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Abstract 
 
Early detection and intervention are believed to be key to facilitating better outcomes in children 
with autism, yet the impact of age at treatment start on outcome is poorly understood. While 
clinical traits such as language ability have been shown to predict treatment outcome, whether or 
not and how information at the genomic level can predict treatment outcome is unknown. 
Leveraging a cohort of  toddlers with autism who all received the same standardized intervention 
at a very young age and provided a blood sample, here we find that very early treatment 
engagement (i.e., < 24 months) leads to greater gains while controlling for time in treatment. Pre-
treatment clinical behavioral measures predicts 21% of the variance in the rate of skill growth 
during early intervention. Pre-treatment blood leukocyte gene expression patterns also predicts 
rate of skill growth, accounting for 13% of the variance treatment slopes. Results indicated that 
295 genes can be prioritized as driving this effect. These treatment-relevant genes highly interact 
at the protein level, are enriched for differentially histone acetylated genes in autism post-mortem 
cortical tissue, and are normatively highly expressed in variety of subcortical and cortical areas 
important for social-communication and language development. This work indicates for the first 
time that gene expression can predict the rate of early intervention response and that a key 
biological factor linked to treatment outcome could be the susceptibility for epigenetic change via 
mechanisms such as histone acetylation. 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.21.20248674doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248674
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Early detection and intervention in autism spectrum disorder (ASD) are topics of 

paramount importance because of the enormous potential to capitalize on the brain’s enhanced 
plasticity during early development as a mechanism to positively impact outcomes (1). While it is 
becoming increasingly clear that the biology of autism starts in early prenatal development (2, 3) 
and that early behavioral signs begin to manifest before 18 months (4–6), the mean age of diagnosis 
is still lagging far behind at 3-4 years of age (7, 8). In contrast to this reality, we have recently 
shown that diagnostic stability at much earlier ages is indeed high (9) and thus, the ability to detect 
and start treatment earlier is feasible. Some have suggested that detection and intervention before 
24 months is key in order to capitalize on early neuroplasticity to facilitate optimal outcomes (10, 
11). The impact of starting intervention earlier would likely be more total positive gains for the 
child (indexed by absolute level of improvement). However, a less obvious, but perhaps equally 
important effect of earlier intervention, could be a decrease in the variability of treatment responses 
at a group-level. If this were the case, the reduction in treatment response variability might allow 
for more precise predictions about treatment outcomes. 

 
Understanding the ingredients that moderate and predict early intervention treatment 

response is of the utmost importance, especially given the current state of the field, where there is 
notably large heterogeneity in how individuals may respond to a treatment (12). While the field 
has noted that some early interventions have impact at a group level (13, 14), what is less clear is 
how to predict an individual’s specific response to the treatment and how to make that prediction 
before treatment begins. Understanding individual-level predictors of treatment response, 
particularly pre-treatment individual characteristics, is a key objective for precision medicine (15, 
16) applied to autism. Ideally, we would like to know what child-specific characteristics are 
present before an intervention starts, in order to help us optimally predict how that specific 
intervention may affect the child. There are indications that some pre-treatment characteristics 
such as level of play, language, social cognitive abilities, IQ, ASD symptom severity, and adaptive 
behavior may be important for moderating treatment response (10, 17–22). In contrast to the many 
clinical studies that have been carried out on these phenotypic characteristics, biological 
moderators of treatment responses remain largely unknown, leaving open the possibility that 
individual intrinsic biological characteristics of a child may also moderate their response to 
treatment. If we better understood such treatment-relevant and individualized biological 
characteristics, this might yield unique insights into how and why some treatments work better for 
some individuals, but not others.  

 
In this work, we examine the effect of relatively early (<24 months) versus later (≥24 

months) treatment start and how this may affect total gains and variability in treatment response. 
We also investigate whether pre-treatment standardized clinical behavioral measures and blood 
leukocyte gene expression patterns moderate how quickly an individual will respond to early 
intervention. We operationalize treatment response here as the rate at which children respond over 
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time and will refer to this concept from here on as ‘treatment slopes’. Blood leukocyte gene 
expression offers up a powerful in-vivo alternative to clinical behavioral measures, as it helps to 
map out biological mechanisms of brain-relevance but in a peripheral non-neural tissue. While the 
brain is largely an inaccessible tissue to assay mechanisms like gene expression in living patients, 
blood leukocyte gene expression has revealed a number of interesting brain-relevant characteristics 
that can be related to different phenotypes in living patients. Leukocyte expression patterns can be 
used in a classifier to predict diagnostic status (23), correlate with total brain size (24), and are 
related to large-scale functional neural systems response to speech (25), the patterning of thickness 
and surface area in the cerebral cortex (26), and social symptom severity (27). Differentially 
expressed genes in blood leukocytes are part of extended gene networks that are linked to highly 
penetrant ASD-related mutations (27). Another revelation is that blood leukocyte genes associated 
with autism tend to be within a class of broadly expressed genes that are highly expressed in the 
brain and many other tissues (25). Broadly expressed genes are one class of important ASD-
associated genes that primarily have peak levels of expression during prenatal development (3, 
28). Given the sensitivity of blood leukocyte gene expression activity as a tool for assessing the 
living biology behind ASD toddlers (2), we reasoned that there may be pre-treatment gene 
expression patterns in ASD toddlers that may be predictive of treatment slopes.  

