots of the gene expression data before normalization (A) and after normalization (B). Horizontal axis represents the sample symbol and the vertical axis represents the gene expression values. The black line in the box plot represents the median value of gene expression. (A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 = normal controls samples; B1,B2, B3, B4,B5, B6, B7,B8, B9, B10 = sCJD samples) ![Fig. 2.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F2.medium.gif) [Fig. 2.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F2) Fig. 2. Volcano plot of differentially expressed genes. Genes with a significant change of more than two-fold were selected. ![Fig. 3.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F3.medium.gif) [Fig. 3.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F3) Fig. 3. Heat map of up regulated differentially expressed genes. Legend on the top left indicate log fold change of genes. (A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 = normal controls samples; B1,B2, B3, B4,B5, B6, B7,B8, B9, B10 = sCJD samples) ![Fig. 4.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F4.medium.gif) [Fig. 4.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F4) Fig. 4. Heat map of down regulated differentially expressed genes. Legend on the top left indicate log fold change of genes. (A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 = normal controls samples; B1,B2, B3, B4,B5, B6, B7,B8, B9, B10 = sCJD samples) View this table: [Table 1](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/T1) Table 1 The statistical metrics for key differentially expressed genes (DEGs) ### Pathway enrichment analysis of DEGs Pathway enrichment analysis of DEGs was conducted with ToppGene, and the results are given in Table 2 and Table 3. The signaling pathways of up regulated were mainly enriched in glutamine degradation/glutamate biosynthesis, asparagine biosynthesis, GABAergic synapse, synaptic vesicle cycle, effects of Botulinum toxin, role of calcineurin-dependent NFAT signaling in lymphocytes, transmission across chemical synapses, neuronal system, type III secretion system, ATP synthesis, regulation of PGC-1a, bioactive peptide induced signaling pathway, muscarinic acetylcholine receptor 1 and 3 signaling pathway, oxytocin receptor mediated signaling pathway, glutamate metabolic, insulin secretion pathway, cimetidine pathway and malate-aspartate shuttle, whereas down regulated were mainly enriched in melatonin degradation II, proline degradation, leishmaniasis, phagosome, validated targets of C-MYC transcriptional repression, CXCR4-mediated signaling events, neutrophil degranulation, cytokine signaling in immune system, inositol phosphate metabolism, monocyte and its surface molecules, cystic fibrosis transmembrane conductance regulator and beta 2 adrenergic receptor pathway, T cell activation, 5-hydroxytryptamine degredation, integrin signaling, altered lipoprotein metabolic, lactic acidemia and lysosomal acid lipase deficiency (Wolman Disease). View this table: [Table 2](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/T2) Table 2 The enriched pathway terms of the up regulated differentially expressed genes View this table: [Table 3](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/T3) Table 3 The enriched pathway terms of the down regulated differentially expressed genes ### Gene ontology (GO) enrichment analysis of DEGs Gene ontology (GO) enrichment analysis of DEGs was performed with ToppGene, and, up and down regulated genes were classified into three functional groups such as biological processes (BP), molecular functions (MF) and cell compositions (CC). The results of Gene ontology (GO) enrichment analysis are given in Table 4 and Table 5. In the BP group, the up regulated genes were mainly enriched in chemical synaptic transmission and neuron projection development, and the down regulated genes were mainly enriched in the regulation of immune system process and cell activation. In the CC group, the up regulated genes were mainly enriched in neuron part and synapse, and the down regulated genes were mainly enriched in the membrane region and cell surface. In the MF group, the up regulated genes were mainly enriched in cytoskeletal protein binding and molecular function regulator, and the down regulated genes were mainly enriched in the enzyme binding and molecular transducer activity. View this table: [Table 4](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/T4) Table 4 The enriched GO terms of the up regulated differentially expressed genes View this table: [Table 5](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/T5) Table 5 The enriched GO terms of the down regulated differentially expressed genes ### Protein–protein interaction network (PPI) and modular analysis The potential relationships among these DEGs (up and down regulated genes) at protein levels were predicted based on the IntAct Molecular Interaction database. As shown in Fig. 5, the establishment of the PPI network for up regulated genes identified 3664 nodes and 6054 edges. The top hub genes (GABARAPL1, YWHAZ, SSX2IP, YWHAH, UBE2N, CALM3, TUBB3, NME5, CAPRIN2, BEX5, SV2B and KCNIP4) were identified based on their connectivity degree, betweenness centrality, stress centrality, closeness centrality and clustering coefficient and are listed in Table 6. Scatter plot along with statistical results for node degree, betweenness centrality, stress centrality, closeness centrality and clustering coefficient are shown in Fig. 6A - 6E. Pathways and GO enrichment analysis revealed that these hub genes were markedly enriched in GABAergic synapse, role of calcineurin-dependent NFAT signaling in lymphocytes, cell projection organization, chemical synaptic transmission, enzyme binding, oxytocin signaling pathway, Huntington disease, cell morphogenesis, signaling receptor binding, cell-cell signaling and ion transport. As shown in Fig. 7, the establishment of the PPI network for down regulated genes identified 3095 nodes and 4747 edges. The top hub genes (HSPB1, HDAC1, CDKN1A, TNFRSF1A, FKBP5, BCL6, MYL12A, SPTBN1, SFMBT2, NUPR1, TRIM47, RAPGEF3 and MS4A7) were identified based on their connectivity degree, betweenness centrality, stress centrality, closeness centrality and clustering coefficient and are listed in Table 6. Scatter plot along with statistical results for node degree, betweenness centrality, stress centrality, closeness centrality and clustering coefficient are shown in Fig. 8A - 8E. Pathways and GO enrichment analysis revealed that these hub genes were markedly enriched in cell activation, validated targets of C-MYC transcriptional repression, HTLV-I infection, defense response, direct p53 effectors, regulation of actin cytoskeleton, neutrophil degranulation, regulation of cell proliferation and hemostasis, ![Fig. 5.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F5.medium.gif) [Fig. 5.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F5) Fig. 5. Protein–protein interaction network of differentially expressed genes (DEGs). Green nodes denotes up regulated genes. ![Fig. 6.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F6.medium.gif) [Fig. 6.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F6) Fig. 6. Scatter plot for up regulated genes. (A- Node degree; B- Betweenness centrality; C- Stress centrality; D- Closeness centrality; E- Clustering coefficient) ![Fig. 7.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F7.medium.gif) [Fig. 7.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F7) Fig. 7. Protein–protein interaction network of differentially expressed genes (DEGs). Red nodes denotes down regulated genes. ![Fig. 8.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F8.medium.gif) [Fig. 8.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F8) Fig. 8. Scatter plot for down regulated genes. (A - Node degree; B - Betweenness centrality; C- Stress centrality; D- Closeness centrality; E - Clustering coefficient) View this table: [Table 6](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/T6) Table 6 Topology table for up and down regulated genes To explore the significance of the molecules of the sCJD related PPI network, the module analysis was performed by PEWCC1. The four most significant modules of the PPI network for up regulated genes were shown in Fig 9, in which GABARAPL1, YWHAZ, YWHAH, EPB41L3, KLC1, CYFIP2, NCKAP1, MAGED1, RBFOX1, RBFOX2, SSX2IP, TUBB2A, USP11, PFN2, HPRT1, NCOA and ENO2 were the top hub genes. Pathway and GO enrichment analyses of these hub genes associated in these module were performed using ToppGene. Results showed that the genes in these significant modules were predominantly enriched for terms associated with GABAergic synapse, neurotrophic factor-mediated Trk receptor signaling, Huntington disease, superpathway of purine nucleotide salvage, cell-cell signaling, neuron projection development, cell projection organization and chemical synaptic transmission. The four most significant modules of the PPI network for down regulated genes were shown in Fig 10, in which PTPN6, CD37, EZR, MSN, SLC9A3R1, CD44, CEBPA, CEBPB, CEBPD, HSPB1, LYN, HSPB8, BAG3 and CRYAB were the top hub genes. Pathway and GO enrichment analyses of these hub genes associated in these module were performed using ToppGene. Results showed that the genes in these significant modules were predominantly enriched for terms associated with leishmaniasis, regulation of actin cytoskeleton, validated targets of C-MYC transcriptional repression, regulation of immune system process, biological adhesion, cell activation, cell adhesion and identical protein binding. ![Fig. 9.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F9.medium.gif) [Fig. 9.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F9) Fig. 9. Modules in PPI network. The green nodes denote the up regulated genes ![Fig. 10.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F10.medium.gif) [Fig. 10.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F10) Fig. 10. Modules in PPI network. The red nodes denote the down regulated genes. ### Construction of target gene - miRNA regulatory network The target gene - miRNA regulatory network for up regulated genes is shown in Fig. 11. Top five up regulated target genes such as TUBB2A interacts with 183 miRNAs (ex, hsa-mir-5681a), YWHAZ interacts with 156 miRNAs (ex, hsa-mir-3189-5p), MAP3K9 interacts with 121 miRNAs (ex, hsa-mir-6791-3p), PGM2L1 interacts with 117 miRNAs (ex, hsa-mir-6764-3p) and ALDOA interacts with 112 miRNAs (ex, hsa-mir-4476) are listed in Table 7. Pathways and GO enrichment analysis revealed that these target genes were markedly enriched in Huntington disease, role of calcineurin-dependent NFAT signaling in lymphocytes, purine nucleotide binding and identical protein binding. Similarly, target gene - miRNA regulatory network for down regulated genes is shown in Fig. 12. Top five down regulated target genes such as CCND1 interacts with 197 miRNAs (ex, hsa-mir-3973), MKNK2 interacts with 153 miRNAs (ex, hsa-mir-6515-5p), CDKN1A interacts with 131 miRNAs (ex, hsa-mir-6886-3p), SYNJ2BP interacts with 120 miRNAs (ex, hsa-mir-4659a-3p) and BRI3BP interacts with 119 miRNAs (ex, hsa-mir-3689b-3p) are listed in Table 7. Pathways and GO enrichment analysis revealed that these target genes were markedly enriched in HTLV-I infection, regulation of immune system process and locomotion. ![Fig. 11.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F11.medium.gif) [Fig. 11.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F11) Fig. 11. The network of up regulated DEGs and their related miRNAs. The green circles nodes are the up regulated DEGs, and blue diamond nodes are the miRNAs ![Fig. 12.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F12.medium.gif) [Fig. 12.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F12) Fig. 12. The network of down regulated DEGs and their related miRNAs. The red circles nodes are the down-regulated DEGs, and lavender diamond nodes are the miRNAs View this table: [Table 7](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/T7) Table 7 miRNA - target gene interaction table ### Construction of target genes - TF regulatory network The target gene - TF regulatory network for up regulated genes is shown in Fig.13. Top five up regulated target genes such as CDK14 interacts with 235 TFs (ex, SOX2), YWHAH interacts with 193 TFs (ex, MYC), SYN2 interacts with 182 TFs (ex, REST), SYT1 interacts with 179 TFs (ex, SUZ12) and MICAL2 interacts with 169 TFs (ex, AR) are listed in Table 8. Pathways and GO enrichment analysis revealed that these target genes were markedly enriched in purine nucleotide binding, role of calcineurin-dependent NFAT signaling in lymphocytes, transmission across chemical synapses, synaptic vesicle cycle and cytoskeletal protein binding. Similarly, target gene - miRNA regulatory network for down regulated genes is shown in Fig.14. Top five down regulated target genes such as HSPA1A interacts with 224 TFs (ex, SOX2), CD300A interacts with 212 TFs (ex, SPI1), HLA-DOA interacts with 197 TFs (ex, EGR1), TST interacts with 184 TFs (ex, HNF4A) and HSPB1 interacts with 179 TFs (ex, MYC) are listed in Table 8. Pathways and GO enrichment analysis revealed that these target genes were markedly enriched in toxoplasmosis, neutrophil degranulation, extracellular space and cell activation. ![Fig. 13.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F13.medium.gif) [Fig. 13.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F13) Fig. 13. TF-gene network of predicted target up regulated genes. (Orange triangle - TFs and green circles-target up regulated genes) ![Fig. 14.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F14.medium.gif) [Fig. 14.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F14) Fig. 14. TF-gene network of predicted target down regulated genes. (Blue triangle - TFs and pink circles-target up regulated genes) View this table: [Table 8](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/T8) Table 8 TF - target gene interaction table ### Validation of hub genes Based on these hub genes between sCJD and normal control, the GLM model was established. AUC values of YWHAZ, GABARAPL1, SSX2IP, YWHAH, UBE2N, HSPB1, HDAC1, CDKN1A, TNFRSF1A and FKBP5 were 0.891, 0.909, 0.873, 0.809, 0.927, 0.973, 0.936, 0.800, 0.918 and 0.945 suggesting that these ten hub genes had high sensitivity and specificity for sCJD prognosis. The ROC results are displayed in Fig. 15. These results indicated that YWHAZ, GABARAPL1, SSX2IP, YWHAH, UBE2N, HSPB1, HDAC1, CDKN1A, TNFRSF1A and FKBP5 may be used as biomarkers for the prognosis of sCJD. ![Fig. 15.