Identification of Key Genes and Signaling Pathways Associated with the Progression of Glioblastoma multiform ============================================================================================================ * Basavaraj Vastrad * Chanabasayya Vastrad * Iranna Kotturshetti ## Abstract Genomic features have been gradually regarded as part of the basics to the clinical diagnosis, prognosis and treatment for glioblastoma multform (GBM). However, the molecular modifications taking place during the advancement of GBM remain unclear. Therefore, recognition of potential important genes and pathways in the gastric cancer progression is important to clinical practices. In the present study, gene expression dataset (GSE116520) of GBM were selected from the Gene Expression Omnibus (GEO) database and were further used to identify differentially expressed genes (DEGs). Then, pathway and Gene Ontology (GO) enrichment analyses were conducted, and a protein-protein interaction (PPI) network was constructed to explore the potential mechanism of GBM carcinogenesis. Significant modules were discovered using the PEWCC1 plugin for Cytoscape. In addition, a target gene - miRNA regulatory network and target gene - TF regulatory network in GBM were constructed using common deregulated miRNAs, TFs and DEGs. Finally, we carried on validation of hub genes by UALCAN, cBioporta, human protein atlas, ROC (Receiver operating characteristic) curve analysis, RT-PCR and immune infiltration analysis. The results indicated that a total of 947 differential expressed genes (DEGs) (477 up regulated and 470 down regulated) was identified in microarray profiles. Pathway enrichment analysis revealed that DEGs (up and down regulated) were mainly associated in reactive oxygen species degradation, ribosome, homocarnosine biosynthesis and GABAergic synapse, whereas GO enrichment analyses revealed that DEGs (up and down regulated) were mainly associated in macromolecule catabolic process, cytosolic part, synaptic signaling and synapse part as the main pathways associated in these processes. Finally, we filtered out hub genes, including MYC, ARRB1, RPL7A, SNAP25, SOD2, SVOP, ABCC3 and ABCA2, from the all networks. Validation of hub genes suggested the robustness of the above results. In conclusion, these results provided novel and reliable biomarkers for GBM, which will be useful for further clinical applications in GBM diagnosis, prognosis and targeted therapy. Key words * glioblastoma multiform * differentially expressed genes * pathways * prognostic * hub genes ## Introduction Glioblastoma multform (GBM) is one of the most malignant glial tumors with the 5-year survival rate 9.8% [1]. In current years, although novel advances have been made in multimodal treatment of cancers, indigent prognosis and high mortality of GBM has remained consistent. About 296,851 individuals in the global were diagnosed with GBM in 2018, of which 241,037 people died, resulting in roughly equal morbidity and mortality [2]. Present situation, radiotherapy [3], chemotherapy [4] and surgical resection [5] are still the most effective way of improving the survival rate of GBM patients. However, GBM is difficult to diagnose in the early stages due to its concealed location and uncommon clinical symptoms. In most cases, majority of the patients tend to be in the final stage when they are clinically diagnosed and lose the chance of radiotherapy, chemotherapy and surgical resection. Therefore, the genes associated in the occurrence and advancement of GBM needs to be explored, which will contribute to the finding of diagnostics markers, prognostic markers and therapeutic targets of GBM. The underlying molecular pathogenesis of GBM remains inadequately unexplored. Therefore, it is encourage the need to advance a further diagnose the etiological factors, molecular mechanisms, and pathways of GBM to discover novel diagnostic and treatment strategies for GBM. Fortunately, with the development of highthroughput DNA microarray analyses, various genes and pathways have been demonstrated to be correlated with the genesis and progression of GBM [6]. Genes such as NDRG2 [7], PARK2 [8], WT1 [9], RB1 [10] and HDAC (histone deacetylase) [11] were linked with pathogenesis of GBM. Pathways such as Akt pathway [12], EGFR–MEK–ERK signaling pathway [13], AMPK-TSC-mTOR signaling pathway [14], NFκB pathway [15] and MAP kinase pathway [16] were involved in progression of GBM. Therefore, finding differentially expressed genes (DEGs) and pathways, illuminate the interactions network among them, are important for GBM. In this study, we downloaded the original data (GSE116520) from Gene Expression Omnibus (GEO, [http://www.ncbi.nlm.nih.gov/geo/](http://www.ncbi.nlm.nih.gov/geo/)). The differentially expressed genes (DEGs) of normal control from GBM were screened using limma R bioconductor tool. Subsequently, the pathway and gene ontology (GO) enrichment analysis for DEGs were analyzed. Additionally, we established protein-protein interaction (PPI) network, target gene - miRNA regulatory network and target gene - TF regulatory network of the DEGs. Expression levels of these candidate genes were finally verified by survival analysis, expression analysis (based on sample type and patients age), mutation analysis and immune histochemical (IHC) analysis, ROC (Receiver operating characteristic) curve analysis, RT-PCR and immune infiltration analysis. Overall, our systematic analysis will gain insights into GBM pathogenesis at molecular level and help to identify the potential candidate biomarkers for diagnosis, prognosis, and drug targets for GBM. ## Materials and methods ### Selection of GEO data set Firstly, GBM-related chips GSE116520 [17] were retrieved and downloaded from the Gene Expression Omnibus (GEO) database ([https://www.ncbi.nlm.nih.gov/geo/](https://www.ncbi.nlm.nih.gov/geo/)) with “Glioblastoma multform” serving as the retrieval key word. GSE116520 included eight normal control samples (brain) and seventeen GBM samples. The microarray platform was GPL10558 Illumina HumanHT-12 V4.0 expression beadchip Array. Flow chart of complete studies is shown in Fig. 1. ![Fig. 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F1.medium.gif) [Fig. 1.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F1) Fig. 1. Study design (flow diagram of study) ### Data pre-processing The downloaded probe-level raw data in TXT files were preprocessed using beadarray package [18] in R (version 3.3.2), including log-transformation, imputation of missing values, background correction, and quantile normalization. While several probes mapped to one gene, equate value of this probes was determined and used as the final expression value. ### Differential expression analysis The DEGs between GBM tissues and normal control tissues in each individual experiment were identified using Bayes moderated t-test method based on limma package [19], with the threshold criteria of FDR (false discovery rate) < 0.05, |log2FC (fold change)| > 1.88 for up regulated genes and |log2FC (fold change)| <- 2.25 for down regulated genes. The relationships between samples and DEGs were shown by hierarchical clustering heatmaps and volcano plots. ### Pathway enrichment analysis of DEGs The pathway enrichment analyses were performed by ToppGene (ToppFun) ([https://toppgene.cchmc.org/enrichment.jsp](https://toppgene.cchmc.org/enrichment.jsp)) [20]. BIOCYC ([https://biocyc.org/](https://biocyc.org/)) [21], Kyoto Encyclopedia of Genes and Genomes (KEGG; [http://www.genome.jp/kegg/](http://www.genome.jp/kegg/)) [22], Pathway Interaction Database (PID, [http://pid.nci.nih.gov/](http://pid.nci.nih.gov/)) [23], Reactome ([https://reactome.org/PathwayBrowser/](https://reactome.org/PathwayBrowser/)) [24], Molecular signatures database (MSigDB, [http://software.broadinstitute.org/gsea/msigdb/](http://software.broadinstitute.org/gsea/msigdb/)) [25], GenMAPP ([http://www.genmapp.org/](http://www.genmapp.org/)) [26], Pathway Ontology ([https://bioportal.bioontology.org/ontologies/PW](https://bioportal.bioontology.org/ontologies/PW)) [27], PantherDB ([http://www.pantherdb.org/](http://www.pantherdb.org/)) [28] and Small Molecule Pathway Database (SMPDB) ([http://smpdb.ca/](http://smpdb.ca/)) [29] pathway enrichment analysis were carried out for the DEGs, with a P < 0.05 considered to indicate statistical significance. ### Gene ontology enrichment analysis of DEGs To explore the biological functional roles of the above DEGs, a GO ([http://www.geneontology.org/](http://www.geneontology.org/)) [30] enrichment analysis was performed on ToppGene (ToppFun) ([https://toppgene.cchmc.org/enrichment.jsp](https://toppgene.cchmc.org/enrichment.jsp)) [20]. Significant results of biological process (BP), cellular component (CC) and molecular function (MF) with a cut-off of false discovery rate <0.05 were selected. ### PPI network construction and module analysis To further investigate the molecular mechanism of GBM, all DEGs were used to construct the PPI network using the biological online database tool (Integrated Interactions Database, IID, [http://iid.ophid.utoronto.ca/](http://iid.ophid.utoronto.ca/)) [31] to determine and predict the interaction among them. This database integrates various PPI data bases such as Biological General Repository for Interaction Datasets (BioGRID, [https://thebiogrid.org/](https://thebiogrid.org/)) [32], IntAct ([https://www.ebi.ac.uk/intact/](https://www.ebi.ac.uk/intact/)) [33], I2D ([http://ophid.utoronto.ca/ophidv2.204/](http://ophid.utoronto.ca/ophidv2.204/)) [34], Molecular INTeraction database (MINT, [https://mint.bio.uniroma2.it/](https://mint.bio.uniroma2.it/)) [35], InnateDB [[https://www.innatedb.com/](https://www.innatedb.com/)] [36], Database of Interacting Proteins (DIP, [https://dip.doe-mbi.ucla.edu/dip/Main.cgi](https://dip.doe-mbi.ucla.edu/dip/Main.cgi)) [37], Human Protein Reference Database (HPRD, [http://www.hprd.org/](http://www.hprd.org/)) [38] and the Biomolecular Interaction Network Database (BIND, [http://bind.ca](http://bind.ca)) [39]. A combined score > 0.7 (high confidence score) was considered significant, and then the PPI network was visualized using Cytoscape software ([http://www.cytoscape.org/](http://www.cytoscape.org/)) (Version 3.7.2) [40]. To evaluate the importance of nodes in the PPI network, the degree centrality, betweenness centrality, stress centrality, closeness centrality and clustering coefficient of nodes were calculated and utilized in the present study [41–45] using the network analyzer plugin in Cytoscape software. The hub genes, a small number of important nodes for the protein interactions in the PPI network, were chosen with a degree centrality > 50, betweenness centrality > 0.02, stress centrality > 2100000, closeness centrality > 0.26 and clustering coefficient = 0. Because a higher k-core score means a more topological central location, modules in the PPI network were explored by k-core scoring using the PEWCC1 plugin in Cytoscape software [46], and significant modules with a k-core > 6 were considered potential core regulatory networks. ### Construction of target gene - miRNA regulatory network To identify regulatory miRNAs that influence target gene (i.e., up and down regulated genes) at the posttranscriptional level, target gene - miRNA interactions were obtained from DIANA-TarBase ([http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index](http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index)) [47] and miRTarBase ([http://mirtarbase.mbc.nctu.edu.tw/php/download.php](http://mirtarbase.mbc.nctu.edu.tw/php/download.php)) [48] both of which include experimentally supported target gene - miRNA interactions and topological parameter (degree) were analyzed using NetworkAnalyst ([https://www.networkanalyst.ca/](https://www.networkanalyst.ca/)) [49]. ### Construction of target gene - TF regulatory network To identify regulatory TFs that control the i.e., up and down regulated genes) at a transcriptional level, TF-target gene interactions were obtained using the ChEA database ([http://amp.pharm.mssm.edu/lib/chea.jsp](http://amp.pharm.mssm.edu/lib/chea.jsp)) [50] and were identified topological parameter (degree centrality) using ([https://www.networkanalyst.ca/](https://www.networkanalyst.ca/)) [49]. ### Validation of hub genes and clinical significance The UALCAN ([https://ualcan.path.uab.edu/index.html](https://ualcan.path.uab.edu/index.html)) [51] online database was used for survival analysis, expression analysis and age related expression analysis of the hub genes, which analyzed RNA sequencing expression data from TCGA projects. The mutation frequency of hub genes was inquired in cBioportal online database ([http://www.cbioportal.org/](http://www.cbioportal.org/)) [52]. The hub gene expressions in GBM tissues were determined from the human protein atlas ([www.proteinatlas.org](http://www.proteinatlas.org)) [53]. To explore diagnostic biomarkers of GBM, we used the above hub genes as candidates to find their diagnostic value based on generalized linear models (GLM). The pROC package [54] in R was used for GLM analysis. In brief, half of the samples (GBM = 17, controls = 8) were randomly distributed as the training set, which was used to build a model. An ROC (Receiver operating characteristic) curve analysis was practiced to calculate the specificity and sensitivity of the GLM prediction model. The AUC was computed to evaluate the diagnostic efficiency of the classifier. All cell culture samples of normal (HCN-1A) and GBM (U-118 MG) were lysed using TRIzol® (Invitrogen; Thermo Fisher Scientific, Inc.), and total RNAs were extracted and reverse transcribed into cDNA templates using PrimeScript® RT Reagent kit (Takara Biotechnology Co., Ltd.) according to the manufacturer’s instructions. PCR was performed using an 7900HT real-time PCR instrument with an initial denaturation at 95 °C for 30 s, followed by 40 cycles at 95 °C for 15 s and 60 °C for34 s, and a fnal dissociation curve analysis of one cycle at 95 °C for 15 s, 60 °C for 1 min, and 95 °C for 15 s. Each cDNA sample was assayed three times and relative expression was resolved using the 2−ΔΔCT method [55]. The specific PCR primers for the hub genes and β-actin as the internal control gene were designed with Primer Express version 2.0. TIMER ([https://cistrome.shinyapps.io/timer/](https://cistrome.shinyapps.io/timer/)) [56] is a user friendly, interactive web resource for immune infiltration analysis from RNA-Seq expression profiling database (The Cancer Genome Atlas (TCGA)). Immune infiltration analysis was evaluated using immune infiltrates (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells) across GBM. ## Results ### Data preprocessing and screening of DEGs The gene expression profile GSE116520 was downloaded from the GEO. The data before and after normalization are shown in Fig. 2A and Fig. 2B. The limma method was used to identify DEGs in GBM tissue compared with normal control tissues (brain). P value < 0.05, log FC > 1.88 for up regulated genes, and log FC <- 2.25 for down regulated genes were used as the cut-off criteria. After analyzing, total of 947 DEGs were selected between the GBM tissues and normal control tissues, including 477 up genes and 470 down regulated genes (Table 1). The result is displayed in the volcano plot (Fig. 3). The heatmap of the DEGs (up and down regulated genes) are shown in Fig. 4 and Fig. 5. ![Fig. 2.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F2.medium.gif) [Fig. 2.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F2) Fig. 2. Box plots of the gene expression data before normalization (A) and after normalization (B). Horizontal axis represents the sample symbol and the vertical axis represents the gene expression values. The black line in the box plot represents the median value of gene expression. (A1 – A17 = GBM tissues samples; B1 – B8 = normal control samples) ![Fig. 3.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F3.medium.gif) [Fig. 3.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F3) Fig. 3. Volcano plot of differentially expressed genes. Genes with a significant change of more than two-fold were selected. ![Fig. 4.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F4.medium.gif) [Fig. 4.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F4) Fig. 4. Heat map of up regulated differentially expressed genes. Legend on the top left indicate log fold change of genes. (A1 – A17 = GBM tissues samples; B1 – B8 = normal control samples) ![Fig. 5.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F5.medium.gif) [Fig. 5.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F5) Fig. 5. Heat map of down regulated differentially expressed genes. Legend on the top left indicate log fold change of genes. (A1 – A17 = GBM tissues samples; B1 – B8 = normal control samples) View this table: [Table 1](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/T1) Table 1 The statistical metrics for key differentially expressed genes (DEGs) ### Pathway enrichment analysis of DEGs In order to investigate the biological functions of these DEGs (up and down regulated genes) in GBM. Pathway enrichment analysis was performed using ToppGene. Pathway enrichment analysis results indicated that DEGs (up and down regulated genes) were significantly enriched in reactive oxygen species degradation, glutamate removal from folates, ribosome, cell cycle, FOXM1 transcription factor network, PLK1 signaling events. translation, extracellular matrix organization, starch and sucrose\_metabolism, nitrogen\_metabolism, ensemble of genes encoding core extracellular matrix including ECM glycoproteins, collagens and proteoglycans, ensemble of genes encoding extracellular matrix and extracellular matrix-associated proteins, integrin signalling pathway, p53 pathway, hypertension, G2/M DNA replication checkpoint, and nicotinate and nicotinamide metabolism, homocarnosine biosynthesis, fatty acid alpha-oxidation III, GABAergic synapse, insulin secretion, effects of botulinumtoxin, internalization of ErbB1, neuronal system, transmission across chemical synapses, alanine and aspartate metabolism, glycans biosynthesis, Wnt/Ca2+/cyclic GMP signaling., fl-arrestins in GPCR desensitization, synaptic vesicle trafficking, muscarinic acetylcholine receptor 1 and 3 signaling pathway, insulin secretion pathway, glutamate metabolic, pirenzepine pathway and homocarnosinosis are listed in Table 2 and Table 3. View this table: [Table 2](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/T2) Table 2 The enriched pathway terms of the up regulated differentially expressed genes View this table: [Table 3](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/T3) Table 3 The enriched pathway terms of the down regulated differentially expressed genes ### Gene ontology enrichment analysis of DEGs GO enrichment analysis was conducted using the ToppGene, and the results are illustrated in Table 4 and Table 5. For up regulated genes, the terms enriched in the BP category included macromolecule catabolic process and mitotic cell cycle. The GO CC category revealed enrichment in the cytosolic part and collagen-containing extracellular matrix. In addition, the MF category showed enrichment for factors involved in structural molecule activity and RNA binding. Down regulated genes showed enrichment in the BP category in processes such as synaptic signaling and cell-cell signaling. The enriched terms in the CC category mainly included synapse part and neuron projection. Additionally, the enriched MF was focused on ion gated channel activity and channel activity. View this table: [Table 