 
In this study, we used least absolute shrinkage and selection operator (LASSO) regression 

(29) to model how clinical behavioral measures or gene expression patterns may be predictive of 
treatment slopes. LASSO is an important modeling strategy here for its use of L1 regularization, 
which acts to penalize largely uninformative features and results in a sparse solution that allows 
the user to isolate the specific subset of features that are highly predictive. To better understand 
treatment-relevant genes, we ran further analyses to test if these genes highly interact at the protein 
level, whether they overlap with known ASD-related genomic and epigenomic mechanisms, and 
how they are expressed spatially throughout the brain. 
 
 
Methods 
 
Participants 
 

This study was approved by the Institutional Review Board at the University of California, 
San Diego. Participants and families in this study were recruited as part of a larger 
multidisciplinary research project examining early neurobiological features and development of 
ASD at the University of California, San Diego. Toddlers with high likelihood for an ASD 
diagnosis were identified from one of two sources: general community referral (e.g., website or 
outside agency) and a population-based screening method called Get SET Early (6, 30). Using this 
population-based screening approach, toddlers with high likelihood for an ASD diagnosis as young 
as 12 months were identified in pediatric offices with a broadband screening instrument - the 
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Communication and Symbolic Behavior Scales-Developmental Profile Infant Toddler Checklist 
(31). Toddlers were evaluated and tracked every six months until their third birthday when a final 
diagnosis was given. Licensed clinicians with expertise evaluating and diagnosing ASD in toddlers 
made final diagnoses based on clinical judgment and by incorporating criteria for ASD on the 
Autism Diagnostic Observation Schedule (ADOS) (9, 32). Toddlers who were determined to be 
high likelihood for ASD were offered intervention through our UCSD treatment program. Seventy-
two families were referred for intervention, and 49 families chose to receive treatment in our 
program. Of the 49 children who received treatment from our program, 41 children (33 male, 8 
female, mean age at start of treatment = 22.77 months, SD age = 4.08, range = 13–27 months) also 
had a blood sample taken before the start of treatment and were therefore included in analyses for 
this work. Additional participant pre-treatment clinical information can be found in Table 1. Data 
from this study have been previously reported in Bacon et al., (33) although this prior paper only 
focused on treatment and clinical behavioral data and did not examine gene expression. 
 
Early intervention program 
 

In order to reduce confounds that could be associated with differences associated with 
treatment type and administration, all toddlers received the same in-home treatment programming 
using the Strategies for Teaching Based on Autism Research (STAR) curriculum (34). The STAR 
program is a comprehensive behavioral intervention program with a curriculum designed 
specifically for children with ASD and includes instructional strategies of Discrete Trial Training 
(35–37), Pivotal Response Training (38, 39), and teaching in Functional Routines (40, 41). In an 
effort to improve the developmental appropriateness of the curriculum for these very young 
children, the STAR curriculum was augmented with developmental approaches applied through 
Project ImPACT. Project ImPACT is a manualized curriculum developed by Ingersoll and 
Dvortcsak (42) used to target social-communication goals in young children with ASD. Project 
ImPACT focuses on the relationship between adult responsivity and children’s social-
communicative development. In the Project ImPACT curriculum, an early childhood 
interventionist (ECI) combines naturalistic behavioral strategies and developmental strategies. For 
example, the interventionist would respond to all communicative attempts by the child as if they 
were purposeful and recast expanded communication to facilitate communicative growth. 
 

Treatment delivery. Each child received approximately 6–12 hours per week of direct one-
on-one intervention with a trained ECI at home until 36 months of age. ECIs were bachelor’s 
degree or undergraduate- level research assistants with previous experience with young children 
with ASD. Each ECI received extensive didactic and hands-on training in behavioral principles 
and the STAR and TSC programs discussed above. Fidelity of implementation was reached for 
each intervention strategy as determined by using all components of the intervention correctly at 
least 80% of the time across two different children and monitored for maintenance. Programs were 
developed and supervised by master’s degree-level clinicians (i.e., in-home coordinator) 
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experienced in ASD, with oversight from two doctorate-level clinical psychologists with extensive 
experience in early behavioral intervention for this population. In addition, parent coaching was 
provided throughout the course of participation.  

 
Treatment outcome measure. The Adapted Student Learning Profile (aSLP) is a 

curriculum-based assessment for determining student learning goals and was adapted from the 
STAR curriculum to include additional goals from the TSC curriculum (see (34, 42)). The aSLP 
provides an extensive list of skills targeted in the STAR and TSC curricula and allows for the 
assessor to indicate the child’s performance level on each skill across six domains, receptive 
language, expressive language, spontaneous language, functional routines, pre-academic concepts, 
and play and social interaction concepts. Data were analyzed using total aSLP score across all 
domains rather than separate domain aSLP scores. The aSLP is administered by presenting each 
item up to five times to the child and observing the child’s response. This is conducted in a 
structured format, and no teaching was done during the assessment. The assessor then rates the 
child’s response, indicating if the child did not demonstrate the skill or showed partial 
demonstration of the skill or mastery of the skill. The entire aSLP takes about 30–45 minutes to 
complete. Each child’s in-home coordinator completed an aSLP at intake and every three months 
thereafter to determine performance and progress. A child’s performance on the treatment was 
estimated by the subject-specific slope estimated in a linear mixed effect model for modeling on 
the longitudinal aSLP scores (see section on developmental trajectory analyses). 
 