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/24/2020.12.21.20248688/F15.medium.gif) [Fig. 15.](http://medrxiv.org/content/early/2020/12/24/2020.12.21.20248688/F15) Fig. 15. ROC curve validated the sensitivity, specificity of hub genes as a predictive biomarker for sCJD prognosis. A) YWHAZ, B) GABARAPL1, C) SSX2IP, D) YWHAH, E) UBE2N, F) HSPB1, G) HDAC1, H) CDKN1A, I) TNFRSF1A and J) FKBP5 ## Discussion With the development of microarray and high-throughput sequencing technology in current years, integrated bioinformatics methods have been broadly applied in discovering new biomarkers correlated with the diagnosis, prognosis, and treatment of numerous brain diseases [55-56]. sCJD is an prion disease which has brought a heavy burden to European, Australia, and Canadian countries [57]. Understanding the molecular mechanism of sCJD is of essential importance for prognosis, diagnosis and treatment. It has been extensively used to predict therapeutic targets for sCJD since high-throughput sequencing can implement expression levels of genes in human genome simultaneously. The aim of this study was to diagnose several key genes and pathways with similar action highly expressed in sCJD compared to normal controls and discover their potential mechanisms. In the current study, we extract the gene expression profile of GSE124571 downloaded from GEO database and identify 448 up regulated and 443 down regulated genes between RA and normal control using bioinformatics analysis. Less expression of VAMP2 was associated with development of dementia [58], but decrease expression of this gene may be responsible for progression of sCJD. CIRBP (cold inducible RNA binding protein) was linked with neuroinflammation in cerebral ischemia [59], but this gene may be liable for neuroinflammation in sCJD. CRYM (crystallin mu) was involved in progression of Huntington’s disease [60], but this gene may be liable for advancement of sCJD. DOCK3 was involved in growth of hyperactivity disorder [61], but this gene may be associated with progression of sCJD. Genes such as CYFIP2 [62] PC (pyruvate carboxylase) [63] and PLOD1 [64] were responsible for advancement of Alzheimer’s disease, but these genes may be involved in pathogenesis of sCJD. PLOD3 was liable for advancement of brain cancer [65], but this gene may be associated with growth of sCJD. High expression of CRYAB (crystallin alpha B) [66] and DNAJB6 [67] was important for development of Parkinson’s disease, but this gene may be associated with development of sCJD. In pathway enrichment analysis, up regulated genes were enriched in various pathways. Enriched genes such as GLS2 [68], SLC12A5 [69], GAD1 [70], GAD2 [71], STXBP1 [72], NPTN (neuroplastin) [73] and PPP3CB [74] were associated with development of schizophrenia, but these genes may be important for pathogenesis of sCJD. GLS (glutaminase) was linked with neuroinflammation in brain diseases [75], but this gene may be involved with neuroinflammation in sCJD. Alteration in GNB5 was responsible for advancement of hyperactivity disorder [76], but mutation in this gene may be identified with development of sCJD. Enriched genes such as PRKCB (protein kinase C beta) [77], SNAP25 [78], CALM3 [79], ATP6V0C [80] and SST (somatostatin) [81] were important for pathogenesis of Alzheimer’s disease, but this gene may be linked with progression of sCJD. Enriched genes such as PRKCG (protein kinase C gamma), [82] ITPR1 [83] and VAMP1 [84] were involved in advancement of spinocerebellar ataxia, but these genes may be important for advancement of sCJD. Modification in GABRA1 [85], GABRB3 [86] and GABRG2 [87] were identified with progression of epilepsy, but alteration in these genes may be linked with pathogenesis of sCJD. Mutation in GNAO1 was responsible for progression of movement disorder [88], but Alteration in this gene may associated with development of sCJD. Enriched genes such as STX1A [89], LIN7B [90] and CACNB2 [91] were involved in development of autism, but these genes may be liable for advancement of sCJD. Enriched genes such as NEFL (neurofilament light) [92] and YWHAH (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta) [93] were responsible for development of sCJD. ATP6V1B2 was associated with progression of depression, but this gene may be identified with advancement of sCJD [94]. CHRM1 was associated with pathogenesis of Huntington’s disease [95], but this gene may be liable for advancement of sCJD. Polymorphism in CCKBR (cholecystokinin B receptor) was liable for advancement of Parkinson’s disease [96], this polymorphic gene may be associated with progression of sCJD. Our study found that GNG2, ADCY1, GABARAPL1, GABBR2, SLC32A1, GABRD (gamma-aminobutyric acid type A receptor delta subunit), SLC38A1, GNG3, NSF (N-ethylmaleimide sensitive factor, vesicle fusing ATPase), SYT1, NCALD (neurocalcin delta), CACNG3, CPLX1, KCNJ4, KCNJ12, SYN1, SYN2, CAMK2B, CAMK2G, EPB41L1, ATP6V1A, ATP6V1E1, ATP6V1G2, CAMK1G, PRKCE (protein kinase C epsilon) and GOT1 are up regulated in sCJD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. Down regulated genes were enriched in various pathways. Enriched genes such as MAOA (monoamine oxidase A) [97], TGFB3 [98], CEBPD (CCAAT enhancer binding protein delta) [99], NDRG2 [100], SLC11A1 [101], HDAC1 [102], TYROBP (TYRO protein tyrosine kinase binding protein) [103], ALOX5 [104], DOCK2 [105], OLR1 [106], CD14 [107], CD44 [108], CD68 [109], ITPKB (inositol-trisphosphate 3-kinase B) [110], WAS (Wiskott-Aldrich syndrome) [111], CD86 [112] and CD74 [113] were linked with development of Alzheimer’s disease, but these genes may be involved in progression of sCJD. HLA-DPA1 was involved in progression of acute disseminated encephalomyelitis [114], but this gene may be important for development of sCJD. Enriched genes such as HLA-DQA1 [115] and IRF8 [116] were associated with advancement of multiple sclerosis, but these genes may be responsible for pathogenesis of sCJD. Enriched genes such as IFNGR1 [117], PRDX6 [118] and LAMP2 [119] were identified with progression of Parkinson’s disease, but these genes may be linked with advancement of sCJD. NDRG1 was liable for progression of Charcot-Marie-Tooth disease [120], but this gene may be identified with development of sCJD. ITGB4 was liable for progression of bipolar disorder [121], but this gene may be important for advancement of sCJD. SERPINA3 was involved in advancement of sCJD [122]. CLEC5A was important for development of brain cancer [123], but this gene be linked with pathogenesis of sCJD. HSPA1A was responsible for progression of schizophrenia [124], but this gene identified with pathogenesis of sCJD. NPC2 was associated with growth of Niemann-Pick C2 disease [125], but this gene may be important for pathogenesis of sCJD. RNASET2 was linked with progression of cystic leukoencephalopathy [126], but this gene may be liable for advancement of sCJD. Our study found that HLA-DMA (major histocompatibility complex, class II, DM alpha), HLA-DMB (major histocompatibility complex, class II, DM beta), HLA-DOA (major histocompatibility complex, class II, DO alpha), HLA-DRA (major histocompatibility complex, class II, DR alpha), FCGR1A, CYBA (cytochrome b-245 alpha chain), ITGB1, ITGB2, PTPN6, CDKN1A, CEBPA (CCAAT enhancer binding protein alpha), CCND1, ATP8B4, CD300A, CTSC (cathepsin C), TMC6, SERPINB6, FCER1G, FGR (FGR proto-oncogene, Src family tyrosine kinase), SLC2A5, RHOG (ras homolog family member G), PRCP (prolylcarboxypeptidase), PYCARD (PYD and CARD domain containing), VAMP8, CTSH (cathepsin H), ITGAX (integrin subunit alpha X), ADA2, TMBIM1, BST2, LILRB3, RAB31, STOM (stomatin), PLCD1, INPPL1, CSK (C-terminal Src kinase), APBB1IP, PARVG (parvin gamma) and ITGB5 are down regulated in sCJD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. In GO enrichment analysis, up regulated genes were enriched in all GO categories. Enriched genes such as RTN3 [127], VGF (VGF nerve growth factor inducible) [128], SNCA (synuclein alpha) [129], SYP (synaptophysin) [130], NPTX1 [131], NRGN (neurogranin) [132], EGR1 [133], CDK5 [134], MAP1B [135], UCHL1 [136], VPS35 [137], CNTNAP2 [138], KLC1 [139], FZD3 [140], CCK (cholecystokinin) [141], EPHA4 [142], TPM1 [143] and WASF1 [144] were responsible for progression of Alzheimer’s disease, but these genes may be associated in progression of sCJD. PFN2 was liable for development of Charcot-Marie-Tooth disease [145], but this gene may be linked with pathogenesis of sCJD. Enriched genes such as ADCYAP1 [146], NRXN1 [147] LRRTM1 [148], BASP1 [72] and DCLK1 [149] were involved in progression of schizophrenia, but these genes may be responsible for advancement of sCJD. Enriched genes such as SCN1B [150], FGF12 [151], NAPB (NSF attachment protein beta) [152], DNM1 [153] and AP3B2 [154] were important in advancement of epilepsy, but these genes may be identified with progression of sCJD. Enriched genes such as SNCB (synuclein beta) [155], RIT2 [156], TUBB3 [157], PVALB (parvalbumin) [158] and ELAVL4 [159] were involved in progression of Parkinson’s disease, but these genes may be linked with development of sCJD. Enriched genes such as CADPS2 [160], ATP2B2 [161] and ENO2 [162] were important for progression of autism, but these genes may be identified with pathogenesis of sCJD. TAC1 was responsible for advancement of multiple sclerosis [163], but this gene may be associated with progression of sCJD. Enriched genes such NPY (neuropeptide Y) [164], MAP2 [165], APP (amyloid beta precursor protein) [166], STMN2 [167] and PRNP (prion protein) [168] were important for advancement of sCJD. PACSIN1 was liable for advancement of Huntington’s disease [169], but this gene may be involved in progression of sCJD. Our study found that LRFN5, SCN2B, SYT13, AMPH (amphiphysin), ICA1, ADGRL1, PNKD (PNKD, MBL domain containing), SLC8A2, ATP2A2, CLSTN3, CPLX2, PTPRN2, SV2B, GLRB (glycine receptor beta), KALRN (kalirinRhoGEF kinase), SYNGR1, PAK1, PCP4, PDE1A, MAP4, CYGB (cytoglobin), ACOT7, HPCA (hippocalcin), AP1S1, SCAMP5, NGEF (neuronal guanine nucleotide exchange factor), OLFM1, FLRT3, FKBP1A, SVOP (SV2 related protein), SLC9A6, CAP2, MAP2K4, ATCAY (ATCAY, caytaxin), CNTNAP1, ENC1, MYRIP (myosin VIIA and Rab interacting protein), MAGEE1, PPP1R2, ERC2, KCNIP4, ATP1A1, TBR1, NRSN1, MAPK9, MAP2K1, ATP2B1, ARHGAP32, NMNAT2, FRMPD4, SLC6A17, KCTD8, RAP1GAP2, LAMP5, EPB41L3, SLC30A3, NEFM (neurofilament medium), NEFH (neurofilament heavy), NELL2, PTPRN (protein tyrosine phosphatase, receptor type N), ARHGAP44, KIF3C, SLC17A6, GPM6A, DPP6, DMXL2, WDR7, RTN4, STMN1, RGS7, OPA1, SYNGR3, ALDOA (aldolase, fructose-bisphosphate A), BAIAP2L2, GAS7, SYBU (syntabulin), RAB6B, MICAL2, ABLIM2, REEP1, NME1, CDK5R2, DYNC1I1, PTPRT (protein tyrosine phosphatase, receptor type T) and CORO6 are up regulated in sCJD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. Down regulated genes were enriched in all GO categories. Enriched genes such as HMOX1 [170], RGCC (regulator of cell cycle) [171], CSF1R [172], HTRA1 [173], BCL6 [174], SYK (spleen associated tyrosine kinase) [175], C1QB [176], ADAM17 [177], PLA2G7 [178], TLR5 [179], PDE9A [180], ITSN1 [181], GJA1 [182], FERMT2 [183], NTRK2 [184], TNFRSF1A [185], S100A1 [186], ALOX5AP [104], APOC2 [187], DIO2 [188] and GSTM3 [189] were responsible for progression of Alzheimer’s disease, but these genes may be liable in progression of sCJD. Enriched genes such as AIF1 [190], ABCA1 [191], AQP4 [192] and GFAP (glial fibrillary acidic protein) [193] were important for pathogenesis of sCJD. Enriched genes such as FGFR3 [194], VEGFB (vascular endothelial growth factor B) [195], GPER1 [196], WASF2 [197], ADRB2 [198], ATXN3 [199], SGK1 [200] and TIMP1 [201] were identified with growth of Parkinson’s disease, but these genes may be linked with progression of sCJD. SLC1A3 was associated with development of hyperactivity disorder [202], but this gene may be liable for progression of sCJD. MEGF10 was involved in progression of schizophrenia [203], but this gene may be liable for advancement of sCJD. Our study found that CMTM3, CEBPB (CCAAT enhancer binding protein beta), PDK4, VSIG4, RFTN2, LY96, VAMP3, SASH3, FCGRT (Fc fragment of IgG receptor and transporter), MERTK (MER proto-oncogene, tyrosine kinase), CHST3, EZR (ezrin), LAT2, MSN (moesin), SLC7A2, CSF3R SCIN (scinderin), GPRC5B, MYOM1, TNFSF14, RASSF2, MYO10, AXL (AXL receptor tyrosine kinase), LILRB1, VSIR (V-set immunoregulatory receptor), HCST (hematopoietic cell signal transducer), STAT5A, MAPKAPK3, C1QA, C1QC, UNC93B1, TAP1, RAC2, RARRES2, GPX1, LGALS9, HAVCR2, EBI3, CD37, LYN (LYN proto-oncogene, Src family tyrosine kinase), TRIB1, HCK (HCK proto-oncogene, Src family tyrosine kinase), HCLS1, HERC5, CYBRD1, DHRS3, SLCO2B1, ADGRV1, FZD9, SLC9A3R1, RAPGEF3, AHNAK (AHNAK nucleoprotein), ANTXR1, PLEK (pleckstrin), CNGB1, SDC4, HSPB1, PDPN (podoplanin), NECAP2, ATP1B2, PIEZO1, SPTBN1, DAB2, MFRP (membrane frizzled-related protein), PTH1R, HEPH (hephaestin), KANK1, KCNMA1, GNA12, DDR1, GRIN2C, LCP1, SLC7A7, RHOQ (ras homolog family member Q), SYTL4, LRP4, EPHX1, CARHSP1, ADD3, SRGAP1, FOXO4, WFS1, RHOBTB3, PPP1R3C, ARHGDIB (Rho GDP dissociation inhibitor beta), RANBP3L, ZFHX3, MAPK4, NEK6, RAB3IL1, NACC2 and FARP1 are down regulated in sCJD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. Up regulated hub genes were identified from PPI network for up regulated genes. YWHAZ was responsible for progression of schizophrenia [204], but this gene may liable for advancement of sCJD. Our study found that SSX2IP, UBE2N, NME5, CAPRIN2 and BEX5 are up regulated in sCJD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. Down regulated hub genes were identified from PPI network for down regulated genes. Our study found that FKBP5, MYL12A, SFMBT2, NUPR1, TRIM47 and MS4A7 are down regulated in sCJD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. In module analysis, up regulated hub genes showing the highest node degree in all four significant