4](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/T4) Table 4 The enriched GO terms of the up regulated differentially expressed genes View this table: [Table 5](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/T5) Table 5 The enriched GO terms of the down-regulated differentially expressed genes ### PPI network construction and module analysis There were 4162 nodes and 8776 relation pairs in PPI network for up regulated genes (Fig. 6). Hub genes in the network were analyzed, and the top nodes with the highest degree, betweenness centrality, stress centrality, closeness centrality score and lowest clustering coefficient score were MYC, VCAM1, CDK2, HNRNPA1, PCNA, CDK1, EEF1A1, HSPD1, HNRNPK, CEP55, A2M, CDCA5, ETS1 and PTGES3 are listed Table 6. The statistical results and scatter plot for node degree distribution, betweenness centrality, stress centrality, closeness centrality and clustring coefficient are shown in Fig. 7. These hub genes were enriched in cell cycle, TNF signaling pathway, FOXM1 transcription factor network, processing of capped intron-containing pre-mRNA, macromolecule catabolic process, mitotic cell cycle, regulation of cell death, validated targets of C-MYC transcriptional activation, metabolism of proteins, microtubule cytoskeleton, complement and coagulation cascades, protein-containing complex binding, pathways in cancer and C20 prostanoid biosynthesis. Similarly, there were 2392 nodes and 3196 relation pairs in PPI network for down regulated genes (Fig. 8). Hub genes in the network were analyzed, and the top nodes with the highest degree score were ARRB1, SNCA, ERBB3, PRKCZ, DLG4, SLC30A3, DNM1, FAM153B, RAPGEF5, EFHD1, PDYN, ZNF536 and TSPOAP1 are listed Table 6. The statistical results and scatter plot for node degree distribution, betweenness centrality, stress centrality, closeness centrality and clustring coefficient are shown in Fig. 9. These hub genes were enriched in endocytosis, Parkinson’s disease, calcium signaling pathway, synaptic signaling, glutamatergic synapse, transmembrane transport of small molecules, synaptic vesicle cycle, neurogenesis, signaling by GPCR, neuron differentiation and neuronal system. ![Fig. 6.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F6.medium.gif) [Fig. 6.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F6) Fig. 6. Protein–protein interaction network of differentially expressed genes (DEGs). Green nodes denotes up regulated genes. ![Fig. 7.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F7.medium.gif) [Fig. 7.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F7) Fig. 7. Scatter plot for up regulated genes. (A- Node degree; B- Betweenness centrality; C- Stress centrality; D- Closeness centrality; E- Clustering coefficient) ![Fig. 8.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F8.medium.gif) [Fig. 8.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F8) Fig. 8. Protein–protein interaction network of differentially expressed genes (DEGs). Red nodes denotes down regulated genes. ![Fig. 9.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F9.medium.gif) [Fig. 9.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F9) Fig. 9. Scatter plot for down regulated genes. (A- Node degree; B- Betweenness centrality; C- Stress centrality; D- Closeness centrality; E- Clustering coefficient) View this table: [Table 6](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/T6) Table 6 Topology table for up and down regulated genes Subsequently, we performed module analysis of the whole network by the PEWCC1 plug-in. Total 849 modules were identified in PPI network for up regulated genes. Those hub genes were located at module 6, module 15, module 24 and module 51, are the most informative modules in PPI analysis (Fig. 10). These significant modules were proven to be associated with different pathways and GO categories such as ribosome, cell cycle, TNF signaling pathway, pathways in cancer, macromolecule catabolic process, mitotic cell cycle, RNA binding and cytosolic part. Similarly, total 201 modules were identified in PPI network for down regulated genes. Those hub genes were located at module 2, module 7, module 18 and module 22, are the most informative modules in PPI analysis (Fig. 11). These significant modules were proven to be associated with different pathways and GO categories such as insulin secretion, synaptic vesicle cycle, glutamatergic synapse, endocytosis, synaptic signaling, neurogenesis, cell-cell signaling and neuron differentiation. ![Fig. 10.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F10.medium.gif) [Fig. 10.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F10) Fig. 10. Modules in PPI network. The green nodes denote the up regulated genes ![Fig. 11.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F11.medium.gif) [Fig. 11.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F11) Fig. 11. Modules in PPI network. The red nodes denote the down regulated genes ### Construction of target gene - miRNA regulatory network For further research of the target genes (up and down regulated genes), target gene-related miRNAs were predicted by DIANA-TarBase and miRTarBase. Main miRNAs with interactions of target genes are listed in Table 7. Target genes were found to play a key role in regulating miRNAs. The target genes - miRNA regulatory network (up regulated genes) included 2440 nodes and 8546 edges (Fig.12). SOD2 was predicted to regulate 257 miRNAs (eg, hsa-mir-6077), WEE1 was predicted to regulate 167 miRNAs (eg, hsa-mir-4457), G3BP1 was predicted to regulate 158 miRNAs (eg, hsa-mir-4457), CNBP was predicted to regulate 153 miRNAs (eg, hsa-mir-4260) and HMGB1 was predicted to regulate 143 miRNAs (eg, hsa-mir-5193). These target genes were enriched in reactive oxygen species degradation, cell cycle, adherens junction, RNA binding and Neutrophil degranulation. The target genes - miRNA regulatory network (down regulated genes) included 2046 nodes and 4596 edges ((Fig.13). SVOP was predicted to regulate 107 miRNAs (eg, hsa-mir-3972), KCNJ6 was predicted to regulate 90 miRNAs (eg, hsa-mir-4287), SYT7 was predicted to regulate 75 miRNAs (eg, hsa-mir-4441), RAB11FIP4 was predicted to regulate 73 miRNAs (eg, hsa-mir-3176) and NPTX1 was predicted to regulate 73 miRNAs (eg, hsa-mir-3119). These target genes were enriched in transmembrane transport, synapse part, neuronal system, endocytosis and synaptic signaling. ![Fig. 12.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F12.medium.gif) [Fig. 12.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F12) Fig. 12. The network of up regulated genes and their related miRNAs. The green circles nodes are the up regulated genes, and blue diamond nodes are the miRNAs ![Fig. 13.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F13.medium.gif) [Fig. 13.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F13) Fig. 13. The network of down regulated genes and their related miRNAs. The pink circles nodes are the down regulated genes, and sky blue diamond nodes are the miRNAs View this table: [Table 7](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/T7) Table 7 miRNA - target gene interaction table ### Construction of target gene - TF regulatory network For further research of the target genes (up and down regulated genes), target gene-related TFs were predicted by ChEA database. Main TFs with interactions of target genes are listed in Table 8. Target genes were found to play a key role in regulating TFs. The target genes - TF regulatory network (up regulated genes) included 555 nodes and 9100 edges (Fig.14). ABCC3 was predicted to regulate 225 TFs (eg, SOX2), VKORC1 was predicted to regulate 180 TFs (eg, NANOG), MCTS1 was predicted to regulate 171 TFs (eg, SPI1), TNFRSF12A was predicted to regulate 167 TFs (eg, E2F1) and C15orf48 was predicted to regulate 155 TFs (eg, POU5F1). These target genes were enriched in whole membrane, cell cycle and cytokine signaling in immune system. The target genes - TF regulatory network (down regulated genes) included 576 nodes and 8171 edges (Fig.15). ABCA2 was predicted to regulate 234 TFs (eg, SUZ12), MOBP was predicted to regulate 201 TFs (eg, REST), PLEKHG3 was predicted to regulate 198 TFs (eg, EGR1), TTLL7 was predicted to regulate 188 TFs (eg, SOX2) and CAPN3 was predicted to regulate 178 TFs (eg, AR). These target genes were enriched in transmembrane transport of small molecules, cytoskeletal protein binding, neuron projection and Huntington disease. ![Fig. 14.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F14.medium.gif) [Fig. 14.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F14) Fig. 14. The network of up regulated genes and their related TFs. The green circles nodes are the up regulated genes, and purple triangle nodes are the TFs ![Fig. 15.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F15.medium.gif) [Fig. 15.