Pre-treatment clinical behavioral measures 
 

Pre-treatment clinical behavioral measures were collected to characterize the sample and 
utilized for analyzing how predictive such pre-treatment clinical measures (measured at treatment 
start) were of treatment slopes. The clinical measures analyzed were the Mullen Scales of Early 
Learning (MSEL), the Vineland Adaptive Behavior Scales (2nd edition; VABS) and the ADOS. 
The MSEL assesses developmental functioning of children between birth and 68 months (43). An 
examiner measures child functioning level through a series of play-like tasks over five domains, 
gross motor, fine motor, receptive language, expressive language, and visual reception skills. For 
each scale, the assessment derives a T-score with a mean of 50 and standard deviation of 10, a 
percentile score, and an age equivalent score indicating at what developmental age the child is 
performing. An early learning composite (ELC) score is calculated from the total of scores on all 
scales (with the exception of the gross motor scale) with a mean of 100 and standard deviation of 
15. The VABS provides a measure of adaptive skills used to cope with challenges of daily living 
(44). A caregiver completes a questionnaire regarding the individual’s current level of functioning 
across five domains: communication, daily living skills, socialization, motor skills, and 
maladaptive behavior. All scales use standard scores with a mean of 100 and a standard deviation 
of 15, a percentile score, and an age equivalent score indicating at what developmental age the 
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individual is performing. Scores on all scales are combined to obtain an overall adaptive behavior 
composite (ABC) with a mean of 100 and a standard deviation of 15. 

 
Developmental trajectory analyses 
 
 To estimate aSLP trajectories for each toddler we used a linear mixed effect model to 
estimate longitudinal subject-specific intercepts and slopes as random effects. The subject-specific 
slopes (from here on called ‘treatment slopes’) estimated from this model were extracted and used 
as the primary treatment outcome measure to be predicted by pre-treatment gene expression or 
clinical measures. These analyses were computed using the lme function from the nlme library in 
R.   
 
 To better understand the effects of age at treatment start, we used 24 months as the cutoff 
point for distinguishing very early versus later treatment start. This very early versus later 
distinction at 24 months was made given that it is considered that the first 24 months of life are 
the critical early window for when early intervention could have most impact (10, 11). Linear 
mixed effect models were used to examine differences on the aSLP as a function of very early 
(<24 months) vs later (≥24 months) start group. We also investigated how variability in treatment 
slopes may differ between very early versus later start groups by computing the standard deviation 
of treatment slopes within each group and then quantifying the difference in standard deviation, 
computed as the difference score between later versus very early start groups. To test the standard 
deviation difference between groups against the null hypothesis of no difference in standard 
deviation difference score, we computed standard deviation difference scores over 10,000 random 
permutations of the very early or later start group labels, to derive a null distribution of standard 
deviation difference scores. A p-value was then computed as the percentage of times under the 
null distribution that a standard deviation difference score was greater than or equal to the actual 
standard deviation difference score.   

 
Blood sample collection, RNA extraction, quality control and samples preparation 
 

Four to six milliliters of blood was collected into EDTA-coated tubes from toddlers on 
visits when they had no fever, cold, flu, infections or other illnesses, or use of medications for 
illnesses 72 hours prior blood draw. Temperature was also taken at the time of blood draw. Blood 
samples were passed over a LeukoLOCK filter (Ambion, Austin, TX, USA) to capture and 
stabilize leukocytes and immediately placed in a -20°C freezer. Total RNA was extracted 
following standard procedures and manufacturer’s instructions (Ambion, Austin, TX, USA). 
LeukoLOCK disks (Ambion Cat #1933) were freed from RNA-later and Tri-reagent (Ambion Cat 
#9738) was used to flush out the captured lymphocyte and lyse the cells. RNA was subsequently 
precipitated with ethanol and purified through washing and cartridge-based steps. The quality of 
mRNA samples was quantified by the RNA Integrity Number (RIN), values of 7.0 or greater were 
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considered acceptable (45), and all processed RNA samples passed RIN quality control. 
Quantification of RNA was performed using Nanodrop (Thermo Scientific, Wilmington, DE, 
USA). Samples were prepped in 96-well plates at the concentration of 25 ng/µl. 

 
Gene expression and data processing 
 

RNA was assayed at Scripps Genomic Medicine (La Jolla, CA, USA) for labeling, 
hybridization, and scanning using the Illumina BeadChips pipeline (Illumina, San Diego, CA, 
USA) per the manufacturer’s instruction. All arrays were scanned with the Illumina BeadArray 
Reader and read into Illumina GenomeStudio software (version 1.1.1). Raw data was exported 
from Illumina GenomeStudio, and data pre-processing was performed using the lumi package (46) 
for R (http://www.R-project.org) and Bioconductor (https://www.bioconductor.org) (47). Raw and 
normalized data are part of larger sets deposited in the Gene Expression Omnibus database 
(GSE42133; GSE111175). 
 