modules. NCKAP1 was linked with development of Alzheimer’s disease [205], but this gene may be involved in progression of sCJD. RBFOX1 was important for progression autism [206], but this gene may be identified with pathogenesis of sCJD. Our study found that MAGED1, RBFOX2, TUBB2A, USP11, HPRT1 and NCOA7 are up regulated in sCJD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. Similarly, down regulated hub genes showing the highest node degree in all four significant modules. Genes such as HSPB8 [207] and BAG3 [208] were responsible for advancement of Alzheimer’s disease, but these genes may be important for progression of sCJD. In target gene - miRNA network, up regulated target genes showing the highest number of integration with miRNAs. Our study found that MAP3K9 and PGM2L1 are up regulated in sCJD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. Similarly, down regulated target genes showing the highest number of integration with miRNAs. Our study found that MKNK2, SYNJ2BP and BRI3BP are down regulated in sCJD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target In target gene - TF network, up regulated target genes showing the highest number of integration with TFs. Our study found that CDK14 is up regulated in sCJD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. Similarly, down regulated target genes showing the highest number of integration with TFs. Our study found that TST is down regulated in sCJD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. In conclusion, although the current study had certain conditions, including the limited number of cases and the absence of validation in clinical samples, the current analysis diagnosed distinct important genes and pathways closely linked with sCJD, which may contribute to the current knowledge of the complex molecular mechanisms of sCDJ. Of note, the current results credential acceptance by further examination. ## Data Availability The datasets supporting the conclusions of this article are available in the GEO (Gene Expression Omnibus) ([https://www.ncbi.nlm.nih.gov/geo/](https://www.ncbi.nlm.nih.gov/geo/)) repository. [(GSE124571) ([https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124571](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124571))] ## Availability of data and materials The datasets supporting the conclusions of this article are available in the GEO (Gene Expression Omnibus) ([https://www.ncbi.nlm.nih.gov/geo/](https://www.ncbi.nlm.nih.gov/geo/)) repository. [(GSE124571) ([https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124571](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124571))] ## Consent for publication Not applicable. ## Competing interests The authors declare that they have no competing interests. ## Conflict of interest The authors declare that they have no conflict of interest. ## Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors. ## Informed consent No informed consent because this study does not contain human or animals participants. ## Author Contributions B. V. - Writing original draft, and review and editing C. V. - Software and investigation I. K. - Supervision and resources ## Authors Basavaraj Vastrad ORCID ID: 0000-0003-2202-7637 Chanabasayya Vastrad ORCID ID: 0000-0003-3615-4450 Iranna Kotturshetti ORCID ID: 0000-0003-1988-7345 ## Acknowledgement We thank Piero Parchi, University of Bologna, DIMES, Neuropathology, Bologna, Italy, very much, the authors who deposited their microarray dataset, GSE124571, into the public GEO database. * Received December 21, 2020. * Revision received December 21, 2020. * Accepted December 23, 2020. * © 2020, Posted by Cold Spring Harbor Laboratory The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. ## References 1. Hill AF, Butterworth RJ, Joiner S, Jackson G, Rossor MN, Thomas DJ, Frosh A, Tolley N, Bell JE, Spencer M et al. Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet. 1999;353(9148):183–189. doi:10.1016/s0140-6736(98)12075-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(98)12075-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9923873&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000078175600010&link_type=ISI) 2. Palmer MS, Dryden AJ, Hughes JT, Collinge J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature. 1991;352(6333):340–342. doi:10.1038/352340a0 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/352340a0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=1677164&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1991FY28900072&link_type=ISI) 3. Paulson HL. Protein fate in neurodegenerative proteinopathies: polyglutamine diseases join the (mis)fold. Am J Hum Genet. 1999;64(2):339–345. doi:10.1086/302269 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/302269&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9973270&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000078740600002&link_type=ISI) 4. Cali I, Castellani R, Yuan J, Al-Shekhlee A, Cohen ML, Xiao X, Moleres FJ, Parchi P, Zou WQ, Gambetti P. Classification of sporadic Creutzfeldt-Jakob disease revisited. Brain. 2006;129(Pt 9):2266–2277. doi:10.1093/brain/awl224 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/brain/awl224&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16923954&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000240679700004&link_type=ISI) 5. Mead S, Poulter M, Uphill J, Beck J, Whitfield J, Webb TE, Campbell T, Adamson G, Deriziotis P, Tabrizi SJ et al. Genetic risk factors for variant Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurol. 2009;8(1):57–66. doi:10.1016/S1474-4422(08)70265-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1474-4422(08)70265-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19081515&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000261860700022&link_type=ISI) 6. López González I, Garcia-Esparcia P, Llorens F, Ferrer I. Genetic and Transcriptomic Profiles of Inflammation in Neurodegenerative Diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and Tauopathies. Int J Mol Sci. 2016;17(2):206. doi:10.3390/ijms17020206 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/ijms17020206&link_type=DOI) 7. Richardson EP., Masters CL. The nosology of Creutzfeldt-Jakob disease and conditions related to the accumulation of PrPCJD in the nervous system. Brain Pathol. 1995;5(1):33–41. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7767489&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1995QJ68400006&link_type=ISI) 8. Spudich S, Mastrianni JA, Wrensch M, Gabizon R, Meiner Z, Kahana I, Rosenmann H, Kahana E, Prusiner SB. Complete penetrance of Creutzfeldt-Jakob disease in Libyan Jews carrying the E200K mutation in the prion protein gene. Mol Med. 1995;1(6):607–613. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/BF03401601&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8529127&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1995RV93700005&link_type=ISI) 9. Monari L, Chen SG, Brown P, Parchi P, Petersen RB, Mikol J, Gray F, Cortelli P, Montagna P, Ghetti B, et al. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: different prion proteins determined by a DNA polymorphism. Proc Natl Acad Sci U S A. 1994;91(7):2839–2842. doi:10.1073/pnas.91.7.2839 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czo5OiI5MS83LzI4MzkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yNC8yMDIwLjEyLjIxLjIwMjQ4Njg4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 10. He D, Liu L, Wang Y, Sheng M. A Novel Genes Signature Associated with the Progression of Polycystic Ovary Syndrome. Pathol Oncol Res. 2019. doi:10.1007/s12253-019-00676-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12253-019-00676-3&link_type=DOI) 11. Li C, Zeng X, Yu H, Gu Y, Zhang W. Identification of hub genes with diagnostic values in pancreatic cancer by bioinformatics analyses and supervised learning methods. World J Surg Oncol. 2018;16(1):223. doi:10.1186/s12957-018-1519-y [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12957-018-1519-y&link_type=DOI) 12. Haage V, Semtner M, Vidal RO, Hernandez DP, Pong WW, Chen Z, Hambardzumyan D, Magrini V, Ly A, Walker J et al. Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathol Commun. 2019;7(1):20. doi:10.1186/s40478-019-0665-y [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s40478-019-0665-y&link_type=DOI) 13. Bartoletti-Stella A, Corrado P, Mometto N, Baiardi S, Durrenberger PF, Arzberger T, Reynolds R, Kretzschmar H, Capellari S, Parchi P. Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease. Mol Neurobiol. 2019;56(7):5009–5024. doi:10.1007/s12035-018-1421-1 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12035-018-1421-1&link_type=DOI) 14. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991–D995. doi:10.1093/nar/gks1193 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gks1193&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23193258&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000312893300141&link_type=ISI) 15. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkv007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25605792&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 16. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016;44(D1):D471–D480. doi:10.1093/nar/gkv1164 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkv1164&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26527732&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 17. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–D361. doi:10.1093/nar/gkw1092 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkw1092&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27899662&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 18. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009;37(Database issue):D674–D679. doi:10.1093/nar/gkn653 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkn653&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18832364&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000261906200120&link_type=ISI) 19. Sidiropoulos K, Viteri G, Sevilla C, Jupe S, Webber M, Orlic-Milacic M, Jassal B, May B, Shamovsky V, Duenas C et al. Reactome enhanced pathway visualization. Bioinformatics. 2017;33(21):3461–3467. doi:10.1093/bioinformatics/btx441 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/bioinformatics/btx441&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29077811&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 20. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet. 2002;31(1):19–20. doi:10.1038/ng0502-19 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ng0502-19&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11984561&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000175362500008&link_type=ISI) 21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–15550. doi:10.1073/pnas.0506580102 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTAyLzQzLzE1NTQ1IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjQvMjAyMC4xMi4yMS4yMDI0ODY4OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 22. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45(D1):D183–D189. doi:10.1093/nar/gkw1138 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkw1138&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27899595&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000396575500028&link_type=ISI) 23. Petri V, Jayaraman P, Tutaj M, Hayman GT, Smith JR, De Pons J, Laulederkind SJ, Lowry TF, Nigam R, Wang SJ et al. The pathway ontology - updates and applications. J Biomed Semantics. 2014;5(1):7. doi:10.1186/2041-1480-5-7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/2041-1480-5-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24499703&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 24. Jewison T, Su Y, Disfany FM, Liang Y, Knox C, Maciejewski A, Poelzer J, Huynh J, Zhou Y, Arndt D et al. SMPDB 2.0: big improvements to the Small Molecule Pathway Database. Nucleic Acids Res. 2014;42(Database issue):D478–D484. doi:10.1093/nar/gkt1067 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkt1067&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24203708&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 25. Chen J, Bardes EE, Aronow BJ, Jegga AG.ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37(Web Server issue):W305–W311. doi:10.1093/nar/gkp427 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkp427&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19465376&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000267889100054&link_type=ISI) 26. Bauer S. Gene-Category Analysis. Methods Mol Biol. 2017;1446:175–188. doi:10.1007/978-1-4939-3743-1_13 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/978-1-4939-3743-1_13&link_type=DOI) 27. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-Toro N et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42(Database issue):D358–D363. doi:10.1093/nar/gkt1115 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkt1115&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24234451&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000331139800054&link_type=ISI) 28. Bateman A, Martin MJ, O’Donovan C, Magrane M, Apweiler R, Alpi E, Antunes R, Arganiska J, Bely B, Bingley M et al. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(Database issue):D204–D212. doi:10.1093/nar/gku989 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gku989&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25348405&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 29. Brown KR, Jurisica I. Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol. 2007;8(5):R95. doi:10.1186/gb-2007-8-5-r95 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/gb-2007-8-5-r95&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17535438&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 30. Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock RE, Brinkman FS, Lynn DJ. InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res. 2013;41(Database issue):D1228–D233. doi:10.1093/nar/gks1147 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gks1147&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23180781&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000312893300174&link_type=ISI) 31. Clerc O, Deniaud M, Vallet SD, Naba A, Rivet A, Perez S, Thierry-Mieg N, Ricard-Blum S. MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucleic Acids Res. 2019;47(D1):D376–D381. doi:10.1093/nar/gky1035 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gky1035&link_type=DOI) 32. Orchard S, Kerrien S, Abbani S, Aranda B, Bhate J, Bidwell S, Bridge A, Briganti L, Brinkman FS, Cesareni G et al. Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods. 2012;9(4):345–350. doi:10.1038/nmeth.1931 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nmeth.1931&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22453911&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000302218500015&link_type=ISI) 33. Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D. et al. 2003 Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome. Res. 3,2498–504. doi:10.1101/gr.1239303 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1101/gr.1239303&link_type=DOI) 34. Brown KR, Jurisica I. Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol. 2007;8(5):R95. doi:10.1186/gb-2007-8-5-r95 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/gb-2007-8-5-r95&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17535438&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 35. Hormozdiari F, Berenbrink P, Przulj N, Sahinalp SC. Not all scale-free networks are born equal: the role of the seed graph in PPI network evolution. PLoS Comput Biol. 2007;3(7):e118. doi:10.1371/journal.pcbi.0030118 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pcbi.0030118&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17616981&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 36. Bi D, Ning H, Liu S, Que X, Ding K. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer. Comput Biol Chem. 2015;56:71–83. doi:10.1016/j.compbiolchem.2015.04.001 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.compbiolchem.2015.04.001&link_type=DOI) 37. Shi Z, Zhang B. Fast network centrality analysis using GPUs. BMC Bioinformatics. 2011;12:149. doi:10.1186/1471-2105-12-149 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2105-12-149&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21569426&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 38. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell. 2005;122(6):957–968. doi:10.1016/j.cell.2005.08.029 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cell.2005.08.029&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16169070&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000232130200019&link_type=ISI) 39. Zaki N., Efimov D. and Berengueres J. 2013 Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC. Bioinformatics. 14,163. doi:10.1186/1471-2105-14-163 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2105-14-163&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23688127&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 40. Fan Y, Xia J miRNet-Functional Analysis and Visual Exploration of miRNA-Target Interactions in a Network Context. Methods Mol Biol. 2018;1819:215–233. doi:10.1007/978-1-4939-8618-7_10 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/978-1-4939-8618-7_10&link_type=DOI) 41. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 2015;43(Database issue):D153–D159. doi:10.1093/nar/gku1215 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gku1215&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25416803&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 42. Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46(D1):D296–D302. doi:10.1093/nar/gkx1067 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkx1067&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29126174&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 43. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009;37(Database issue):D105–D110. doi:10.1093/nar/gkn851 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkn851&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18996891&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000261906200019&link_type=ISI) 44. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37(Database issue):D98–104. doi:10.1093/nar/gkn714 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkn714&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18927107&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000261906200018&link_type=ISI) 45. Huang Z, Shi J, Gao Y, Cui C, Zhang S, Li J, Zhou Y, Cui Q. HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2019;47(D1):D1013–D1017. doi:10.1093/nar/gky1010Z [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gky1010&link_type=DOI) 46. Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ. PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. 2010;11(1):R6. doi:10.1186/gb-2010-11-1-r6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/gb-2010-11-1-r6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20089154&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 47. Liu X, Wang S, Meng F, Wang J, Zhang Y, Dai E, Yu X, Li X, Jiang W. SM2miR: a database of the experimentally validated small molecules’ effects on microRNA expression. Bioinformatics. 2013;29(3):409–411. doi:10.1093/bioinformatics/bts698 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/bioinformatics/bts698&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23220571&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000314892000023&link_type=ISI) 48. Rukov JL, Wilentzik R, Jaffe I, Vinther J, Shomron N. Pharmaco-miR: linking microRNAs and drug effects. Brief Bioinform. 2014;15(4):648–659. doi:10.1093/bib/bbs082 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/bib/bbs082&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23376192&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 49. Dai E, Yu X, Zhang Y, Meng F, Wang S, Liu X, Liu D, Wang J, Li X, Jiang W. EpimiR: a database of curated mutual regulation between miRNAs and epigenetic modifications. Database (Oxford). 2014;2014:bau023. doi:10.1093/database/bau023 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/database/bau023&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24682734&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 50. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–D97. doi:10.1093/nar/gkt1248 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkt1248&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24297251&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000331139800015&link_type=ISI) 51. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019. doi:10.1093/nar/gkz240 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkz240&link_type=DOI) 52. Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma’ayan A. (2010) ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics. 2010;26(19):2438–2444. doi:10.1093/bioinformatics/btq466 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/bioinformatics/btq466&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20709693&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000282170000011&link_type=ISI) 53. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi:10.1186/1471-2105-12-77 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2105-12-77&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21414208&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 54. Gao L, Li C, Yang RY, Lian WW, Fang JS, Pang XC, Qin XM, Liu AL, Du GH. Ameliorative effects of baicalein in MPTP-induced mouse model of Parkinson’s disease: A microarray study. Pharmacol Biochem Behav. 2015;133:155–163. doi:10.1016/j.pbb.2015.04.004 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pbb.2015.04.004&link_type=DOI) 55. Zhao Y, Tan W, Sheng W, Li X. Identification of Biomarkers Associated With Alzheimer’s Disease by Bioinformatics Analysis. Am J Alzheimers Dis Other Demen. 2016;31(2):163–168. doi:10.1177/1533317515588181 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1533317515588181&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26082458&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 56. Ladogana A, Puopolo M, Croes EA, Budka H, Jarius C, Collins S, Klug GM, Sutcliffe T, Giulivi A, Alperovitch A et al. Mortality from Creutzfeldt-Jakob disease and related disorders in Europe, Australia, and Canada. Neurology. 2005;64(9):1586–1591. doi:10.1212/01.WNL.0000160117.56690.B2 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1212/01.WNL.0000160117.56690.B2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15883321&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 57. Vallortigara J, Whitfield D, Quelch W, Alghamdi A, Howlett D, Hortobágyi T, Johnson M, Attems J, O’Brien JT, Thomas A et al. Decreased Levels of VAMP2 and Monomeric Alpha-Synuclein Correlate with Duration of Dementia. J Alzheimers Dis. 2016;50(1):101–110. doi:10.3233/JAD-150707 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/JAD-150707&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26639969&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 58. Zhou M, Yang WL, Ji Y, Qiang X, Wang P. Cold-inducible RNA-binding protein mediates neuroinflammation in cerebral ischemia. Biochim Biophys Acta. 2014;1840(7):2253–2261. doi:10.1016/j.bbagen.2014.02.027 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbagen.2014.02.027&link_type=DOI) 59. Francelle L, Galvan L, Gaillard MC, Guillermier M, Houitte D, Bonvento G, Petit F, Jan C, Dufour N, Hantraye P et al. Loss of the thyroid hormone-binding protein Crym renders striatal neurons more vulnerable to mutant huntingtin in Huntington’s disease. Hum Mol Genet. 2015;24(6):1563–1573. doi:10.1093/hmg/ddu571 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/hmg/ddu571&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25398949&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 60. Silva MG, Elliott K, Dahl HH, Fitzpatrick E, Wilcox S, Delatycki M, Williamson R, Efron D, Lynch M, Forrest S. Disruption of a novel member of a sodium/hydrogen exchanger family and DOCK3 is associated with an attention deficit hyperactivity disorder-like phenotype. J Med Genet. 2003;40(10):733–740. doi:10.1136/jmg.40.10.733 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjk6IjQwLzEwLzczMyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzEyLzI0LzIwMjAuMTIuMjEuMjAyNDg2ODguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 61. Tiwari SS, Mizuno K, Ghosh A, Aziz W, Troakes C, Daoud J, Golash V, Noble W, Hortobágyi T, Giese KP. Alzheimer-related decrease in CYFIP2 links amyloid production to tau hyperphosphorylation and memory loss. Brain. 2016;139(Pt 10):2751–2765. doi:10.1093/brain/aww205 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/brain/aww205&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27524794&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 62. Tiwari V, Patel AB. Pyruvate carboxylase and pentose phosphate fluxes are reduced in AβPP-PS1 mouse model of Alzheimer’s disease: a ¹³C NMR study. J Alzheimers Dis. 2014;41(2):387–399. doi:10.3233/JAD-122449 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/JAD-122449&link_type=DOI) 63. Chong MS, Goh LK, Lim WS, Chan M, Tay L, Chen G, Feng L, Ng TP, Tan CH, Lee TS. Gene expression profiling of peripheral blood leukocytes shows consistent longitudinal downregulation of TOMM40 and upregulation of KIR2DL5A, PLOD1, and SLC2A8 among fast progressors in early Alzheimer’s disease. J Alzheimers Dis. 2013;34(2):399–405. doi:10.3233/JAD-121621 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/JAD-121621&link_type=DOI) 64. Tsai CK, Huang LC, Tsai WC, Huang SM, Lee JT, Hueng DY. Overexpression of PLOD3 promotes tumor progression and poor prognosis in gliomas. Oncotarget. 2018;9(21):15705–15720. doi:10.18632/oncotarget.24594 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.24594&link_type=DOI) 65. Liu Y, Zhou Q, Tang M, Fu N, Shao W, Zhang S, Yin Y, Zeng R, Wang X, Hu G et al. Upregulation of alphaB-crystallin expression in the substantia nigra of patients with Parkinson’s disease. Neurobiol Aging. 2015;36(4):1686–1691. doi:10.1016/j.neurobiolaging.2015.01.015 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neurobiolaging.2015.01.015&link_type=DOI) 66. Durrenberger PF, Filiou MD, Moran LB, Michael GJ, Novoselov S, Cheetham ME, Clark P, Pearce RK, Graeber MB. DnaJB6 is present in the core of Lewy bodies and is highly up-regulated in parkinsonian astrocytes. J Neurosci Res. 2009;87(1):238–245. doi:10.1002/jnr.21819 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jnr.21819&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18711724&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 67. Maeshima H, Ohnuma T, Sakai Y, Shibata N, Baba H, Ihara H, Higashi M, Ohkubo T, Nozawa E, Abe S et al. Increased plasma glutamate by antipsychotic medication and its relationship to glutaminase 1 and 2 genotypes in schizophrenia - - Juntendo University Schizophrenia Projects (JUSP). Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(7):1410–1418. doi:10.1016/j.pnpbp.2007.06.009 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pnpbp.2007.06.009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17669570&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 68. Tao R, Li C, Newburn EN, Ye T, Lipska BK, Herman MM, Weinberger DR, Kleinman JE, Hyde TM. Transcript-specific associations of SLC12A5 (KCC2) in human prefrontal cortex with development, schizophrenia, and affective disorders. J Neurosci. 2012;32(15):5216–5222. doi:10.1523/JNEUROSCI.4626-11.2012 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIzMi8xNS81MjE2IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjQvMjAyMC4xMi4yMS4yMDI0ODY4OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 69. Akbarian S, Huang HS. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Rev. 2006;52(2):293–304. doi:10.1016/j.brainresrev.2006.04.001 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.brainresrev.2006.04.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16759710&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000240794100006&link_type=ISI) 70. Davis KN, Tao R, Li C, Gao Y, Gondré-Lewis MC, Lipska BK, Shin JH, Xie B, Ye T, Weinberger DR et al. GAD2 Alternative Transcripts in the Human Prefrontal Cortex, and in Schizophrenia and Affective Disorders. PLoS One. 2016;11(2):e0148558. doi:10.1371/journal.pone.0148558 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0148558&link_type=DOI) 71. Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry. 2009;14(6):601–613. doi:10.1038/mp.2008.7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/mp.2008.7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18268500&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000266236300006&link_type=ISI) 72. Saito A, Fujikura-Ouchi Y, Kuramasu A, Shimoda K, Akiyama K, Matsuoka H, Ito C. Association study of putative promoter polymorphisms in the neuroplastin gene and schizophrenia. Neurosci Lett. 2007;411(3):168–173. doi:10.1016/j.neulet.2006.08.042 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neulet.2006.08.042&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17123723&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 73. Liu CM, Fann CS, Chen CY, Liu YL, Oyang YJ, Yang WC, Chang CC, Wen CC, Chen WJ, Hwang TJ et al. ANXA7, PPP3CB, DNAJC9, and ZMYND17 genes at chromosome 10q22 associated with the subgroup of schizophrenia with deficits in attention and executive function. Biol Psychiatry. 2011;70(1):51–58. doi:10.1016/j.biopsych.2011.02.033 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2011.02.033&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21531385&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 74. Huang Y, Zhao L, Jia B, Wu L, Li Y, Curthoys N, Zheng JC. Glutaminase dysregulation in HIV-1-infected human microglia mediates neurotoxicity: relevant to HIV-1-associated neurocognitive disorders. J Neurosci. 2011;31(42):15195–204. doi:10.1523/JNEUROSCI.2051-11.2011 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjExOiIzMS80Mi8xNTE5NSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzEyLzI0LzIwMjAuMTIuMjEuMjAyNDg2ODguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 75. Shamseldin HE, Masuho I, Alenizi A, Alyamani S, Patil DN, Ibrahim N, Martemyanov KA, Alkuraya FS. GNB5 mutation causes a novel neuropsychiatric disorder featuring attention deficit hyperactivity disorder, severely impaired language development and normal cognition. Genome Biol. 2016;17(1):195. doi:10.1186/s13059-016-1061-6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13059-016-1061-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 76. Antonell A, Lladó A, Sánchez-Valle R, Sanfeliu C, Casserras T, Rami L, Muñoz-García C, Dangla-Valls A, Balasa M, Boya P et al. Altered Blood Gene Expression of Tumor-Related Genes (PRKCB, BECN1, and CDKN2A) in Alzheimer’s Disease. Mol Neurobiol. 2016;53(9):5902–5911. doi:10.1007/s12035-015-9483-9 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12035-015-9483-9&link_type=DOI) 77. Brinkmalm A, Brinkmalm G, Honer WG, Frölich L, Hausner L, Minthon L, Hansson O, Wallin A, Zetterberg H, Blennow K et al. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease. Mol Neurodegener. 2014;9:53. doi:10.1186/1750-1326-9-53 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1750-1326-9-53&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25418885&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 78. Ibarreta D, Tao J, Parrilla R, Ayuso MS. Mutation analysis of chromosome 19 calmodulin (CALM3) gene in Alzheimer’s disease patients. Neurosci Lett. 1997;229(3):157–160. doi:10.1016/s0304-3940(97)00453-9 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s0304-3940(97)00453-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9237482&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 79. Liu QY, Lei JX, Sikorska M, Liu R. A novel brain-enriched E3 ubiquitin ligase RNF182 is up regulated in the brains of Alzheimer’s patients and targets ATP6V0C for degradation. Mol Neurodegener. 2008;3:4. doi:10.1186/1750-1326-3-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1750-1326-3-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18298843&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 80. Gahete MD, Rubio A, Durán-Prado M, Avila J, Luque RM, Castaño JP. Expression of Somatostatin, cortistatin, and their receptors, as well as dopamine receptors, but not of neprilysin, are reduced in the temporal lobe of Alzheimer’s disease patients. J Alzheimers Dis. 2010;20(2):465–475. doi:10.3233/JAD-2010-1385 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/JAD-2010-1385&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20164562&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 81. Seki T, Takahashi H, Adachi N, Abe N, Shimahara T, Saito N, Sakai N. Aggregate formation of mutant protein kinase C gamma found in spinocerebellar ataxia type 14 impairs ubiquitin-proteasome system and induces endoplasmic reticulum stress. Eur J Neurosci. 2007;26(11):3126–3140. doi:10.1111/j.1460-9568.2007.05933.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1460-9568.2007.05933.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18005063&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000251026200013&link_type=ISI) 82. Leemput J, Chandran J, Knight MA, Holtzclaw LA, Scholz S, Cookson MR, Houlden H, Gwinn-Hardy K, Fung HC, Lin X et al. Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet. 2007;3(6):e108. doi:10.1371/journal.pgen.0030108 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pgen.0030108&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17590087&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 83. Bourassa CV, Meijer IA, Merner ND, Grewal KK, Stefanelli MG, Hodgkinson K, Ives EJ, Pryse-Phillips W, Jog M, Boycott K et al. VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families. Am J Hum Genet. 2012;91(3):548–552. doi:10.1016/j.ajhg.2012.07.018 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ajhg.2012.07.018&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22958904&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 84. Cossette P, Liu L, Brisebois K, Dong H, Lortie A, Vanasse M, Saint-Hilaire JM, Carmant L, Verner A, Lu WY et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet. 2002;31(2):184–189. doi:10.1038/ng885 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ng885&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11992121&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000175903500016&link_type=ISI) 85. Lü JJ, Zhang YH, Pan H, Chen YC, Liu XY, Jiang YW, Bao XH, Shen Y, Wu HS, Xu KM et al. Case-control study and transmission/disequilibrium tests of the genes encoding GABRA5 and GABRB3 in a Chinese population affected by childhood absence epilepsy. Chin Med J (Engl). 2004;117(10):1497–501. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15498372&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 86. Kang JQ, Macdonald RL. Molecular Pathogenic Basis for GABRG2 Mutations Associated With a Spectrum of Epilepsy Syndromes, From Generalized Absence Epilepsy to Dravet Syndrome. JAMA Neurol. 2016;73(8):1009–1016. doi:10.1001/jamaneurol.2016.0449 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamaneurol.2016.0449&link_type=DOI) 87. Kulkarni N, Tang S, Bhardwaj R, Bernes S, Grebe TA. Progressive Movement Disorder in Brothers Carrying a GNAO1 Mutation Responsive to Deep Brain Stimulation. J Child Neurol. 2016;31(2):211–214. doi:10.1177/0883073815587945 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/0883073815587945&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26060304&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 88. Nakamura K, Iwata Y, Anitha A, Miyachi T, Toyota T, Yamada S, Tsujii M, Tsuchiya KJ, Iwayama Y, Yamada K et al. Replication study of Japanese cohorts supports the role of STX1A in autism susceptibility. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):454–458. doi:10.1016/j.pnpbp.2010.11.033 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pnpbp.2010.11.033&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21118708&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 89. Mizuno M, Matsumoto A, Hamada N, Ito H, Miyauchi A, Jimbo EF, Momoi MY, Tabata H, Yamagata T, Nagata K. Role of an adaptor protein Lin-7B in brain development: possible involvement in autism spectrum disorders. J Neurochem. 2015;132(1):61–69. doi:10.1111/jnc.12943 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jnc.12943&link_type=DOI) 90. Breitenkamp AF, Matthes J, Nass RD, Sinzig J, Lehmkuhl G, Nürnberg P, Herzig S. Rare mutations of CACNB2 found in autism spectrum disease-affected families alter calcium channel function. PLoS One. 2014;9(4):e95579. doi:10.1371/journal.pone.0095579 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0095579&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24752249&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 91. Thompson AGB, Luk C, Heslegrave AJ, Zetterberg H, Mead SH, Collinge J, Jackson GS. Neurofilament light chain and tau concentrations are markedly increased in the serum of patients with sporadic Creutzfeldt-Jakob disease, and tau correlates with rate of disease progression. J Neurol Neurosurg Psychiatry. 2018;89(9):955–961. doi:10.1136/jnnp-2017-317793 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiam5ucCI7czo1OiJyZXNpZCI7czo4OiI4OS85Lzk1NSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzEyLzI0LzIwMjAuMTIuMjEuMjAyNDg2ODguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 92. Yun J, Jeong BH, Kim HJ, Park YJ, Lee YJ, Choi EK, Carp RI, Kim YS. A polymorphism in the YWHAH gene encoding 14-3-3 eta that is not associated with sporadic Creutzfeldt-Jakob disease (CJD). Mol Biol Rep. 2012;39(4):3619–3625. doi:10.1007/s11033-011-1136-0 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11033-011-1136-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21739144&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 93. Gonda X, Eszlari N, Anderson IM, Deakin JF, Bagdy G, Juhasz G. Association of ATP6V1B2 rs1106634 with lifetime risk of depression and hippocampal neurocognitive deficits: possible novel mechanisms in the etiopathology of depression. Transl Psychiatry. 2016;6(11):e945. doi:10.1038/tp.2016.221 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/tp.2016.221&link_type=DOI) 94. Lee J, Hwang YJ, Shin JY, Lee WC, Wie J, Kim KY, Lee MY, Hwang D, Ratan RR, Pae AN et al. Epigenetic regulation of cholinergic receptor M1 (CHRM1) by histone H3K9me3 impairs Ca(2+) signaling in Huntington’s disease. Acta Neuropathol. 2013;125(5):727–739. doi:10.1007/s00401-013-1103-z [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00401-013-1103-z&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23455440&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 95. Wang J, Si YM, Liu ZL, Yu L. Cholecystokinin, cholecystokinin-A receptor and cholecystokinin-B receptor gene polymorphisms in Parkinson’s disease. Pharmacogenetics. 2003;13(6):365–369. doi:10.1097/01.fpc.0000054095.48725.fe [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/00008571-200306000-00008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12777967&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000183883800008&link_type=ISI) 96. Takehashi M, Tanaka S, Masliah E, Ueda K. Association of monoamine oxidase A gene polymorphism with Alzheimer’s disease and Lewy body variant. Neurosci Lett. 2002;327(2):79–82. doi:10.1016/s0304-3940(02)00258-6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0304-3940(02)00258-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12098640&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000177369800002&link_type=ISI) 97. Peress NS, Perillo E. Differential expression of TGF-beta 1, 2 and 3 isotypes in Alzheimer’s disease: a comparative immunohistochemical study with cerebral infarction, aged human and mouse control brains. J Neuropathol Exp Neurol. 1995;54(6):802–811. doi:10.1097/00005072-199511000-00007 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/00005072-199511000-00007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7595653&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 98. Ko CY, Chu YY, Narumiya S, Chi JY, Furuyashiki T, Aoki T, Wang SM, Chang WC, Wang JM. CCAAT/enhancer-binding protein delta/miR135a/thrombospondin 1 axis mediates PGE2-induced angiogenesis in Alzheimer’s disease. Neurobiol Aging. 2015;36(3):1356–1368. doi:10.1016/j.neurobiolaging.2014.11.020 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neurobiolaging.2014.11.020&link_type=DOI) 99. Mitchelmore C, Büchmann-Møller S, Rask L, West MJ, Troncoso JC, Jensen NA. NDRG2: a novel Alzheimer’s disease associated protein. Neurobiol Dis. 2004;16(1):48–58. doi:10.1016/j.nbd.2004.01.003 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.nbd.2004.01.003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15207261&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000221365300006&link_type=ISI) 100.Jamieson SE, White JK, Howson JM, Pask R, Smith AN, Brayne C, Evans JG, Xuereb J, Cairns NJ, Rubinsztein DC et al. Candidate gene association study of solute carrier family 11a members 1 (SLC11A1) and 2 (SLC11A2) genes in Alzheimer’s disease. Neurosci Lett. 2005;374(2):124–128. doi:10.1016/j.neulet.2004.10.038 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neulet.2004.10.038&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15644277&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 101.Zhang J, Zhang R, Zhan Z, Li X, Zhou F, Xing A, Jiang C, Chen Y, An L. Beneficial Effects of Sulforaphane Treatment in Alzheimer’s Disease May Be Mediated through Reduced HDAC1/3 and Increased P75NTR Expression. Front Aging Neurosci. 2017;9:121. doi:10.3389/fnagi.2017.00121 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fnagi.2017.00121&link_type=DOI) 102.Ma J, Jiang T, Tan L, Yu JT. TYROBP in Alzheimer’s disease. Mol Neurobiol. 2015;51(2):820–826. doi:10.1007/s12035-014-8811-9 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12035-014-8811-9&link_type=DOI) 103.Manev H, Manev R. 5-Lipoxygenase (ALOX5) and FLAP (ALOX5AP) gene polymorphisms as factors in vascular pathology and Alzheimer’s disease. Med Hypotheses. 2006;66(3):501–503. doi:10.1016/j.mehy.2005.09.031 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.mehy.2005.09.031&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16278051&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000236319200010&link_type=ISI) 104.Cimino PJ, Sokal I, Leverenz J, Fukui Y, Montine TJ. DOCK2 is a microglial specific regulator of central nervous system innate immunity found in normal and Alzheimer’s disease brain. Am J Pathol. 