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F15) Fig. 15. The network of down regulated genes and their related TFs. The green circles nodes are the down regulated genes, and blue triangle nodes are the TFs View this table: [Table 8](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/T8) Table 8 TF - target gene interaction table ### Validation of hub genes and clinical significance UALCAN, the online tool with data sourced from TCGA, was used to validate the expression of these hub genes in GBM. Survival analysis (P<0.05) (Fig. 16); highly expressing TUBA1C, CAV1, S100A4, DNAJA4, PAK6, NELL1 and ITPKA tends to have poor survival outcomes in GBM. However, low expressing RPL23, YY1 and ARHGEF7 tends to have poor survival outcomes in GBM. As shown in Fig 17, the expression of the up regulated hub genes TUBA1C, CAV1, RPL23, YY1 and S100A4 in GBM tissue were significantly elevated compared with normal brain tissues. Furthermore, the expressions of down regulated hub genes ARHGEF7, DNAJA4, PAK6, NELL1 and ITPKA in GBM tissue were significantly decreased compared with normal brain tissues. The expression of each hub gene in GBM patients was analyzed according to the patient’s age. As shown in Fig 18, the expression of TUBA1C, CAV1, RPL23, YY1 and S100A4 were higher in patients with age (21-40 years, 21-60 years, 61-80 years, 81-100 years), which revealed that these up regulated hub genes might be associated with GBM advancement positively. Similarly, the expression of ARHGEF7, DNAJA4, PAK6, NELL1 and ITPKA were lower in patients age (21-40 years, 21-60 years, 61-80 years, 81-100 years), which revealed that these down regulated hub genes might be linked with GBM advancement positively. Fig. 19 presented the mutation information of the ten hub genes. TUBA1C, CAV1, RPL23, YY1, S100A4, ARHGEF7, DNAJA4, PAK6, NELL1 and ITPKA were changed most often (0.7%, 0.4%, 0.4%, 0.7%, 0.4%, 0.7%, 0.4%, 0.7%, 1.5% and 0.4%), these include amplification, deep deletion, missense mutation and truncating mutation. The Human Protein Atlas (THPA) demonstrated that the expression of TUBA1C, CAV1, RPL23, YY1 and S100A4 were highly expressed in GBM tissues, whereas ARHGEF, DNAJA4, PAK6, NELL1 and ITPKA were low expressed in GBM tissue (Fig. 20). To verify the diagnostic value of the hub genes, expression levels in GBM were evaluated using ROC curves. As presented in Fig. 21, the area under the curve (AUC) for TUBA1C, CAV1, RPL23, YY1, S100A4, ARHGEF7, DNAJA4, PAK6, NELL1 and ITPKA in GBM and normal control tissue determined for the GSE116520 dataset were 0.963, 0.971, 0.993, 0.963, 0.971, 0.963, 0.985, 0.971, 0.978 and 0.985, respectively. RT-PCR demonstrated that the relative expression levels of TUBA1C, CAV1, RPL23, YY1 and S100A4 in GBM tissues were significantly higher compared with those in normal tissue (Fig. 22A - E), whereas expression levels of ARHGEF7, DNAJA4, PAK6, NELL1 and ITPKA in GBM tissue were significantly lower compared with those in normal tissue (Fig. 22 F-J). The PCR primers are listed in Table 9. To investigate the immune infiltration analysis of the ten potential hub genes, the TIMER bioinformatics analysis platform was used. We found that the high expression of hub genes (TUBA1C, CAV1, RPL23, YY1 and S100A4) were negatively associated with tumor purity (Fig. 23A - E), where as low expression of hub genes (ARHGEF7, DNAJA4, PAK6, NELL1 and ITPKA) were positively associated with tumor purity (Fig. 23A - E). ![Fig. 16.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F16.medium.gif) [Fig. 16.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F16) Fig. 16. Overall survival analysis of hub genes. Overall survival analyses were performed using the UALCAN online platform A) TUBA1C B) CAV1 C) RPL23 D) YY1 E) S100A4 F) ARHGEF7 G) DNAJA4 H) PAK6 I) NELL1 J) ITPKA ![Fig. 17.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F17.medium.gif) [Fig. 17.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F17) Fig. 17. Box plots (expression analysis) hub genes were produced using the UALCAN platform A) TUBA1C B) CAV1 C) RPL23 D) YY1 E) S100A4 F) ARHGEF7 G) DNAJA4 H) PAK6 I) NELL1 J) ITPKA ![Fig. 18.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F18.medium.gif) [Fig. 18.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F18) Fig. 18. Box plots (age analysis) of hub genes were produced using the UALCAN platform A) TUBA1C B) CAV1 C) RPL23 D) YY1 E) S100A4 F) ARHGEF7 G) DNAJA4 H) PAK6 I) NELL1 J) ITPKA ![Fig. 19.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F19.medium.gif) [Fig. 19.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F19) Fig. 19. Mutation analyses of hub genes were produced using the CbioPortal online platform ![Fig. 20.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F20.medium.gif) [Fig. 20.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F20) Fig. 20. Immunohisto chemical(IHC) analyses of hub genes were produced using the human protein atlas (HPA) online platform A) TUBA1C B) CAV1 C) RPL23 D) YY1 E) S100A4 F) ARHGEF7 G) DNAJA4 H) PAK6 I) NELL1 J) ITPKA ![Fig. 21.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F21.medium.gif) [Fig. 21.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F21) Fig. 21. ROC curve validated the sensitivity, specificity of hub genes as a predictive biomarker for GBM prognosis A) TUBA1C B) CAV1 C) RPL23 D) YY1 E) S100A4 F) ARHGEF7 G) DNAJA4 H) PAK6 I) NELL1 J) ITPKA ![Fig. 22.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F22.medium.gif) [Fig. 22.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F22) Fig. 22. Validation of hub genes by RT-PCR. A) TUBA1C B) CAV1 C) RPL23 D) YY1 E) S100A4 F) ARHGEF7 G) DNAJA4 H) PAK6 I) NELL1 J) ITPKA ![Fig. 23.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/12/23/2020.12.21.20248616/F23.medium.gif) [Fig. 23.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/F23) Fig. 23. Scatter plot for immune infiltration for hub genes. A) TUBA1C B) CAV1 C) RPL23 D) YY1 E) S100A4 F) ARHGEF7 G) DNAJA4 H) PAK6 I) NELL1 J) ITPKA View this table: [Table 9.](http://medrxiv.org/content/early/2020/12/23/2020.12.21.20248616/T9) Table 9. Primers used for quantitative PCR ## Discussion The majorities of patients with GBM are diagnosed at advanced stages and have poor overall survival [57]. However, the molecular mechanisms associated in the advancement of GBM remain unclear. In the present study, to better understanding the molecular mechanisms involved in GBM progression, we characterized the expression profiles in GBM and normal brain tissues by transcriptome analysis. Using bioinformatics analysis, we obtained 947 DEGs from GSE116520 data expression profiles, including 477 up regulated genes and 470 down regulated genes. Genes such as SERPINA3 [58], VIP (vasoactive intestinal peptide) [59], ANXA2 [60] and SST (somatostatin) [61] were associated with progression of GBM. RPL39 [62] was responsible for invasion of breast cancer cells, but this gene was identified first time in GBM and may be linked with invasion of GBM cells. Genes such as TUBA1 [63], RPN2 [64], RASAL1 [65] and CCKBR (cholecystokinin B receptor) [66] were involved in proliferation of different cancer cells, but expression of these genes are not reported in GBM and may be associated with proliferation of GBM cells. High expression of KLK7 was important for pathogenesis of ovarian cancer [67], but elevated expression of this gene was identified first time in GBM and may be liable for progression of GBM. In pathway enrichment analysis for up regulated genes was performed. Enriched genes such as SOD2 [68], RPS11 [69], RPL9 [70], MYC (MYC proto-oncogene, bHLH transcription factor) [71], SEC61G [72], BIRC5 [73], NEK2 [74], CDK2 [75], AURKB (aurora kinase B) [76], RPS3 [77], MGP (matrix Gla protein) [78], AEBP1 [79], CTHRC1 [80], COL1A1 [81], COL3A1 [82], TNC (tenascin C) [83], POSTN (periostin) [84], IGFBP2 [85], IGFBP3 [86], IGFBP4 [87], SRPX2 [88], LAMB1 [89], ESM1 [90], TGFBI (transforming growth factor beta induced) [91], ITGA5 [92], RAP1B [93], CAV1 [94], HMOX1 [95] and LOX (lysyl oxidase) [96] were linked with progression of GBM. GPX7 was important for advancement of gastric cancer [97], but this gene was identified first time in GBM and may be liable for progression of GBM. High expression of enriched genes such as RPL29 [98], RPLP1 [99], RPS2 [100], RPS3A [101], RPS13 [102], RPS15A [103], RPL7A [104], CENPA (centromere protein A) [105], CENPF (centromere protein F) [106], EIF4E [107], MXRA5 [108] and LUM (lumican) [109] were responsible for development of different cancer types, but over expression of these genes were identified first time in GBM and may be associated with development of GBM. Enriched genes such as RPS12 [110], RPL6 [111], LAMA4 [112], CCNB1 [113], CCNB2 [114], CDK1 [115] and EIF3M [116] were responsible for proliferation of different cancer cell types, but these genes were identified first time in GBM and may be associated with proliferation of GBM cells. Enriched polymorphic genes such as RPL14 [117] and LAMC1 [118] were liable for advancement of different cancer types, but these polymorphic genes were identified first time in GBM and may be important for development of GBM. Enriched genes associated such as RPL15 [119], EEF1A1 [120], SRPX (sushi repeat containing protein X-linked) [121], COL1A2 [122], COL4A1 [123], COL5A1 [124], COL5A2 [125], COL6A3 [122] and COL8A1 [126] were involved in invasion of different cancer cell types, but these genes were identified first time in GBM and may be culpable for invasion of GBM cells. EMILIN2 was associated with angiogenesis in gastric cancer [127], but this gene was identified first time in GBM and may be important for angiogenesis in GBM. Our study found that GPX8, RPL23A, RPL31, RPS4X, RPS4Y1, RPS7, RPS8, RPS10, RPS18, RPS25, RPS26, RPS27, RPS27A, RPS28, RPS29, RPL23, RPL7, RPL18A, EEF1B2, AMY1A, GBE1, PYGL (glycogen phosphorylase L), PCOLCE2, TNFAIP6 and SLC7A6 are up regulated in GBM and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. Similarly, pathway enrichment analysis for down regulated genes was performed. Enriched genes such as SLC12A5 [128], SHANK2 [129], KCNJ4 [130] and CACNA1E [131] were linked with development of different cancer types, but these genes were identified first time in GBM and may be important for progression of GBM. Enriched genes such as SLC6A1 [132], GABBR1 [133] and GAD1 [134] were associated with invasion of different cancer cells, but these genes were identified first time in GBM and may be involved in invasion of GBM cells. Enriched genes such as GLS (glutamines) [135], NEFL (neurofilament light) [136], SYN1 [137], SLC17A7 [138], SYT7 [139], EPB41L1 [140] and TF (transferrin) [141] were responsible for advancement of GBM. Methylation inactivation of enriched tumor suppressor genes such as such as GNAO1 [142], KCNMA1 [143] and CAMK2B [144] were liable for progression of different cancer types, but these genes were identified first time in GBM and loss of these genes may be linked with development of GBM. Low expression of UNC13C was associated with development of oral cancer [145], but this gene was identified first time in GBM and decrease expression of this gene may be linked with progression of GBM. Polymorphic gene CHRM3 was identified with progression of bladder cancer [146], but this polymorphic gene was identified first time in GBM and may be liable for advancement of GBM. Our study found that CARNS1, ADCY1, ADCY2, GABBR2, SLC32A1, PRKCB (protein kinase C beta), GABRA2, GABRA5, GABRB1, GABRB3, GABRG2, GAD2, KCNJ6, GNG3, SNAP25, STX1A, STXBP1, SYT1, DLGAP2, TSPOAP1, CACNG3, PPFIA2, SLC1A2, SHANK3, CPLX1, KCNK4, PTPRD (protein tyrosine phosphatase receptor type D), ABCC8, SYN2, KCNAB1, KCNQ2, KCNQ3, KCNS1, DLG2, DLG4, CAMK2A, GRIN1, GRIN2C, KCNH3, ASPA (aspartoacylase), ITPKA (inositol-trisphosphate 3-kinase A), STX1B, RIMS2 and SYP (synaptophysin) are down regulated in GBM and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. In GO enrichment analysis for up regulated genes was performed. Enriched genes such as PTTG1 [147], HMGB1 [148], HMGB2 [149], HMMR (hyaluronan mediated motility receptor) [150], CHI3L2 [151], VEGFA (vascular endothelial growth factor A) [152], VIM (vimentin) [153], IGF2BP3 [154], UHRF1 [155], SUMO2 [156], PBK (PDZ binding kinase) [157], AURKA (aurora kinase A) [158], ADAMTS9 [159], UBE2C [160], CAST (calpastatin) [161], USP8 [162], TIMP1 [163], TIMP4 [164], CD44 [165], PCNA (proliferating cell nuclear antigen) [166], CCT8 [167], CHI3L1 [168] and ANXA1 [169] were involved in progression of GBM. HNRNPC (heterogeneous nuclear ribonucleoprotein C) was associated with drug resistance in gastric cancer [170], but this gene was identified first time in GBM and may be associated with chemo resistance in GBM. Enriched genes such as HSPA1A [171] and TUBA1C [172] were linked with proliferation of liver cancer cells, but these genes were identified first time in GBM and may be involved in proliferation of GBM cells. High expression of enriched genes such as MAD2L1 [173] and CSRP2 [174] were linked with pathogenesis of different cancer types, but high expression of these genes were identified first time in GBM and may be involved in progression of GBM. CASP4 [175] was involved in advancement of esophageal cancer, but this gene was identified first time in GBM and may be associated in development of GBM. Our study found that LSM5, CPVL (carboxypeptidasevitellogenic like), PPP2CB, CYP51A1, BNIP3L, FBXO5, ZFP36L1, RNASE2, MCTS1, LARP4, PRPH (peripherin), POTEKP (POTE ankyrin domain family member K, pseudogene), TUBB6, ACTR3 and RNA28SN5 are up regulated in GBM and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. Similarly, GO enrichment analysis for down regulated genes was performed. Enriched genes such as MAG (myelin associated glycoprotein) [176], ASIC2 [177], MBP (myelin basic protein) [178], CNP (2’,3’-cyclic nucleotide 3’ phosphodiesterase) [179], CPEB3 [180], SLC8A2 [181], PRKCZ (protein kinase C zeta) [182], RELN (reelin) [183], CYP46A1 [184], SNAP91 [185], CNTN2 [186], NPY (neuropeptide Y) [187], RGS4 [188], IL1RAPL1 [189], ERBB3 [190], SH3GL2 [191], SH3GL3 [192], ARRB1 [193], DNM3 [194], SPOCK1 [195], CCK (cholecystokinin) [196] and INA (internexin neuronal intermediate filament protein alpha) [197] were identified with progression of GBM. Decrease expression of enriched genes such as such as SCN8A [198], BRSK1 [199], ANKS1B [200], CALB2 [201], GRM3 [202], BCAS1 [203] and CLCA4 [204] were responsible for advancement of different cancer types, but low expression of these genes were identified first time in GBM and may be involved in progression of GBM. Enriched genes such as CUX2 [205], NPTX1 [206], NCS1 [207], SEPTIN4 [208] and FAIM2 [209] were associated with advancement of different cancer, but these genes were identified first time in GBM and may be linked with development of GBM. MAP4 was involved in invasion of bladder cancer cells [210], but this gene was identified first time in GBM and may be responsible for invasion of GBM cells. Enriched genes such as RAB6B [211] and MAL2 [212] were linked with proliferation of different cancer cells types, but these genes were identified first time in GBM and may be liable for proliferation of GBM cells. Methylation inactivation of tumor suppressor DMTN (dematin actin binding protein) was associated with progression of colorectal cancer [213], but loss of this gene was identified first time in GBM and may be involved in advancement of GBM. Our study found that MAP1A, PDYN (prodynorphin), TMOD2, CPNE6, SCN2A, SCN2B, FGF12, PLP1, AMPH (amphiphysin), HTR2A, NSG2, NAPB (NSF attachment protein beta), CNTNAP2, CNTNAP4, CALY (calcyon neuron specific vesicular protein), ERC2, SNCA (synuclein alpha), ATP2B2, JPH4, RIMS3, CDK5R1, SV2B, SYT4, CACNA1I, BSN (bassoon presynaptic cytomatrix protein), DNM1, NRGN (neurogranin), PHF24, PCLO (piccolo presynaptic cytomatrix protein), RAPGEF4, NETO1, SYNGR1, RIMBP2, LY6H, JPH3, PDE2A, KCNIP3, SYNPR (synaptoporin), SLITRK1, HPCA (hippocalcin), CAMKV (CaM kinase like vesicle associated), KCTD16, PPP1R1B, OLFM1, SVOP (SV2 related protein), PACSIN1, PKP4, MAGEE1, SH2D5, LGI3, ATP6V1G2, KIF1A, SLC6A17, DDN (dendrin), LAMP5, SLC30A3, NEFM (neurofilament medium), SEPTIN3, ARHGAP44, KIAA1107, RGS7BP, RGS7, KCNT1, KCNK12, PEX5L, ANO3, SCN3B and ANO4 are down regulated in GBM and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. The up regulated hub genes obtained from PPI network. Hub genes such as VCAM1 [214], HNRNPA1 [215], CEP55 [216], A2M [217] and ETS1 [218] were responsible for advancement of GBM. HSPD1 was associated with proliferation of breast cancer cells [219], but this gene was identified first time in GBM and may be linked with proliferation of GBM cells. HNRNPK (heterogeneous nuclear ribonucleoprotein K) was liable for invasion of nasopharyngeal cancer cells [220], but this gene was identified first time in GBM and may be involved in invasion of GBM cells. High expression of CDCA5 was identified with development of esophageal cancer [221], but elevated expression of this gene was identified first time in GBM and may be linked with advancement of GBM. Our study found that PTGES3 is up regulated in GBM and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. The down regulated hub genes obtained from PPI network. Methylation inactivation of EFHD1 was liable for development of colorectal cancer [222], but loss of this gene was identified first time in GBM and may be responsible for progression of GBM. Our study found that FAM153B, RAPGEF5 and ZNF536 are down regulated in GBM and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. Significant modules were extracted from PPI network to obtain up regulated hub genes. Hub genes such as CDKN3 [223], CCNA2 [224] and CKS2 [225] were responsible for proliferation of different cancer cells types, but these genes were identified first time in GBM and may be associated with proliferation of GBM cells. Over expression of GMNN (geminin DNA replication inhibitor) was linked with progression of liver cancer [226], but high expression of this gene was identified first time in GBM and may be liable for advancement of GBM. KPNA2 was involved in progression of GBM [227]. Our study found that CNBP (CCHC-type zinc finger nucleic acid binding protein) and NSMAF (neutral sphingomyelinase activation associated factorÂ) are up regulated in GBM and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target.. Similarly, significant modules were extracted from PPI network to obtain down regulated hub genes. ARHGEF7 was linked with invasion of colorectal cancer cells [228], but this gene was identified first time in GBM and may be liable for invasion of GBM cells. Target gene - miRNA regulatory network was constructed for up and down regulated genes. Target genes such as WEE1 [229] and G3BP1 [230] were responsible for development of GBM. RAB11FIP4 was linked with invasion of colon cancer cells [231], but this gene was identified first time in GBM and may be liable for invasion of GBM cells. Target gene - TF regulatory network was constructed for up and down regulated genes. Target genes such as ABCC3 [232] and ABCA2 [233] were involved in progression of GBM. High expression of TNFRSF12A was liable for advancement of breast cancer [234], but elevated expression of this gene was identified first time in GBM and may be involved in development of GBM. C15orf48 (NMES1) was associated with development of esophageal cancer [235], but this gene was identified first time in GBM and may be identified with growth of GBM. Up and down regulated genes such as VKORC1, MOBP (myelin associated oligodendrocyte basic protein), PLEKHG3, TTLL7 and CAPN3 were associated in target gene - TF regulatory network and were identified as novel biomarker for pathogenesis of GBM. High expression of hub genes (TUBA1C, CAV1, S100A4, DNAJA4, PAK6, NELL1 and ITPKA) were significantly associated with poor overall survival (OS) in GBM, while low expression of hub genes (RPL23, YY1 and ARHGEF7) were significantly associated with poor over OS in GBM and were visualized using UALCAN. Genes such as S100A4 [236] and YY1 [237] were responsible for progression of GBM. PAK6 was linked with proliferation of lung cancer cells [238], but this gene was identified first time in GBM and may be involved in proliferation of GBM cells. Polymorphic gene NELL1 was liable for progression of oral cancer [239], but this polymorphic gene was identified first time in GBM and may be linked with advancement of GBM. Next, the expression analysis of these hub genes in GBM compared with the normal and was verified on the