Patient gene expression dataset 
 

A larger primary dataset of blood leukocyte gene expression was available from 383 
samples from 314 toddlers within the UC San Diego cohort, with the age range of 1-to-4 years old. 
The samples were assayed using the Illumina microarray platform on three batches. The datasets 
were combined by matching the Illumina Probe ID and probe nucleotide sequences. The final set 
included a total of 20,194 gene probes. Quality control analysis was performed to identify and 
remove 23 outlier samples from the dataset. Samples were marked as outlier if they showed low 
signal intensity (average signal two standard deviations lower than the overall mean), deviant 
pairwise correlations, deviant cumulative distributions, deviant multi-dimensional scaling plots, or 
poor hierarchical clustering, as described elsewhere (24). The high-quality dataset included 360 
samples from 299 toddlers. High reproducibility was observed across technical replicates (mean 
Spearman correlation of 0.97 and median of 0.98). Thus, we randomly removed one of each of 
two technical replicates from the primary dataset. From the subjects in the larger primary dataset, 
a total of n=41 also had treatment data; n=36 from the Illumina HT12 platform along with n=5 
from the Illumina WG6 platform were used in this study. The 20,194 probes were quantile 
normalized and then variance filtered to leave the top 50% of highly varying probes (i.e. 10,097 
probes). Treatment slopes were slightly different as a function of batch (F(2,35) = 3.44, p = 0.04), 
but were not different at age at blood sampling (F(1,35) = 0.001, p = 0.97), sex (F(1,35) = 2.09, p 
= 0.15) or RIN (F(1,35) = 0.22, p = 0.63).  Removal of variance associated with batch, sex and 
RIN was achieved by using linear model to estimate these effects in the training set of each cross 
validation fold. This model computed on the training set was then applied to the test set for 
removing variance such covariates.  
 
Predictive modeling of treatment slopes  
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 To predict individual differences in treatment slopes we used a LASSO regression model 
(29) which used as predictors either multivariate pre-treatment gene expression or clinical 
measures. LASSO uses L1 regularization (controlled by the lamba (λ) parameter) to shrink beta 
coefficients of uninformative features and thus reduce or effectively remove the influence of such 
features on the model. This feature is important for our purposes as we seek to compute a model 
that predicts treatment slopes but also informs us as to which features (e.g., genes or clinical 
measures) are most important for the model. For all LASSO modeling to assess the model’s 
predictive utility we used leave-one-out cross validation (CV) to partition the data into training 
and test sets. Within the training set, a 10-fold CV loop is used to estimate the optimal lambda 
parameter for the model. Cross validated mean squared error (MSE) and R2 were computed to 
evaluate the predictive value of the model. We also used permutation tests (1000 permutations) to 
randomly shuffle treatment slopes and construct a null distribution of MSE values under the null 
hypothesis. This null MSE distribution was used to compute a p-value, defined as the proportion 
of times under the null distribution where an MSE value was as low or lower than the observed 
MSE value with unpermuted treatment slopes. 
 
Protein-protein interaction analysis 
 
 The resulting gene list from the LASSO model predicting treatment slopes was then tested 
for evidence of protein-protein interactions (PPI). This analysis was achieved using the STRING 
database (https://string-db.org), with all parameters set to the STRING defaults (using all 
interaction sources and confidence interaction scores of 0.4 or higher). STRING also outputs 
enrichment results for Gene Ontology, Reactome, KEGG, and UniProt databases.   
 
Autism-associated gene set enrichment analyses 
 
 To better link the set of treatment-relevant genes prioritized by the LASSO model, we 
tested this gene set for enrichment with other lists of genes known from the literature to be 
associated with autism. For autism-associated genetic mutations we used genes from SFARI Gene 
(https://gene.sfari.org) (48) in categories S, 1, 2, and 3 (October 2020 release). For genes with 
evidence of dysregulated expression in post-mortem cortical tissue we used differentially 
expressed gene lists from Gandal et al., (49). At the epigenetic level, we also analyzed genes with 
evidence for differential histone acetylation in autism in post-mortem prefrontal and temporal 
cortex tissue (50). 
 
Spatial gene expression analyses 
 
 To get a better idea of the brain regions that are likely to be maximally affected by 
treatment-relevant genes prioritized by the LASSO model, we examined how these genes were 
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spatially expressed across the brain using the Allen Institute Human Brain atlas (51). Whole-brain 
gene expression maps for treatment-relevant genes were downloaded in MNI space from 
https://neurosynth.org/genes/. These gene maps were then input into a whole-brain one-sample t-
test computed in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Thresholding for 
multiple comparisons was achieved with voxel-wise FDR correction set to q<0.05. 
 
Data and code availability 

Analysis code is available at https://github.com/IIT-LAND/gex_treatment_slopes. Data 
are available from the National Institute of Mental Health Data Archive (NDA) 
(https://nda.nih.gov). Raw and normalized blood gene expression data are also deposited in Gene 
Expression Omnibus (GEO) (GSE42133; GSE111175).  
 