2009;175(4):1622–1630. doi:10.2353/ajpath.2009.090443 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2353/ajpath.2009.090443&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19729484&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 105.Kong Y, Wu JB, Wang X, Zhao JF, Song H, Yuan LD. Polymorphism of the OLR1 3’UTR potential microRNA binding site and risk of Alzheimer’s disease: a meta-analysis. Genet Mol Res. 2014;13(4):10162–10172. doi:10.4238/2014 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4238/2014.December.4.10&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25501227&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 106.Fassbender K, Walter S, Kühl S, Landmann R, Ishii K, Bertsch T, Stalder AK, Muehlhauser F, Liu Y, Ulmer AJ et al. The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J. 2004;18(1):203–205. doi:10.1096/fj.03-0364fje [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1096/fj.03-0364fje&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=14597556&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 107.Akiyama H, Tooyama I, Kawamata T, Ikeda K, McGeer PL. Morphological diversities of CD44 positive astrocytes in the cerebral cortex of normal subjects and patients with Alzheimer’s disease. Brain Res. 1993;632(1-2):249–259. doi:10.1016/0006-8993(93)91160-t [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0006-8993(93)91160-T&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7511977&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1993MQ15000030&link_type=ISI) 108.Matsumura A, Suzuki S, Iwahara N, Hisahara S, Kawamata J, Suzuki H, Yamauchi A, Takata K, Kitamura Y, Shimohama S. Temporal changes of CD68 and α7 nicotinic acetylcholine receptor expression in microglia in Alzheimer’s disease-like mouse models. J Alzheimers Dis. 2015;44(2):409–423. doi:10.3233/JAD-141572 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/JAD-141572&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25352454&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 109.Salta E, Sierksma A, Vanden Eynden E, De Strooper B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer’s brain. EMBO Mol Med. 2016;8(9):1005–1018. doi:10.15252/emmm.201606520 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZW1ib21tIjtzOjU6InJlc2lkIjtzOjg6IjgvOS8xMDA1IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjQvMjAyMC4xMi4yMS4yMDI0ODY4OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 110.Kitamura Y, Tsuchiya D, Takata K, Shibagaki K, Taniguchi T, Smith MA, Perry G, Miki H, Takenawa T, Shimohama S. Possible involvement of Wiskott-Aldrich syndrome protein family in aberrant neuronal sprouting in Alzheimer’s disease. Neurosci Lett. 2003;346(3):149–152. doi:10.1016/s0304-3940(03)00506-8 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0304-3940(03)00506-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12853106&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000184192300007&link_type=ISI) 111.Busse S, Steiner J, Alter J, Dobrowolny H, Mawrin C, Bogerts B, Hartig R, Busse M. Expression of HLA-DR, CD80, and CD86 in Healthy Aging and Alzheimer’s Disease. J Alzheimers Dis. 2015;47(1):177–184. doi:10.3233/JAD-150217 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/JAD-150217&link_type=DOI) 112.Bryan KJ, Zhu X, Harris PL, Perry G, Castellani RJ, Smith MA, Casadesus G. Expression of CD74 is increased in neurofibrillary tangles in Alzheimer’s disease. Mol Neurodegener. 2008;3:13. doi:10.1186/1750-1326-3-13 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1750-1326-3-13&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18786268&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 113.Alves-Leon SV, Veluttini-Pimentel ML, Gouveia ME, Malfetano FR, Gaspareto EL, Alvarenga MP, Frugulhetti I, Quirico-Santos T. Acute disseminated encephalomyelitis: clinical features, HLA DRB1*1501, HLA DRB1*1503, HLA DQA1*0102, HLA DQB1*0602, and HLA DPA1*0301 allelic association study. Arq Neuropsiquiatr. 2009;67(3A):643–651. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19722042&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 114.Haegert DG, Muntoni F, Murru MR, Costa G, Francis GS, Marrosu MG. HLA-DQA1 and -DQB1 associations with multiple sclerosis in Sardinia and French Canada: evidence for immunogenetically distinct patient groups. Neurology. 1993;43(3 Pt 1):548–552. doi:10.1212/wnl.43.3\_part\_1.548 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToibmV1cm9sb2d5IjtzOjU6InJlc2lkIjtzOjE1OiI0My8zX1BhcnRfMS81NDgiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yNC8yMDIwLjEyLjIxLjIwMjQ4Njg4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 115.De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT, Piccio L, Raychaudhuri S, Tran D, Aubin C et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet. 2009;41(7):776–782. doi:10.1038/ng.401 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ng.401&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19525953&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000267786200006&link_type=ISI) 116.Strickland MR, Koller EJ, Deng DZ, Ceballos-Diaz C, Golde TE, Chakrabarty P. Ifngr1 and Stat1 mediated canonical Ifn-γ signaling drives nigrostriatal degeneration. Neurobiol Dis. 2018;110:133–141. doi:10.1016/j.nbd.2017.11.007 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.nbd.2017.11.007&link_type=DOI) 117.Yun HM, Choi DY, Oh KW, Hong JT. PRDX6 Exacerbates Dopaminergic Neurodegeneration in a MPTP Mouse Model of Parkinson’s Disease. Mol Neurobiol. 2015;52(1):422–431. doi:10.1007/s12035-014-8885-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12035-014-8885-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25193021&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 118.Pang S, Chen D, Zhang A, Qin X, Yan B. Genetic analysis of the LAMP-2 gene promoter in patients with sporadic Parkinson’s disease. Neurosci Lett. 2012;526(1):63–67. doi:10.1016/j.neulet.2012.07.044 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neulet.2012.07.044&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22867958&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 119.Han L, Wang L, Tang S, Yuan L, Wu S, Du X, Xiang Y, Qu X, Liu H, Luo H et al. ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation. 2018;15(1):246. doi:10.1186/s12974-018-1283-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12974-018-1283-5&link_type=DOI) 120.Vanni S, Moda F, Zattoni M, Bistaffa E, De Cecco E, Rossi M, Giaccone G, Tagliavini F, Haïk S, Deslys JP et al. Differential overexpression of SERPINA3 in human prion diseases. Sci Rep. 2017;7(1):15637. doi:10.1038/s41598-017-15778-8 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-017-15778-8&link_type=DOI) 121.Fan HW, Ni Q, Fan YN, Ma ZX, Li YB. C-type lectin domain family 5, member A (CLEC5A, MDL-1) promotes brain glioblastoma tumorigenesis by regulating PI3K/Akt signalling. Cell Prolif. 2019;52(3):e12584. doi:10.1111/cpr.12584 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/cpr.12584&link_type=DOI) 122.Pae CU, Kim TS, Kwon OJ, Artioli P, Serretti A, Lee CU, Lee SJ, Lee C, Paik IH, Kim JJ. Polymorphisms of heat shock protein 70 gene (HSPA1A, HSPA1B and HSPA1L) and schizophrenia. Neurosci Res. 2005;53(1):8–13. doi:10.1016/j.neures.2005.05.004 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neures.2005.05.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15963589&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 123.Liou HL, Dixit SS, Xu S, Tint GS, Stock AM, Lobel P. NPC2, the protein deficient in Niemann-Pick C2 disease, consists of multiple glycoforms that bind a variety of sterols. J Biol Chem. 2006;281(48):36710–36723. doi:10.1074/jbc.M608743200 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyODEvNDgvMzY3MTAiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yNC8yMDIwLjEyLjIxLjIwMjQ4Njg4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 124.Sinkevicius KW, Morrison TR, Kulkarni P, Caffrey Cagliostro MK, Iriah S, Malmberg S, Sabrick J, Honeycutt JA, Askew KL et al. RNaseT2 knockout rats exhibit hippocampal neuropathology and deficits in memory. Dis Model Mech. 2018;11(6). doi:10.1242/dmm.032631 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZG1tIjtzOjU6InJlc2lkIjtzOjE0OiIxMS82L2RtbTAzMjYzMSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzEyLzI0LzIwMjAuMTIuMjEuMjAyNDg2ODguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 125.Carson R, McKnight AJ, Todd S, Liu WW, Heggarty S, Craig D, McGuinness B, Irvine GB, Passmore AP, Johnston JA. Variation in RTN3 and PPIL2 genes does not influence platelet membrane beta-secretase activity or susceptibility to alzheimer’s disease in the northern Irish population. Neuromolecular Med. 2009;11(4):337–44. doi:10.1007/s12017-009-8080-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12017-009-8080-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19669607&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000272681600011&link_type=ISI) 126.Llano DA, Devanarayan P, Devanarayan V. VGF in Cerebrospinal Fluid Combined With Conventional Biomarkers Enhances Prediction of Conversion From MCI to AD. Alzheimer Dis Assoc Disord. 2019. doi:10.1097/WAD.0000000000000328 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/WAD.0000000000000328&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31305322&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 127.Shibasaki Y, Baillie DA, St Clair D, Brookes AJ. High-resolution mapping of SNCA encoding alpha-synuclein, the non-A beta component of Alzheimer’s disease amyloid precursor, to human chromosome 4q21.3-->q22 by fluorescence in situ hybridization. Cytogenet Cell Genet. 1995;71(1):54–55. doi:10.1159/000134061 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000134061&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7606927&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1995RL26600033&link_type=ISI) 128.Liu SJ, Yang C, Zhang Y, Su RY, Chen JL, Jiao MM, Chen HF, Zheng N, Luo S, Chen YB et al. Neuroprotective effect of β-asarone against Alzheimer’s disease: regulation of synaptic plasticity by increased expression of SYP and GluR1. Drug Des Devel Ther. 2016;10:1461–1469. doi:10.2147/DDDT.S93559 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2147/DDDT.S93559&link_type=DOI) 129.Ma QL, Teng E, Zuo X, Jones M, Teter B, Zhao EY, Zhu C, Bilousova T, Gylys KH, Apostolova LG et al. Neuronal pentraxin 1: A synaptic-derived plasma biomarker in Alzheimer’s disease. Neurobiol Dis. 2018;114:120–128. doi:10.1016/j.nbd.2018.02.014 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.nbd.2018.02.014&link_type=DOI) 130.Tarawneh R, D’Angelo G, Crimmins D, Herries E, Griest T, Fagan AM, Zipfel GJ, Ladenson JH, Morris JC, Holtzman DM. Diagnostic and Prognostic Utility of the Synaptic Marker Neurogranin in Alzheimer Disease. JAMA Neurol. 2016;73(5):561–571. doi:10.1001/jamaneurol.2016.0086 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamaneurol.2016.0086&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27018940&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 131.Bakalash S, Pham M, Koronyo Y, Salumbides BC, Kramerov A, Seidenberg H, Berel D, Black KL, Koronyo-Hamaoui M. Egr1 expression is induced following glatiramer acetate immunotherapy in rodent models of glaucoma and Alzheimer’s disease. Invest Ophthalmol Vis Sci. 2011;52(12):9033–9046. doi:10.1167/iovs.11-7498 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiaW92cyI7czo1OiJyZXNpZCI7czoxMDoiNTIvMTIvOTAzMyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzEyLzI0LzIwMjAuMTIuMjEuMjAyNDg2ODguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 132.Liu SL, Wang C, Jiang T, Tan L, Xing A, Yu JT. The Role of Cdk5 in Alzheimer’s Disease. Mol Neurobiol. 2016;53(7):4328–4342. doi:10.1007/s12035-015-9369-x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12035-015-9369-x&link_type=DOI) 133.Hasegawa M, Arai T, Ihara Y. Immunochemical evidence that fragments of phosphorylated MAP5 (MAP1B) are bound to neurofibrillary tangles in Alzheimer’s disease. Neuron. 1990;4(6):909–918. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0896-6273(90)90144-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2361014&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1990DK18500011&link_type=ISI) 134.Zhang M, Cai F, Zhang S, Zhang S, Song W. Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer’s progression in vivo. Sci Rep. 2014;4:7298. doi:10.1038/srep07298 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/srep07298&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25466238&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 135.Wen L, Tang FL, Hong Y, Luo SW, Wang CL, He W, Shen C, Jung JU, Xiong F, Lee DH et al. VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology. J Cell Biol. 2011;195(5):765–779. doi:10.1083/jcb.201105109 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNiIjtzOjU6InJlc2lkIjtzOjk6IjE5NS81Lzc2NSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzEyLzI0LzIwMjAuMTIuMjEuMjAyNDg2ODguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 136.Abel D, Michel O, Veerhuis R, Jacobs M, van Dijk M, Oudejans CB. Direct downregulation of CNTNAP2 by STOX1A is associated with Alzheimer’s disease. J Alzheimers Dis. 2012;31(4):793–800. doi:10.3233/JAD-2012-120472 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/JAD-2012-120472&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22728895&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 137.Traina G, Federighi G, Brunelli M. Up-regulation of kinesin light-chain 1 gene expression by acetyl-L-carnitine: therapeutic possibility in Alzheimer’s disease. Neurochem Int. 2008;53(6-8):244–247. doi:10.1016/j.neuint.2008.08.001 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neuint.2008.08.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18761385&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 138.Zhang L, Fang Y, Cheng X, Lian YJ, Xu HL. Silencing of Long Noncoding RNA SOX21-AS1 Relieves Neuronal Oxidative Stress Injury in Mice with Alzheimer’s Disease by Upregulating FZD3/5 via the Wnt Signaling Pathway. Mol Neurobiol. 