 
Results 
 
Differences between early versus late treatment start groups 
 

A total of n=41 toddlers were considered in all further analyses given that they had both 
gene expression and treatment data. In a first analysis we examined whether individuals with a 
very early start to treatment (i.e. <24 months) would result in better outcomes than those who 
started treatment later (i.e. >= 24 months). This early versus late distinction at 24 months was made 
given that it is considered that the first 24 months of life are the critical early window for when 
early intervention could have most impact (10, 11). For this analysis, we used a linear mixed effect 
model that modeled treatment start group (Very Early, <24 months of age at the start of treatment; 
Later, >=24 months of age at the start of treatment), age, the interaction between age and treatment 
start group, and number of days in treatment as fixed effects and subject-specific slopes and 
intercepts as random effects. Main effects were observed for age (F =130.34, p = 2.22e-16) and 
treatment start group (F = 25.39, p = 1.17e-5), but there was no interaction between age and 
treatment start group (F = 1.23, p = 0.26) (Fig. 1A). These results indicate that individuals starting 
treatment before 24 months of age have larger total treatment gains than those who start treatment 
relatively later (after 24 months) and that these effects cannot be explained by factors such as the 
duration of time in treatment. However, the lack of an age-by-group interaction in predicting 
treatment slopes indicates that there are no differences in the steepness of the trajectories between 
early versus late start groups. 

 
While the steepness of treatment slopes do not heavily differ on-average between early 

versus late start groups, it is noteworthy that where the two groups do differ is on the variability in 
treatment slopes. Figure 1B-C shows a clear distinction between the late start group showing 
markedly more variable treatment slopes than the early start group. A permutation test further 
verified that the actual difference in standard deviations between late versus early start groups is 
highly significant relative to what this standard deviation difference would be under random group 
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labeling (p = 0.004) (Fig. 1D). This result indicates that while treatment slopes remain relatively 
consistent in their variability before 24 months, after 24 months treatment slopes become much 
more variable. 

 
Fig. 1: Treatment slopes and relationship with age at treatment start. Panels A and B show 
trajectories of skill acquisition on the Adapted Student Learning Profile (aSLP) treatment outcome 
measure. Panel A shows these trajectories for treatment start groups defined by age at treatment 
start as either very early (<24 months, pink) or relatively later (≥24 months, turquoise). Panel B 
shows the trajectories but with each individual’s data now colored by treatment slopes (colored 
from blue to red) estimated from a linear mixed effect model. Higher slopes indicate steeper 
trajectories and thus faster rate of skill growth over time whereas relatively lower slopes indicate 
less steep trajectories that can be interpreted as relatively slower rates of skill growth over time. 
Panel C shows treatment slopes for each individual as a function of age at treatment start (color 
indicates treatment slopes, as shown in panel B). Variability in treatment slopes becomes markedly 
larger when age of treatment start occurs after 24 months of age. Panel D shows a null distribution 
of difference in standard deviations over 10,000 permutations of random labelings of later (≥24 
months) vs very early (<24 months) groups. The actual difference in standard deviation between 
later vs very early start groups is shown by the vertical red line.  
 
Prediction of treatment slopes with pre-treatment clinical measures 
 

We next examined if pre-treatment clinical behavioral measures could be predictive of 
treatment slopes. A LASSO model that included all pre-treatment ADOS, Mullen, and VABS 
subscales was able to significantly predict treatment slopes (mean squared error (MSE) = 19.87, 
p = 9.99e-4, R2 = 0.21) (Fig. 2A). Describing the correlations between treatment slopes and 
individual pre-treatment clinical measures, we find that all Vineland and Mullen subscales are 
significantly positively correlated, while total ADOS score and ADOS RRB was negatively 
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correlated with treatment slopes (Fig. 2B). These results are largely consistent with the idea from 
past work that pre-treatment clinical measures can be predictive of later treatment outcome (10, 
17–22). However, as a new perspective on this effect, with longitudinal trajectories measured over 
more than just two time-points (e.g., pre and post-treatment), we find that pre-treatment clinical 
measures can predict how steep an individual’s treatment slope trajectory will be over the course 
of the treatment. 

 
Fig. 2: Predicting treatment slopes with pre-treatment clinical measures. Panel A shows actual 
treatment slopes (y-axis) versus predicted treatment slopes from a LASSO model (x-axis) when 
using pre-treatment clinical measures as features. Color from blue to red indicates actual 
treatment slope values. Panel B shows the correlation (Pearson’s r) between treatment slopes and 
each of the pre-treatment clinical measures. The coloring of the bars indicate the -log10(p-value) 
and bars that pass the vertical dotted line are measures that pass FDR q<0.05. Abbreviations: 
ADOS, Autism Diagnostic Observation Schedule; SC, social-communication; RRB, restricted 
repetitive behaviors; MSEL, Mullen Scales of Early Learning; VR, visual reception; FM, fine 
motor; RL, receptive language; EL, expressive language; VABS, Vineland Adaptive Behavior 
Scales; Comm, communication; DL, daily living skills; Soc, socialization; ABC, adaptive behavior 
composite. 