2019;56(5):3522–3537. doi:10.1007/s12035-018-1299-y [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12035-018-1299-y&link_type=DOI) 139.Perry RH, Dockray GJ, Dimaline R, Perry EK, Blessed G, Tomlinson BE. Neuropeptides in Alzheimer’s disease, depression and schizophrenia. A post mortem analysis of vasoactive intestinal peptide and cholecystokinin in cerebral cortex. J Neurol Sci. 1981;51(3):465–472. doi:10.1016/0022-510x(81)90123-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0022-510X(81)90123-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=6268760&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1981MD97200013&link_type=ISI) 140.Matsui C, Inoue E, Kakita A, Arita K, Deguchi-Tawarada M, Togawa A, Yamada A, Takai Y, Takahashi H. Involvement of the γ-secretase-mediated EphA4 signaling pathway in synaptic pathogenesis of Alzheimer’s disease. Brain Pathol. 2012;22(6):776–787. doi:10.1111/j.1750-3639.2012.00587.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1750-3639.2012.00587.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22404518&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 141.Reumiller CM, Schmidt GJ, Dhrami I, Umlauf E, Rappold E, Zellner M. Gender-related increase of tropomyosin-1 abundance in platelets of Alzheimer’s disease and mild cognitive impairment patients. J Proteomics. 2018;178:73–81. doi:10.1016/j.jprot.2017.12.018 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jprot.2017.12.018&link_type=DOI) 142.Watamura N, Toba J, Yoshii A, Nikkuni M, Ohshima T. Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer’s disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment. J Neurosci Res. 2016;94(1):15–26. doi:10.1002/jnr.23674 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jnr.23674&link_type=DOI) 143.Juneja M, Azmi A, Baets J, Roos A, Jennings MJ, Saveri P, Pisciotta C, Bernard-Marissal N, Schneider BL, Verfaillie C et al. PFN2 and GAMT as common molecular determinants of axonal Charcot-Marie-Tooth disease. J Neurol Neurosurg Psychiatry. 2018;89(8):870–878. doi:10.1136/jnnp-2017-317562 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiam5ucCI7czo1OiJyZXNpZCI7czo4OiI4OS84Lzg3MCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzEyLzI0LzIwMjAuMTIuMjEuMjAyNDg2ODguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 144.Koga M, Ishiguro H, Horiuchi Y, Inada T, Ujike H, Itokawa M, Otowa T, Watanabe Y, Someya T, Arinami T. Replication study of association between ADCYAP1 gene polymorphisms and schizophrenia. Psychiatr Genet. 2010;20(3):123–125. doi:10.1097/YPG.0b013e32833a1f52 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/YPG.0b013e32833a1f52&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20414143&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 145.Duong L, Klitten LL, Møller RS, Ingason A, Jakobsen KD, Skjødt C, Didriksen M, Hjalgrim H, Werge T, Tommerup N. Mutations in NRXN1 in a family multiply affected with brain disorders: NRXN1 mutations and brain disorders. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(3):354–358. doi:10.1002/ajmg.b.32036 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ajmg.b.32036&link_type=DOI) 146.Francks C, Maegawa S, Laurén J, Abrahams BS, Velayos-Baeza A, Medland SE, Colella S, Groszer M, McAuley EZ, Caffrey TM et al. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol Psychiatry. 2007;12(12):1129–1139. doi:10.1038/sj.mp.4002053 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/sj.mp.4002053&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17667961&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000251265200010&link_type=ISI) 147.Håvik B, Degenhardt FA, Johansson S, Fernandes CP, Hinney A, Scherag A, Lybæk H, Djurovic S, Christoforou A, Ersland KM et al. DCLK1 variants are associated across schizophrenia and attention deficit/hyperactivity disorder. PLoS One. 2012;7(4):e35424. doi:10.1371/journal.pone.0035424 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0035424&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22539971&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 148.Scheffer IE, Harkin LA, Grinton BE, Dibbens LM, Turner SJ, Zielinski MA, Xu R, Jackson G, Adams J, Connellan M et al. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain. 2007;130(Pt 1):100–109. doi:10.1093/brain/awl272 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/brain/awl272&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17020904&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000243061500009&link_type=ISI) 149.Guella I, Huh L, McKenzie MB, Toyota EB, Bebin EM, Thompson ML, Cooper GM, Evans DM, Buerki SE, Adam S et al. De novo FGF12 mutation in 2 patients with neonatal-onset epilepsy. Neurol Genet. 2016;2(6):e120. doi:10.1212/NXG.0000000000000120 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoibm5nIjtzOjU6InJlc2lkIjtzOjg6IjIvNi9lMTIwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjQvMjAyMC4xMi4yMS4yMDI0ODY4OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 150.Conroy J, Allen NM, Gorman KM, Shahwan A, Ennis S, Lynch SA, King MD. NAPB - a novel SNARE-associated protein for early-onset epileptic encephalopathy. Clin Genet. 2016;89(2):E1–E3. doi:10.1111/cge.12648 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/cge.12648&link_type=DOI) 151.Dhindsa RS, Bradrick SS, Yao X, Heinzen EL, Petrovski S, Krueger BJ, Johnson MR, Frankel WN, Petrou S, Boumil RM et al. Epileptic encephalopathy-causing mutations in DNM1 impair synaptic vesicle endocytosis. Neurol Genet. 2015;1(1):e4. doi:10.1212/01.NXG.0000464295.65736.da [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoibm5nIjtzOjU6InJlc2lkIjtzOjY6IjEvMS9lNCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzEyLzI0LzIwMjAuMTIuMjEuMjAyNDg2ODguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 152.Assoum M, Philippe C2, Isidor B3, Perrin L4, Makrythanasis P5, Sondheimer N6, Paris C7, Douglas J8, Lesca G9, Antonarakis S et al. Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic Atrophy. Am J Hum Genet. 2016;99(6):1368–1376. doi:10.1016/j.ajhg.2016.10.009 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ajhg.2016.10.009&link_type=DOI) 153.Brighina L, Okubadejo NU, Schneider NK, Lesnick TG, de Andrade M, Cunningham JM, Farrer MJ, Lincoln SJ, Rocca WA, Maraganore DM. Beta-synuclein gene variants and Parkinson’s disease: a preliminary case-control study. Neurosci Lett. 2007;420(3):229–234. doi:10.1016/j.neulet.2007.05.021 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neulet.2007.05.021&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17556099&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000248056100008&link_type=ISI) 154.Pankratz N, Beecham GW, DeStefano AL, Dawson TM, Doheny KF, Factor SA, Hamza TH, Hung AY, Hyman BT, Ivinson AJ et al. Meta-analysis of Parkinson’s disease: identification of a novel locus, RIT2. Ann Neurol. 2012;71(3):370–384. doi:10.1002/ana.22687 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ana.22687&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22451204&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 155.Lorenzo-Betancor O, Wszolek ZK, Ross OA. Rare variants in MC1R/TUBB3 exon 1 are not associated with Parkinson’s disease. Ann Neurol. 2016;79(2):331. doi:10.1002/ana.24581 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ana.24581&link_type=DOI) 156.Lanoue AC, Blatt GJ, Soghomonian JJ. Decreased parvalbumin mRNA expression in dorsolateral prefrontal cortex in Parkinson’s disease. Brain Res. 2013;1531:37–47. doi:10.1016/j.brainres.2013.07.025 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.brainres.2013.07.025&link_type=DOI) 157.Noureddine MA, Qin XJ, Oliveira SA, Skelly TJ, van der Walt J, Hauser MA, Pericak-Vance MA, Vance JM, Li YJ. Association between the neuron-specific RNA-binding protein ELAVL4 and Parkinson disease. Hum Genet. 2005;117(1):27–33. doi:10.1007/s00439-005-1259-2 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00439-005-1259-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15827745&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000229266600004&link_type=ISI) 158.Okamoto N, Hatsukawa Y, Shimojima K, Yamamoto T. Submicroscopic deletion in 7q31 encompassing CADPS2 and TSPAN12 in a child with autism spectrum disorder and PHPV. Am J Med Genet A. 2011;155A(7):1568–1573. doi:10.1002/ajmg.a.34028 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ajmg.a.34028&link_type=DOI) 159.Carayol J, Sacco R, Tores F, Rousseau F, Lewin P, Hager J, Persico AM. Converging evidence for an association of ATP2B2 allelic variants with autism in male subjects. Biol Psychiatry. 2011;70(9):880–887. doi:10.1016/j.biopsych.2011.05.020 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2011.05.020&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21757185&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000296228000016&link_type=ISI) 160.Wang Y, Fang Y, Zhang F, Xu M, Zhang J, Yan J, Ju W, Brown WT, Zhong N. Hypermethylation of the enolase gene (ENO2) in autism. Eur J Pediatr. 2014;173(9):1233–1244. doi:10.1007/s00431-014-2311-9 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00431-014-2311-9&link_type=DOI) 161.Cunningham S, O’Doherty C, Patterson C, McDonnell G, Hawkins S, Marrosu MG, Vandenbroeck K. The neuropeptide genes TAC1, TAC3, TAC4, VIP and PACAP(ADCYAP1), and susceptibility to multiple sclerosis. J Neuroimmunol. 2007;183(1-2):208–213. doi:10.1016/j.jneuroim.2006.11.002 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jneuroim.2006.11.002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17175032&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 162.Diez M, Koistinaho J, Dearmond SJ, Groth D, Prusiner SB, Hökfelt T. Marked decrease of neuropeptide Y Y2 receptor binding sites in the hippocampus in murine prion disease. Proc Natl Acad Sci U S A. 1997;94(24):13267–13272. doi:10.1073/pnas.94.24.13267 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiOTQvMjQvMTMyNjciO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yNC8yMDIwLjEyLjIxLjIwMjQ4Njg4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 163.Guo Y, Gong HS, Zhang J, Xie WL, Tian C, Chen C, Shi Q, Wang SB, Xu Y, Zhang BY et al. Remarkable reduction of MAP2 in the brains of scrapie-infected rodents and human prion disease possibly correlated with the increase of calpain. PLoS One. 2012;7(1):e30163. doi:10.1371/journal.pone.0030163 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0030163&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22272295&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 164.Gavín R, Ferrer I, del Río JA. Involvement of Dab1 in APP processing and beta-amyloid deposition in sporadic Creutzfeldt-Jakob patients. Neurobiol Dis. 2010;37(2):324–329. doi:10.1016/j.nbd.2009.10.010 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.nbd.2009.10.010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19853035&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 165.Jeong BH, Kim HJ, Lee KH, Carp RI, Kim YS. RARB and STMN2 polymorphisms are not associated with sporadic Creutzfeldt-Jakob disease (CJD) in the Korean population. Mol Biol Rep. 2014;41(4):2389–2395. doi:10.1007/s11033-014-3093-x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11033-014-3093-x&link_type=DOI) 166.Peoc’h K, Manivet P, Beaudry P, Attane F, Besson G, Hannequin D, Delasnerie-Lauprêtre N, Laplanche JL. Identification of three novel mutations (E196K, V203I, E211Q) in the prion protein gene (PRNP) in inherited prion diseases with Creutzfeldt-Jakob disease phenotype. Hum Mutat. 2000;15(5):482. doi:10.1002/(SICI)1098-1004(200005)15:5<482::AID-HUMU16>3.0.CO;2-1 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/(SICI)1098-1004(200005)15:5<482::AID-HUMU16>3.0.CO;2-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10790216&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 167.Modregger J, DiProspero NA, Charles V, Tagle DA, Plomann M. PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic Huntington’s disease brains. Hum Mol Genet. 2002;11(21):2547–2558. doi:10.1093/hmg/11.21.2547 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/hmg/11.21.2547&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12354780&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000178516000002&link_type=ISI) 168.Schipper HM. Heme oxygenase-1 in Alzheimer disease: a tribute to Moussa Youdim. J Neural Transm (Vienna). 2011;118(3):381–387. doi:10.1007/s00702-010-0436-1 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00702-010-0436-1&link_type=DOI) 169.Counts SE, Mufson EJ. Regulator of Cell Cycle (RGCC) Expression During the Progression of Alzheimer’s Disease.Cell Transplant. 2017;26(4):693–702. doi:10.3727/096368916X694184 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3727/096368916X694184&link_type=DOI) 170.Olmos-Alonso A, Schetters ST, Sri S, Askew K, Mancuso R, Vargas-Caballero M, Holscher C, Perry VH, Gomez-Nicola D. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain. 2016;139(Pt 3):891–907. doi:10.1093/brain/awv379 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/brain/awv379&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26747862&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 171.Turunen M, Vepsäläinen S, Mäkinen P, Helisalmi S, Haapasalo A, Soininen H, Hiltunen M. No association between high temperature requirement 1 (HTRA1) gene polymorphisms and Alzheimer’s disease. Neurobiol Aging. 2011;32(3):547.e7–9. doi:10.1016/j.neurobiolaging.2009.08.010 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neurobiolaging.2009.08.010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19783326&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 172.Baron BW, Pytel P. Expression Pattern of the BCL6 and ITM2B Proteins in Normal Human Brains and in Alzheimer Disease. Appl Immunohistochem Mol Morphol. 2017;25(7):489–496. doi:10.1097/PAI.0000000000000329 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/PAI.0000000000000329&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26862951&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 173.Paris D, Ait-Ghezala G, Bachmeier C, Laco G, Beaulieu-Abdelahad D, Lin Y, Jin C, Crawford F, Mullan M. The spleen tyrosine kinase (Syk) regulates Alzheimer amyloid-β production and Tau hyperphosphorylation. J Biol Chem. 2014;289(49):33927–33944. doi:10.1074/jbc.M114.608091 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyODkvNDkvMzM5MjciO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yNC8yMDIwLjEyLjIxLjIwMjQ4Njg4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 174.Grewal RP, Morgan TE, Finch CE. C1qB and clusterin mRNA increase in association with neurodegeneration in sporadic amyotrophic lateral sclerosis. Neurosci Lett. 1999;271(1):65–67. doi:10.1016/s0304-3940(99)00496-6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0304-3940(99)00496-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10471215&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000081896400017&link_type=ISI) 175.Bernstein HG, Stricker R, Lendeckel U, Bertram I, Dobrowolny H, Steiner J, Bogerts B, Reiser G. Reduced neuronal co-localisation of nardilysin and the putative alpha-secretases ADAM10 and ADAM17 in Alzheimer’s disease and Down syndrome brains. Age (Dordr). 