 
Prediction of treatment slopes with pre-treatment blood leukocyte gene expression data 

 
We next asked if pre-treatment biological characteristics such as multivariate pre-treatment 

gene expression in blood leukocytes could also predict treatment slopes. Using a similar LASSO 
regression approach we find that pre-treatment gene expression can also significantly predict 
treatment slopes (MSE = 21.67, p = 0.001, R2 = 0.13) (Fig. 3A), albeit to a lesser extent than pre-
treatment clinical behavioral variables (e.g., 13% variance predicted with gene expression versus 
21% variance predicted with clinical behavioral measures).  
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 Next, we investigated which genes were most important in helping the LASSO model 

make such treatment slope predictions. Because LASSO uses L1 regularization to shrink 
coefficients of features that are less informative to 0, this allowed us to identify the subset of key 
genes that contribute to the model’s predictive accuracy. Here we find that LASSO prioritizes 295 
genes that help predict treatment slopes. Rather than being a random array of genes, these 
treatment-relevant genes show evidence of interactions at the protein level, as evinced with a 
protein-protein interaction (PPI) analysis (observed edges = 353, expected edges 306, p = 0.004) 
(Fig. 3C). Further annotation of this treatment-relevant gene set was done with gene set enrichment 
analysis. This analysis discovered enriched biological processes such as regulation of protein 
localization and vesicle mediated transport. Cellular compartments such as cytosol, intracellular 
organelle lumen and cytoplasm were also enriched. With UniProt, we also discovered acetylation 
as a keyword enrichment (Fig. 3C) (Table 2). Thus, treatment-relevant genes discovered by 
LASSO likely interact at the protein level and may be involved in processes such as protein 
localization, vesicle mediated transport, and acetylation. 

 
We next asked if this list of treatment-relevant genes might be associated with genetic 

mutations associated with autism or with genes that show dysregulated expression or histone 
acetylation in post-mortem cortical tissue. Using gene lists from SFARI Gene (48) as well as a list 
of differentially expressed genes from Gandal et al., (49), we find no evidence of enrichment in 
either of these lists. However, we did find the presence of 4 genes that are either high-confidence 
and/or syndromic ASD genes in SFARI Gene – KMT2C, CORO1A, FBXO11, and PPP2R5D. 
KMT2C is noted as a rare de novo loss of function variant associated with autism (52–57). 
CORO1A is rare de novo loss of function variant associated with autism (56) and is located within 
the well-known ASD-associated CNV region of 16p11.2 (58). FBXO11 is another rare de novo 
loss of function and missense variant in autism (54, 57) and appears in the autism-associated CNV 
region of 2p16.3 (59, 60). PPP2R5D is a known syndromic cause of ASD and rare de novo loss 
of function variant associated with autism (56, 61). Each of these genes are members of the PPI 
network shown in Fig 3C. Related to the UniProt enrichment in acetylation, we also found 
significant enrichment with genes that are differentially acetylated in autism post-mortem cortical 
tissue (Fig. 3B, Table 3). Specifically, treatment-relevant genes were enriched for upregulated 
histone acetylated genes in prefrontal cortex tissue, but downregulated histone acetylated genes in 
temporal cortex. This difference in spatial regions and directionality of the histone acetylation 
effect could suggest that these treatment-relevant genes may asymmetrically impact differing brain 
regions. Thus, while these treatment-relevant genes map onto a few genes with known evidence 
for high-confidence mutations or dysregulated gene expression, they are more strongly linked to 
genes that show evidence of differential histone acetylation in ASD cortical tissue. This potentially 
indicates that treatment-relevant biology may be linked to epigenetic changes such as histone 
acetylation. Given that early intervention intends to change behavior through reshaping the 
underlying biology, these links to acetylation could potentially provide key novel evidence as to 
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how treatment effects may be moderated by individual molecular characteristics intrinsic to each 
individual. 

 
Fig. 3: Predicting treatment slopes with pre-treatment blood leukocyte gene expression. Panel 
A shows actual treatment slopes (y-axis) versus predicted treatment slopes from a LASSO model 
(x-axis) using pre-treatment blood leukocyte gene expression as features. Color from blue to red 
indicates actual treatment slope values. Panel B shows the -log10 p-value for the enrichment test 
(enrichment odds ratio (OR) colored in red) between treatment-relevant genes and ASD-
associated gene lists. SFARI ASD refers to genes listed on SFARI Gene (https://gene.sfari.org) 
where mutations are known to be associated with ASD. DE Upreg or Downreg lists are genes that 
are differentially expressed (DE) in post-mortem cortical tissue (49). ASD DA lists are genes 
whose histone proteins are differentially acetylated (DA) in post-mortem cortical tissue (50). Bars 
passing the dotted line indicate gene lists that pass FDR q<0.05. Panel C shows a graph of the 
protein-protein interaction (PPI) network of treatment-relevant genes from the LASSO model. Red 
nodes are genes enriched in UniProt for “acetylation”. Green circles indicate genes whose histone 
proteins are differentially acetylated (DA) in autism post-mortem cortical tissue. Blue circles 
indicate genes that high confidence or syndromic ASD genes in SFARI Gene. Panel D shows 
whole-brain analysis results (thresholded at q<0.05 FDR correction for multiple comparisons) 
indicating which brain regions show high levels of expression for the treatment-relevant genes. 
Spatial gene expression was profiled here with the Allen Institute Human Brain atlas. 
Abbreviations: DE, differentially expressed; DA, differentially acetylated; PFC, prefrontal cortex; 
TC, temporal cortex; DLPFC, dorsolateral prefrontal cortex; vMPFC, ventromedial prefrontal 
cortex; dMPFC, dorsomedial prefrontal cortex; ACC, anterior cingulate cortex; MCC, middle 
cingulate cortex;, PCC, posterior cingulate cortex; vPMC, ventral premotor cortex; PT, planum 
temporale; TPJ, temporoparietal junction; SMC, somatomotor cortex; IPL, inferior parietal 
lobule; pSTS, posterior superior temporal sulcus; ATL, anterior temporal lobe; MTG, middle 
temporal gyrus; LOC, lateral occipital cortex. 
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Finally, we examined how treatment-relevant genes may be preferentially expressed in 
different regions of the human brain. Leveraging spatial gene expression information from the 
Allen Institute Human Brain gene expression atlas, we looked for which regions showed high 
levels of expression of these treatment-relevant genes. To do this, we downloaded spatial gene 
expression maps for all 295 treatment-relevant genes from https://neurosynth.org/genes/. With a 
one-sample t-test in SPM12, we ran a whole-brain analysis to identify brain areas where expression 
levels were significantly different from 0, correcting for multiple comparisons at voxel-wise FDR 
q<0.05. Here we find that subcortical areas are highly prominent - particularly the thalamus, 
striatum, and claustrum. Amongst cortical areas, the most prominent regions are the anterior, 
middle, and posterior cingulate cortex (ACC, MCC, PC), dorsal and ventral medial prefrontal 
cortex (dMPFC, vMPFC), dorsolateral prefrontal cortex (DLPFC), ventral premotor cortex 
(vPMC), somatomotor cortex (SMC), temporoparietal junction (TPJ), planum temporale (PT), 
inferior parietal lobule (IPL), intraparietal sulcus (IPS), posterior superior temporal sulcus (pSTS), 
anterior temporal lobe (ATL), middle temporal gyrus (MTG), lateral occipital cortex (LOC), and 
insular cortex (Ins).  
 
Discussion 
 

In this work we examined whether pre-treatment clinical behavioral and blood leukocyte 
gene expression patterns could predict the rate of skill growth in response to early intervention in 
young toddlers with autism. Congruent with prior studies, pre-treatment clinical behavioral 
characteristics such as language and communication and non-verbal cognitive ability are indeed 
helpful for predicting later treatment response (10, 17–22), predicting around 21% of the variance 
in treatment slopes. A novel finding from this work is that pre-treatment gene expression patterns 
from blood leukocytes are also informative for predicting treatment slopes - predicting around 
13% of the variance in treatment slopes. The effect of behavioral variables predicting more 
variance may not be surprising since such variables are conceptually and theoretically closer to 
what is being measured as the treatment outcome (e.g., behavioral change on the aSLP). However, 
the effect that pre-treatment blood leukocyte gene expression can predict treatment slopes at all is 
a revelation, given that prior to this work it was unknown whether pre-treatment biological factors 
such as blood leukocyte gene expression could predict treatment slopes at all.  
 

Digging deeper into the gene expression signal that is predictive of treatment slopes, our 
LASSO modeling approach prioritizes a subset of 295 genes that highly interact at the protein level 
and which are enriched for biological processes such as acetylation. Expanding on the idea of 
acetylation as a treatment-relevant biological process, we also discovered that these treatment-
relevant genes are enriched for genes that are differentially histone acetylated in post-mortem 
cortical tissue of ASD patients (50). Given that the central dogma behind early intervention is to 
capitalize on an individual’s heightened propensity for neurobiological plasticity and change in 
early development, these findings suggest that one key to predicting an individual’s propensity for 
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such change may be hidden within individualized and intrinsic biology related to histone 
acetylation. In other words, predicting early intervention treatment response may hinge critically 
on how susceptible an individual’s intrinsic biology is to experience- or context-dependent control 
over regulation of gene expression. This idea bodes well with general ideas regarding histone 
acetylation as one of the primary molecular influences over activity-dependent gene expression, 
which would then subsequently alter experience-dependent learning and memory processes (62) 
that are critical ingredients of early intervention. 

 
We also discovered that treatment-relevant genes highly express throughout a range of 

subcortical and cortical areas. Subcortical areas such as the thalamus, striatum, and claustrum all 
have extensive connections to the various cortical areas implicated (63–66). The cortical areas fall 
within well-known large-scale circuits like the default mode, salience, and somatomotor network. 
The default mode network is noted for its overlap with regions considered integral for social brain 
circuitry (e.g., dMPFC, vMPFC, PCC, TPJ, ATL, pSTS) and social-communicative functions 
linked to the domains affected in ASD (67–75). Other regions relevant to the mirror system are 
also apparent (e.g., vPMC, Ins, MCC, IPL, IPS, SMC) (76–78). Language-relevant regions are 
also notable, such as (e.g., PT, MTG, vPMC, ATL) (79, 80). While speculative, this evidence could 
be suggestive of the possible impact of treatment-relevant genes on circuitry that plays important 
roles in cognitive and behavioral domains targeted by early intervention and which are key 
domains of importance in the early development of autism.  

 
In addition, we also found that starting treatment before versus after 24 months is a 

meaningful distinction (10, 11). Toddlers who started treatment before 24 months showed larger 
overall gains than those starting treatment after 24 months, even when controlling for the amount 
of time in treatment. This result is compatible with the main ideas behind why early intervention 
is crucial before 24 months (1, 11, 30). Also compatible with the idea of that treatment start before 
versus after 24 months is important, we also discovered that treatment slopes are much more 
variable once past 24 months of age. The enhanced variability of treatment slopes after 24 months 
is important, as it underscores how heterogeneity can be magnified with later treatment start. One 
implication of this result is that prediction of treatment outcome is a much more difficult task when 
the child begins treatment after 24 months of age. This is another consideration for why early 
detection and intervention is key – treatment outcomes tend to be more consistent if treatment 
begins before 24 months. 