2009;31(1):11–25. doi:10.1007/s11357-008-9076-x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11357-008-9076-x&link_type=DOI) 176.Koshy B, Miyashita A, St Jean P, Stirnadel H, Kaise T, Rubio JP, Mooser V, Kuwano R, Irizarry MC. Genetic deficiency of plasma lipoprotein-associated phospholipase A2 (PLA2G7 V297F null mutation) and risk of Alzheimer’s disease in Japan. J Alzheimers Dis. 2010;21(3):775–780. doi:10.3233/JAD-2010-100513 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/JAD-2010-100513&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20634581&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000281903600008&link_type=ISI) 177.Chakrabarty P, Li A, Ladd TB, Strickland MR, Koller EJ, Burgess JD, Funk CC, Cruz PE, Allen M, Yaroshenko M et al. TLR5 decoy receptor as a novel anti-amyloid therapeutic for Alzheimer’s disease. J Exp Med. 2018;215(9):2247–2264. doi:10.1084/jem.20180484 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamVtIjtzOjU6InJlc2lkIjtzOjEwOiIyMTUvOS8yMjQ3IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjQvMjAyMC4xMi4yMS4yMDI0ODY4OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 178.Schwam EM, Nicholas T, Chew R, Billing CB, Davidson W, Ambrose D, Altstiel LD. A multicenter, double-blind, placebo-controlled trial of the PDE9A inhibitor, PF-04447943, in Alzheimer’s disease. Curr Alzheimer Res. 2014;11(5):413–421. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2174/1567205011666140505100858&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24801218&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 179.Keating DJ, Chen C, Pritchard MA. Alzheimer’s disease and endocytic dysfunction: clues from the Down syndrome-related proteins, DSCR1 and ITSN1. Ageing Res Rev. 2006;5(4):388–401. doi:10.1016/j.arr.2005.11.001 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.arr.2005.11.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16442855&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000241852700002&link_type=ISI) 180.Yi C, Mei X, Ezan P, Mato S, Matias I, Giaume C, Koulakoff A. Astroglial connexin43 contributes to neuronal suffering in a mouse model of Alzheimer’s disease. Cell Death Differ. 2016;23(10):1691–701. doi:10.1038/cdd.2016.63 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/cdd.2016.63&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27391799&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 181.Chapuis J, Flaig A, Grenier-Boley B, Eysert F, Pottiez V, Deloison G, Vandeputte A, Ayral AM, Mendes T, Desai S et al. Genome-wide, high-content siRNA screening identifies the Alzheimer’s genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathol. 2017;133(6):955–966. doi:10.1007/s00401-016-1652-z [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00401-016-1652-z&link_type=DOI) 182.Zeng F, Zou HQ, Zhou HD, Li J, Wang L, Cao HY, Yi X, Wang X, Liang CR, Wang YR et al. The relationship between single nucleotide polymorphisms of the NTRK2 gene and sporadic Alzheimer’s disease in the Chinese Han population. Neurosci Lett. 2013;550:55–59. doi:10.1016/j.neulet.2013.06.061 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neulet.2013.06.061&link_type=DOI) 183.Shang Z, Lv H, Zhang M, Duan L, Wang S, Li J, Liu G, Ruijie Z, Jiang Y. Genome-wide haplotype association study identify TNFRSF1A, CASP7, LRP1B, CDH1 and TG genes associated with Alzheimer’s disease in Caribbean Hispanic individuals. Oncotarget. 2015;6(40):42504–42514. doi:10.18632/oncotarget.6391 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.6391&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26621834&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 184.Afanador L, Roltsch EA, Holcomb L, Campbell KS, Keeling DA, Zhang Y, Zimmer DB. The Ca2+ sensor S100A1 modulates neuroinflammation, histopathology and Akt activity in the PSAPP Alzheimer’s disease mouse model. Cell Calcium. 2014;56(2):68–80. doi:10.1016/j.ceca.2014.05.002 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ceca.2014.05.002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24931125&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 185.Shao Y, Shaw M, Todd K, Khrestian M, D’Aleo G, Barnard PJ, Zahratka J, Pillai J, Yu CE, Keene CD et al. DNA methylation of TOMM40-APOE-APOC2 in Alzheimer’s disease. J Hum Genet. 2018;63(4):459–471. doi:10.1038/s10038-017-0393-8 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s10038-017-0393-8&link_type=DOI) 186.McAninch EA, Rajan KB, Evans DA, Jo S, Chaker L, Peeters RP, Bennett DA, Mash DC, Bianco AC. A Common DIO2 Polymorphism and Alzheimer Disease Dementia in African and European Americans. J Clin Endocrinol Metab. 2018;103(5):1818–1826. doi:10.1210/jc.2017-01196 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1210/jc.2017-01196&link_type=DOI) 187.Maes OC, Schipper HM, Chong G, Chertkow HM, Wang E. A GSTM3 polymorphism associated with an etiopathogenetic mechanism in Alzheimer disease. Neurobiol Aging. 2010;31(1):34–45. doi:10.1016/j.neurobiolaging.2008.03.007 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neurobiolaging.2008.03.007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18423940&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000272213500005&link_type=ISI) 188.Deininger MH, Weinschenk T, Meyermann R, Schluesener HJ. The allograft inflammatory factor-1 in Creutzfeldt-Jakob disease brains. Neuropathol Appl Neurobiol. 2003;29(4):389–399. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1046/j.1365-2990.2003.00476.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12887599&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 189.Kumar R, McClain D, Young R, Carlson GA. Cholesterol transporter ATP-binding cassette A1 (ABCA1) is elevated in prion disease and affects PrPC and PrPSc concentrations in cultured cells. J Gen Virol. 2008;89(Pt 6):1525–32. doi:10.1099/vir.0.83358-0 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1099/vir.0.83358-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18474570&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 190.Rodríguez A, Pérez-Gracia E, Espinosa JC, Pumarola M, Torres JM, Ferrer I. Increased expression of water channel aquaporin 1 and aquaporin 4 in Creutzfeldt-Jakob disease and in bovine spongiform encephalopathy-infected bovine-PrP transgenic mice. Acta Neuropathol. 2006;112(5):573–585. doi:10.1007/s00401-006-0117-1 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00401-006-0117-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16871401&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 191.Kordek R, Nerurkar VR, Liberski PP, Isaacson S, Yanagihara R, Gajdusek DC. Heightened expression of tumor necrosis factor alpha, interleukin 1 alpha, and glial fibrillary acidic protein in experimental Creutzfeldt-Jakob disease in mice. Proc Natl Acad Sci U S A. 1996;93(18):9754–9758. doi:10.1073/pnas.93.18.9754 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMDoiOTMvMTgvOTc1NCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzEyLzI0LzIwMjAuMTIuMjEuMjAyNDg2ODguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 192.Claus P, Werner S, Timmer M, Grothe C. Expression of the fibroblast growth factor-2 isoforms and the FGF receptor 1-4 transcripts in the rat model system of Parkinson’s disease. Neurosci Lett. 2004;360(3):117–120. doi:10.1016/j.neulet.2004.01.046 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neulet.2004.01.046&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15082147&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000221141400002&link_type=ISI) 193.Falk T, Zhang S, Sherman SJ. Vascular endothelial growth factor B (VEGF-B) is up-regulated and exogenous VEGF-B is neuroprotective in a culture model of Parkinson’s disease. Mol Neurodegener. 2009;4:49. doi:10.1186/1750-1326-4-49 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1750-1326-4-49&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20003314&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 194.Bourque M, Morissette M, Côté M, Soulet D, Di Paolo T. Implication of GPER1 in neuroprotection in a mouse model of Parkinson’s disease. Neurobiol Aging. 2013;34(3):887–901. doi:10.1016/j.neurobiolaging.2012.05.022 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neurobiolaging.2012.05.022&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22749492&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000313117900020&link_type=ISI) 195.Kim KS, Marcogliese PC, Yang J, Callaghan SM, Resende V, Abdel-Messih E, Marras C, Visanji NP, Huang J, Schlossmacher MG et al. Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson’s disease. Proc Natl Acad Sci U S A. 2018;115(22):E5164–E5173. doi:10.1073/pnas.1718946115 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTE1LzIyL0U1MTY0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjQvMjAyMC4xMi4yMS4yMDI0ODY4OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 196.Mittal S, Bjørnevik K, Im DS, Flierl A, Dong X, Locascio JJ, Abo KM, Long E, Jin M, Xu B et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease. Science. 2017;357(6354):891–898. doi:10.1126/science.aaf3934 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNTcvNjM1NC84OTEiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yNC8yMDIwLjEyLjIxLjIwMjQ4Njg4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 197.Okubadejo N, Britton A, Crews C, Akinyemi R, Hardy J, Singleton A, Bras J. Analysis of Nigerians with apparently sporadic Parkinson disease for mutations in LRRK2, PRKN and ATXN3. PLoS One. 2008;3(10):e3421. doi:10.1371/journal.pone.0003421 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0003421&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18927607&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 198.Stichel CC, Schoenebeck B, Foguet M, Siebertz B, Bader V, Zhu XR, Lübbert H. sgk1, a member of an RNA cluster associated with cell death in a model of Parkinson’s disease. Eur J Neurosci. 2005;21(2):301–316. doi:10.1111/j.1460-9568.2005.03859.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1460-9568.2005.03859.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15673431&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000226574800001&link_type=ISI) 199.Lorenzl S, Albers DS, Narr S, Chirichigno J, Beal MF. Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp Neurol. 2002;178(1):13–20. doi:10.1006/exnr.2002.8019 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1006/exnr.2002.8019&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12460604&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000179682400002&link_type=ISI) 200.Turic D, Langley K, Williams H, Norton N, Williams NM, Moskvina V, Van den Bree MB, Owen MJ, Thapar A, O’Donovan MC., et al. A family based study implicates solute carrier family 1-member 3 (SLC1A3) gene in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1461–1466. doi:10.1016/j.biopsych.2005.03.025 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2005.03.025&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15950021&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 201.Chen X, Wang X, Chen Q, Williamson V, van den Oord E, Maher BS, O’Neill FA, Walsh D, Kendler KS. MEGF10 association with schizophrenia. Biol Psychiatry. 2008;63(5):441–448. doi:10.1016/j.biopsych.2007.11.003 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2007.11.003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18179784&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 202.Jia Y, Yu X, Zhang B, Yuan Y, Xu Q, Shen Y, Shen Y. An association study between polymorphisms in three genes of 14-3-3 (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein) family and paranoid schizophrenia in northern Chinese population. Eur Psychiatry. 2004;19(6):377–379. doi:10.1016/j.eurpsy.2004.07.006 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.eurpsy.2004.07.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15363479&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000224293500010&link_type=ISI) 203.Yamamoto A, Suzuki T, Sakaki Y. Isolation of hNap1BP which interacts with human Nap1 (NCKAP1) whose expression is down-regulated in Alzheimer’s disease. Gene. 2001;271(2):159–169. doi:10.1016/s0378-1119(01)00521-2 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0378-1119(01)00521-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11418237&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000170309200005&link_type=ISI) 204.Bill BR, Lowe JK, Dybuncio CT, Fogel BL. Orchestration of neurodevelopmental programs by RBFOX1: implications for autism spectrum disorder. Int Rev Neurobiol. 2013;113:251–267. doi:10.1016/B978-0-12-418700-9.00008-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/B978-0-12-418700-9.00008-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24290388&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 205.Wilhelmus MM, Boelens WC, Otte-Höller I, Kamps B, Kusters B, Maat-Schieman ML, de Waal RM, Verbeek MM. Small heat shock protein HspB8: its distribution in Alzheimer’s disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity. Acta Neuropathol. 2006;111(2):139–149. doi:10.1007/s00401-005-0030-z [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00401-005-0030-z&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16485107&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom) 206.Seidel K, Vinet J, Dunnen WF, Brunt ER, Meister M, Boncoraglio A, Zijlstra MP, Boddeke HW, Rüb U, Kampinga HH et al. The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases. Neuropathol Appl Neurobiol. 2012;38(1):39–53. doi:10.1111/j.1365-2990.2011.01198.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1365-2990.2011.01198.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21696420&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F24%2F2020.12.21.20248688.atom)