 
There are some caveats and limitations that are necessary to address to interpret the present 

findings. First, the results reported here are tied to a specific, evidence-based early intervention 
program that contains a mixture of elements from various programs (e.g., applied behavioral 
analysis, pivotal response training) and administered by highly trained providers with systematic 
probes of fidelity of implementation. The use of the same standardized treatment approach for all 
participants is a strength of the current study. However, given the variety of different types of early 
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intervention programs available today, caution must be taken in generalizing these findings to 
other intervention programs. A question for future work would be to examine whether these 
findings extend to other widely used early intervention programs. Second, the outcome measure 
operationalized as the rate of improvement over time is not a commonly used metric to evaluate 
early intervention response. In most designs, there are time-locked pre- and post-testing measures 
to evaluate treatment response. However, the rate of response to treatment from multiple 
longitudinal measurements may be a more sensitive measure of treatment response than a change 
score sampled at just two points in time. Third, these results are identified in a relatively small 
sample of ASD toddlers. Future work replicating the findings with larger samples is needed. 
Finally, future work could examine whether different approaches to merge multiple data modalities 
such as pre-treatment gene expression and clinical measures might help to better predict treatment 
slopes. In the current work we did not investigate this possibility as it is beyond the scope of the 
current investigation and requires much more sophisticated approaches tailored specifically for 
multiple modality data fusion, especially in situations where different modalities are high 
dimensional and/or differ substantially in dimensionality (81, 82).  

 
In conclusion, this work shows the importance of early treatment start ideally before 24 

months, and also shows for the first time, that blood gene expression characteristics can predict 
how fast toddlers with ASD respond to early treatment. While clinical behavioral variables 
outperformed gene expression measures, the signal within gene expression is important because it 
potentially indicates that a key biological ingredient for determining an individual’s treatment 
outcome is susceptibility to epigenetic change via mechanisms such as acetylation. Understanding 
how this treatment-relevant biology affects neuroplasticity and experience-dependent learning is 
a key next step towards how such molecular mechanisms are linked to heterogeneous outcomes in 
ASD. 
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Table 1: Pre-treatment clinical characteristics. Abbreviations: ADOS, autism diagnostic 
interview schedule; MSEL, Mullen Scales of Early Learning; VABS, Vineland Adaptive Behavior 
Scales; SC, social-communication; RRB, restrictive repetitive behaviors; EL, expressive 
language; RL, receptive language; VR, visual reception; FM, fine motor; ELC, early learning 
composite; SD, standard deviation. 
 
 

 Male Female 

Sex 33 8 

 Mean SD 

Age at Treatment Intake 22.78 4.03 

ADOS Total 14.27 6.02 

ADOS SC 12.17 5.41 

ADOS RRB 6.17 2.11 

MSEL EL 31.39 10.62 

MSEL RL 29.10 11.22 

MSEL VR 41.29 9.65 

MSEL FM 41.63 11.38 

MSEL ELC 73.83 15.31 

VABS Communication 77.12 14.38 

VABS Socialization 85.51 12.52 

VABS Daily Living Skills 89.05 11.99 

VABS Motor 94.83 11.98 

VABS Adaptive Behavior Composite 84.27 12.34 
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Table 2: Gene Enrichment Analysis. This table shows results of gene set enrichment analysis for 
treatment-relevant genes. Abbreviations: GO, gene ontology. 
 

  
Biological Process (GO) 

  
  

GO-term description count in network false discovery rate 
GO:0032880 regulation of protein localization 29 of 901 0.0379 
GO:0016192 vesicle-mediated transport 48 of 1699 0.0043 

    
  

Cellular Component (GO) 
  
  

GO-term description count in network false discovery rate 
GO:0005829 cytosol 101 of 4958 0.0019 
GO:0070013 intracellular organelle lumen 98 of 5162 0.0190 
GO:0005737 cytoplasm 186 of 11238 0.0037 

    
  

UniProt Keywords 
  
  

keyword description count in network false discovery rate 
KW-0007 Acetylation 74 of 3335 0.0024 
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Table 3: Enrichments with ASD-relevant gene lists. This table shows results of enrichment 
analysis for treatment-relevant genes and ASD-relevant gene lists. Abbreviations: DE, 
differentially expressed; DA, differentially histone acetylated; OR, enrichment odds ratio; FDR, 
false discovery rate. 
 

Gene List Odds Ratio (OR) p-value false discovery rate (FDR) 
SFARI ASD 0.73 0.85 0.86 

ASD DE Downregulated 0.68 0.86 0.86 
ASD DE Upregulated 1.46 0.13 0.23 

ASD DA Prefrontal Cortex Upregulated 1.64 0.007 0.04 
ASD DA Prefrontal Cortex Downregulated 1.34 0.09 0.21 

ASD DA Temporal Cortex Upregulated 1.24 0.16 0.23 
ASD DA Temporal Cortex Downregulated 1.51 0.01 0.04 
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