UALCAN website. It was found that TUBA1C, CAV1, RPL23, YY1 and S100A4 were highly expressed in patients with GBM compared with normal people, while ARHGEF7, DNAJA4, PAK6, NELL1 and ITPKA were low expressed in patients with GBM compared with normal people. Next, the expression analysis of these hub genes in different age groups of GBM patients and was verified on the UALCAN website. All hub genes were showed altered expressed in all age groups of GBM patients and was verified on the UALCAN website. The mutation analysis found that mutations or alterations in all hub genes and was verified on the cBioportal website. All hub genes were validated by ICH analysis and was verified on the human protein atlas. Finally, all hub genes were validated by ROC analysis using pROC package in R software, RT-PCR and immune infiltration analysis. In conclusion, we successfully diagnosed hub genes (TUBA1C, CAV1, RPL23, YY1, S100A4, ARHGEF7, DNAJA4, PAK6, NELL1 and ITPKA) based on bioinformatic analysis and experimental validation. This study shows that TUBA1C, CAV1, RPL23, YY1, S100A4, ARHGEF7, DNAJA4, PAK6, NELL1 and ITPKA plays a major role in the progression of GBM and has broad application potential. ## Data Availability The datasets supporting the conclusions of this article are available in the GEO (Gene Expression Omnibus) (https://www.ncbi.nlm.nih.gov/geo/) repository. [(GSE116520) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116520)] ## Conflict of interest The authors declare that they have no conflict of interest. ## Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors. ## Informed consent No informed consent because this study does not contain human or animals participants. ## Availability of data and materials The datasets supporting the conclusions of this article are available in the GEO (Gene Expression Omnibus) ([https://www.ncbi.nlm.nih.gov/geo/](https://www.ncbi.nlm.nih.gov/geo/)) repository. [(GSE116520) ([https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116520](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116520))] ## Consent for publication Not applicable. ## Competing interests The authors declare that they have no competing interests. ## Author Contributions Basavaraj Vastrad : Writing original draft, and review and editing Chanabasayya Vastrad : Investigation and resources Iranna Kotturshetti : Supervision and resources ## Acknowledgement I thank Ruchi Jain, Indian Institute of Science, Molecular Reproduction Development and Genetics, C V Raman Road, Bangalore, Karnataka, India, very much, the author who deposited their microarray dataset, GSE116520, into the public GEO database. * Received December 21, 2020. * Revision received December 21, 2020. * Accepted December 23, 2020. * © 2020, Posted by Cold Spring Harbor Laboratory The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. ## References 1. 1.Tran B, Rosenthal MA. Survival comparison between glioblastoma multiforme and other incurable cancers. Journal of Clinical Neuroscience. 2010;17(4):417–421. doi:10.1016/j.jocn.2009.09.004 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jocn.2009.09.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20167494&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 2. 2.Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394–424. doi:10.3322/caac.21492 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3322/caac.21492&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30207593&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 3. 3.Sarria GR, Sperk E, Han X, Sarria GJ, Wenz F, Brehmer S, Fu B, Min S, Zhang H, Qin S et al. Intraoperative radiotherapy for glioblastoma: an international pooled analysis. Radiotherapy and Oncology. 2019. doi:10.1016/j.radonc.2019.09.023 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.radonc.2019.09.023&link_type=DOI) 4. 4.Saito T, Muragaki Y, Maruyama T, Komori T, Nitta M, Tsuzuki S, Fukui A, Kawamata T. Influence of wide opening of the lateral ventricle on survival for supratentorial glioblastoma patients with radiotherapy and concomitant temozolomide-based chemotherapy. Neurosurgical Review. 2019 8:1–1. doi:10.1007/s10143-019-01185-2 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10143-019-01185-2&link_type=DOI) 5. 5.Sezer S, van Amerongen MJ, Delye HH, ter Laan M. Accuracy of the neurosurgeons estimation of extent of resection in glioblastoma. Acta neurochirurgica. 2019 28:1–6. doi:10.1007/s00701-019-04089-8 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00701-019-04089-8&link_type=DOI) 6. 6.Alshabi AM, Vastrad B, Shaikh IA, Vastrad C. Identification of Crucial Candidate Genes and Pathways in Glioblastoma Multiform by Bioinformatics Analysis. Biomolecules. 2019;9(5):201. doi:10.3390/biom9050201 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/biom9050201&link_type=DOI) 7. 7.Deng Y, Yao L, Chau L, Ng SS, Peng Y, Liu X, Au WS, Wang J, Li F, Ji S et al. N-Myc downstream-regulated gene 2 (NDRG2) inhibits glioblastoma cell proliferation. International journal of cancer. 2003;106(3):342–347. doi:10.1002/ijc.11228 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ijc.11228&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12845671&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000184277500007&link_type=ISI) 8. 8.Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I, Janakiraman M, Schultz N, Hanrahan AJ, Pao W et al. Somatic mutations of the Parkinson’s disease–associated gene PARK2 in glioblastoma and other human malignancies. Nature genetics. 2010;42(1):77–82. doi:10.1038/ng.491 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ng.491&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19946270&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000273055100020&link_type=ISI) 9. 9.Nakahara Y, Okamoto H, Mineta T, Tabuchi K. Expression of the Wilms’ tumor gene product WT1 in glioblastomas and medulloblastomas. Brain tumor pathology. 2004;21(3):113–116. doi:10.1007/bf02482185 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/BF02482185&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15696971&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 10. 10.Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H. Promoter hypermethylation of the RB1 gene in glioblastomas. Laboratory investigation. 2001;81(1):77–82. doi:10.1038/labinvest.3780213 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/labinvest.3780213&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11204276&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000166634900009&link_type=ISI) 11. 11.Lucio-Eterovic AK, Cortez MA, Valera ET, Motta FJ, Queiroz RG, Machado HR, Carlotti CG, Neder L, Scrideli CA, Tone LG. Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC cancer. 2008;8(1):243. doi:10.1186/1471-2407-8-243 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2407-8-243&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18713462&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 12. 12.Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer research. 2008;68(10):3566–3572. doi:10.1158/0008-5472.CAN-07-6639 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI2OC8xMC8zNTY2IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjMvMjAyMC4xMi4yMS4yMDI0ODYxNi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 13. 13.Liu Q, Xu X, Zhao M, Wei Z, Li X, Zhang X, Liu Z, Gong Y, Shao C. Berberine induces senescence of human glioblastoma cells by downregulating the EGFR–MEK–ERK signaling pathway. Molecular cancer therapeutics. 2015 1;14(2):355–363. doi:10.1158/1535-7163.MCT-14-0634 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6Im1vbGNhbnRoZXIiO3M6NToicmVzaWQiO3M6ODoiMTQvMi8zNTUiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yMy8yMDIwLjEyLjIxLjIwMjQ4NjE2LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 14. 14.Yuan Y, Xue X, Guo RB, Sun XL, Hu G. Resveratrol enhances the antitumor effects of temozolomide in glioblastoma via ROS-dependent AMPK-TSC-mTOR signaling pathway. CNS neuroscience & therapeutics. 2012;18(7):536–546. doi:10.1111/j.1755-5949.2012.00319.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1755-5949.2012.00319.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22530672&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 15. 15.Zhang JQ, Hong B. miR520a-3p suppresses cell proliferation and metastasis by inhibiting the p65–NFκB pathway in glioblastoma. OncoTargets and therapy. 2019;12:6503–6513. doi:10.2147/OTT.S208889 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2147/OTT.S208889&link_type=DOI) 16. 16.Kugler W, Erdlenbruch B, Otten K, Jendrossek V, Eibl H, Lakomek M. MAP kinase pathways involved in glioblastoma response to erucylphosphocholine. International journal of oncology. 2004;25(6):1721–1727. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15547710&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 17. 17.Kruthika BS, Jain R, Arivazhagan A, Bharath RD, Yasha TC, Kondaiah P, Santosh V. Transcriptome profiling reveals PDZ binding kinase as a novel biomarker in peritumoral brain zone of glioblastoma. Journal of neuro-oncology. 2019;141(2):315–325. doi:10.1007/s11060-018-03051-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11060-018-03051-5&link_type=DOI) 18. 18.Dunning MJ, Smith ML, Ritchie ME, Tavaré S. beadarray: R classes and methods for Illumina bead-based data. Bioinformatics. 2007;23(16):2183–2184. doi:10.1093/bioinformatics/btm311 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/bioinformatics/btm311&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17586828&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000249818300021&link_type=ISI) 19. 19.Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkv007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25605792&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 20. 20.Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37(Web Server issue):W305–W311. doi:10.1093/nar/gkp427 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkp427&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19465376&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000267889100054&link_type=ISI) 21. 21.Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, Keseler IM, Krummenacker M, Midford PE, Ong Q et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform. 2019;20(4):1085–1093. doi:10.1093/bib/bbx085 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/bib/bbx085&link_type=DOI) 22. 22.Aoki-Kinoshita KF, Kanehisa M. Gene annotation and pathway mapping in KEGG. Methods Mol Biol. 2007;396:71–91. doi:10.1007/978-1-59745-515-2_6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/978-1-59745-515-2_6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18025687&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 23. 23.Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009;37(Database issue):D674–D679. doi:10.1093/nar/gkn653 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkn653&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18832364&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000261906200120&link_type=ISI) 24. 24.Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39(Database issue):D691–D697. doi:10.1093/nar/gkq1018 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkq1018&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21067998&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000285831700110&link_type=ISI) 25. 25.Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–1740. doi:10.1093/bioinformatics/btr260 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/bioinformatics/btr260&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21546393&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000291261300036&link_type=ISI) 26. 26.Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet. 2002 ;31(1):19–20. doi:10.1038/ng0502-19 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ng0502-19&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11984561&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000175362500008&link_type=ISI) 27. 27.Petri V, Jayaraman P, Tutaj M, Hayman GT, Smith JR, De Pons J, Laulederkind SJ, Lowry TF, Nigam R, Wang SJ et al. The pathway ontology - updates and applications. J Biomed Semantics. 2014;5(1):7. doi:10.1186/2041-1480-5-7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/2041-1480-5-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24499703&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 28. 28.Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013;41(Database issue):D377–D386. doi:10.1093/nar/gks1118 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gks1118&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23193289&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000312893300054&link_type=ISI) 29. 29.Jewison T, Su Y, Disfany FM, Liang Y, Knox C, Maciejewski A, Poelzer J, Huynh J, Zhou Y, Arndt D et al. SMPDB 2.0: big improvements to the Small Molecule Pathway Database. Nucleic Acids Res. 2014;42(Database issue):D478–D484. doi:10.1093/nar/gkt1067 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkt1067&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24203708&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 30. 30.Lewis SE. The Vision and Challenges of the Gene Ontology. Methods Mol Biol. 2017;1446:291–302. doi:10.1007/978-1-4939-3743-1_21 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/978-1-4939-3743-1_21&link_type=DOI) 31. 31.Kotlyar M, Pastrello C, Malik Z, Jurisica I. IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species. Nucleic Acids Res. 2019;47(D1):D581–D589. doi:10.1093/nar/gky1037 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gky1037&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30407591&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 32. 32.Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O’Donnell L, Oster S, Theesfeld C, Sellam A et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 2017;45(D1):D369–D379. doi:10.1093/nar/gkw1102 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkw1102&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27980099&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 33. 33.Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-Toro N et al. The MIntAct project-- IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42(Database issue):D358–D363. doi:10.1093/nar/gkt1115 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkt1115&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24234451&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000331139800054&link_type=ISI) 34. 34.Kotlyar M, Pastrello C, Sheahan N, Jurisica I. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res. 2016;44(D1):D536–D541. doi:10.1093/nar/gkv1115 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkv1115&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26516188&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 35. 35.Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012;40(Database issue):D857–D861. doi:10.1093/nar/gkr930 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkr930&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22096227&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000298601300128&link_type=ISI) 36. 36.Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock RE, Brinkman FS, Lynn DJ. InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res. 2013;41(Database issue):D1228–D1233. doi:10.1093/nar/gks1147 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gks1147&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23180781&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000312893300174&link_type=ISI) 37. 37.Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 2004;32(Database issue):D449–D451. doi:10.1093/nar/gkh086 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkh086&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=14681454&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000188079000106&link_type=ISI) 38. 38.Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al. Human Protein Reference Database--2009 update. Nucleic Acids Res. 2009;37(Database issue):D767–D772. doi:10.1093/nar/gkn892 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkn892&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18988627&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000261906200134&link_type=ISI) 39. 39.Bader GD, Betel D, Hogue CW. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 2003;31(1):248–250. doi:10.1093/nar/gkg056 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkg056&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12519993&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000181079700057&link_type=ISI) 40. 40.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13(11):2498–2504. doi:10.1101/gr.1239303 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZ2Vub21lIjtzOjU6InJlc2lkIjtzOjEwOiIxMy8xMS8yNDk4IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjMvMjAyMC4xMi4yMS4yMDI0ODYxNi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 41. 41.Zhao B, Wang J, Li M, Wu FX, Pan Y. Prediction of essential proteins based on overlapping essential modules. IEEE Trans Nanobioscience. 2014;13(4):415–424. doi:10.1109/TNB.2014.2337912 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1109/TNB.2014.2337912&link_type=DOI) 42. 42.Asadzadeh-Aghdaee H, Shahrokh S, Norouzinia M, Hosseini M, Keramatinia A, Jamalan M, Naghibzadeh B, Sadeghi A, Sherafat SJ, Zali MR.. Introduction of inflammatory bowel disease biomarkers panel using protein-protein interaction (PPI) network analysis. Gastroenterol Hepatol Bed Bench. 2016;9(Suppl1):S8–S13. 43. 43.Rezaei-Tavirani M, Rezaei-Taviran S, Mansouri M, Rostami-Nejad M, Rezaei-Tavirani M. Protein-Protein Interaction Network Analysis for a Biomarker Panel Related to Human Esophageal Adenocarcinoma. Asian Pac J Cancer Prev. 2017;18(12):3357–3363. doi:10.22034/APJCP.2017.18.12.3357 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.22034/APJCP.2017.18.12.3357&link_type=DOI) 44. 44.Li G, Li M, Wang J, Li Y, Pan Y. United neighborhood closeness centrality and orthology for predicting essential proteins. IEEE/ACM Trans Comput Biol Bioinform. 2018;10.1109/TCBB.2018.2889978. doi:10.1109/TCBB.2018.2889978 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1109/TCBB.2018.2889978&link_type=DOI) 45. 45.Lei X, Wu S, Ge L, Zhang A. Clustering and overlapping modules detection in PPI network based on IBFO. Proteomics. 2013;13(2):278–290. doi:10.1002/pmic.201200309 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/pmic.201200309&link_type=DOI) 46. 46.Zaki N, Efimov D, Berengueres J. Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC. Bioinformatics. 2013,14:163. doi:10.1186/1471-2105-14-163 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2105-14-163&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23688127&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 47. 47.Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 2015;43(Database issue):D153–D159. doi:10.1093/nar/gku1215 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gku1215&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25416803&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 48. 48.Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46(D1):D296–D302. doi:10.1093/nar/gkx1067 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkx1067&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29126174&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 49. 49.Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019. doi:10.1093/nar/gkz240 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nar/gkz240&link_type=DOI) 50. 50.Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma’ayan A. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics. 2010;26(19):2438–2444. doi:10.1093/bioinformatics/btq466 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/bioinformatics/btq466&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20709693&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000282170000011&link_type=ISI) 51. 51.Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK, Varambally S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia. 2017;19(8):649–658. doi:10.1016/j.neo.2017.05.002 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neo.2017.05.002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28732212&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 52. 52.Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. doi:10.1126/scisignal.2004088 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoic2lndHJhbnMiO3M6NToicmVzaWQiO3M6OToiNi8yNjkvcGwxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjMvMjAyMC4xMi4yMS4yMDI0ODYxNi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 53. 53.Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28(12):1248–1250. doi:10.1038/nbt1210-1248 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nbt1210-1248&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21139605&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 54. 54.Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi:10.1186/1471-2105-12-77 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2105-12-77&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21414208&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 55. 55.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1006/meth.2001.1262&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11846609&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000173949500003&link_type=ISI) 56. 56.Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu XS. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res. 2017;77(21):e108–e110. doi:10.1158/0008-5472.CAN-17-0307 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI3Ny8yMS9lMTA4IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjMvMjAyMC4xMi4yMS4yMDI0ODYxNi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 57. 57.Batash R, Asna N, Schaffer P, Francis N, Schaffer M. Glioblastoma Multiforme, Diagnosis and Treatment; Recent Literature Review. Curr Med Chem. 2017;24(27):3002–3009. doi:10.2174/0929867324666170516123206 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2174/0929867324666170516123206&link_type=DOI) 58. 58.Li Y, Dong X, Cai J, Yin S, Sun Y, Yang D, Jiang C. SERPINA3 induced by astroglia/microglia co-culture facilitates glioblastoma stem-like cell invasion. Oncol Lett. 2018;15(1):285–291. doi:10.3892/ol.2017.7275 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/ol.2017.7275&link_type=DOI) 59. 59.Maugeri G, Grazia D’Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, D’Agata V. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139. doi:10.3389/fphar.2016.00139 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fphar.2016.00139&link_type=DOI) 60. 60.Tu Y, Xie P, Du X, Fan L, Bao Z, Sun G, Chao H, Li C, Zeng A, Pan M, et al. S100A11 functions as novel oncogene in glioblastoma via S100A11/ANXA2/NF-κB positive feedback loop. J Cell Mol Med. 2019;23(10):6907–6918. doi:10.1111/jcmm.14574 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jcmm.14574&link_type=DOI) 61. 61.Barbieri F, Pattarozzi A, Gatti M, Porcile C, Bajetto A, Ferrari A, Culler MD, Florio T. Somatostatin receptors 1, 2, and 5 cooperate in the somatostatin inhibition of C6 glioma cell proliferation in vitro via a phosphotyrosine phosphatase-eta-dependent inhibition of extracellularly regulated kinase-1/2. Endocrinology. 2008;149(9):4736–4746. doi:10.1210/en.2007-1762 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1210/en.2007-1762&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18566118&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000258660800059&link_type=ISI) 62. 62.Dave B, Gonzalez DD, Liu ZB, Li X, Wong H, Granados S, Ezzedine NE, Sieglaff DH, Ensor JE, Miller KD et al. Role of RPL39 in Metaplastic Breast Cancer. J Natl Cancer Inst. 2016;109(6):djw292. doi:10.1093/jnci/djw292 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jnci/djw292&link_type=DOI) 63. 63.Wang J, Chen W, Wei W, Lou J. Oncogene TUBA1C promotes migration and proliferation in hepatocellular carcinoma and predicts a poor prognosis. Oncotarget. 2017;8(56):96215–96224. doi:10.18632/oncotarget.21894 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.21894&link_type=DOI) 64. 64.Li H, Al-Japairai K, Tao Y, Xiang Z. RPN2 promotes colorectal cancer cell proliferation through modulating the glycosylation status of EGFR. Oncotarget. 2017;8(42):72633–72651. doi:10.18632/oncotarget.20005 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.20005&link_type=DOI) 65. 65.Qiao F, Su X, Qiu X, Qian D, Peng X, Chen H, Zhao Z, Fan H. RASAL1 influences the proliferation and invasion of gastric cancer cells by regulating the RAS/ERK signaling pathway. Hum Cell. 2014;27(3):103–110. doi:10.1007/s13577-014-0090-2 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s13577-014-0090-2&link_type=DOI) 66. 66.Clawson GA, Abraham T, Pan W, Tang X, Linton SS, McGovern CO, Loc WS, Smith JP, Butler PJ, Kester M, et al. A Cholecystokinin B Receptor-Specific DNA Aptamer for Targeting Pancreatic Ductal Adenocarcinoma. Nucleic Acid Ther. 2017;27(1):23–35. doi:10.1089/nat.2016.0621 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1089/nat.2016.0621&link_type=DOI) 67. 67.Tamir A, Jag U, Sarojini S, Schindewolf C, Tanaka T, Gharbaran R, Patel H, Sood A, Hu W, Patwa R, et al. Kallikrein family proteases KLK6 and KLK7 are potential early detection and diagnostic biomarkers for serous and papillary serous ovarian cancer subtypes. J Ovarian Res. 2014;7:109. doi:10.1186/s13048-014-0109-z [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13048-014-0109-z&link_type=DOI) 68. 68.Cheng Y, Dai C, Zhang J. SIRT3-SOD2-ROS pathway is involved in linalool-induced glioma cell apoptotic death. Acta Biochim Pol. 2017;64(2):343–350. doi:10.18388/abp.2016_1438 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18388/abp.2016_1438&link_type=DOI) 69. 69.Yong WH, Shabihkhani M, Telesca D, Yang S, Tso JL, Menjivar JC, Wei B, Lucey GM, Mareninov S, Chen Z, et al. Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma Patients. PLoS One. 2015;10(10):e0141334. doi:10.1371/journal.pone.0141334 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0141334&link_type=DOI) 70. 70.Tian N, Qi Y, Hu Y, Yin B, Yuan J, Qiang B, Peng X, Han W. RNA-binding Protein UNR Promotes Glioma Cell Migration and Regulates the Expression of Ribosomal Protein L9. Chin Med Sci J. 2018;33(3):143–151. doi:10.24920/11815 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.24920/11815&link_type=DOI) 71. 71.Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE, Hjelmeland AB, Rich JN. c-Myc is required for maintenance of glioma cancer stem cells. PLoS One. 2008;3(11):e3769. doi:10.1371/journal.pone.0003769 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0003769&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19020659&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 72. 72.Liu B, Liu J, Liao Y, Jin C, Zhang Z, Zhao J, Liu K, Huang H, Cao H, Cheng Q. Identification of SEC61G as a Novel Prognostic Marker for Predicting Survival and Response to Therapies in Patients with Glioblastoma. Med Sci Monit. 2019;25:3624–3635. doi:10.12659/MSM.916648 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.12659/MSM.916648&link_type=DOI) 73. 73.Kim YH, Thi-Anh-Thuy Tran HJ, Lee SI, Lee JJ, Jang WY, Moon KS, Kim IY, Jung S, Jung TY. Branched multipeptide immunotherapy for glioblastoma using human leukocyte antigen-A*0201-restricted cytotoxic T-lymphocyte epitopes from ERBB2, BIRC5 and CD99. Oncotarget. 2016;7(31):50535–50547. doi:10.18632/oncotarget.10495 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.10495&link_type=DOI) 74. 74.Wang J, Cheng P, Pavlyukov MS, Yu H, Zhang Z, Kim SH, Minata M, Mohyeldin A, Xie W, Chen D, et al. Targeting NEK2 attenuates glioblastoma growth and radioresistance by destabilizing histone methyltransferase EZH2. J Clin Invest. 2017;127(8):3075–3089. doi:10.1172/JCI89092 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1172/JCI89092&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28737508&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 75. 75.Li H, Jiang X, Yu Y, Huang W, Xing H, Agar NY, Yang HW, Yang B, Carroll RS, Johnson MD. KAP regulates ROCK2 and Cdk2 in an RNA-activated glioblastoma invasion pathway. Oncogene. 2015;34(11):1432–1441. doi:10.1038/onc.2014.49 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/onc.2014.49&link_type=DOI) 76. 76.Buczkowicz P, Zarghooni M, Bartels U, Morrison A, Misuraca KL, Chan T, Bouffet E, Huang A, Becher O, Hawkins C. Aurora kinase B is a potential therapeutic target in pediatric diffuse intrinsic pontine glioma. Brain Pathol. 2013;23(3):244–253. doi:10.1111/j.1750-3639.2012.00633.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1750-3639.2012.00633.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22971244&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 77. 77.Kim W, Youn H, Lee S, Kim E, Kim D, Lee JS, Lee JM, Youn B. RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis. Exp Mol Med. 2018;50(1):e434. doi:10.1038/emm.2017.247 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/emm.2017.247&link_type=DOI) 78. 78.Kuzontkoski PM, Mulligan-Kehoe MJ, Harris BT, Israel MA. Inhibitor of DNA binding-4 promotes angiogenesis and growth of glioblastoma multiforme by elevating matrix GLA levels. Oncogene. 2010;29(26):3793– 3802. doi:10.1038/onc.2010.147 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/onc.2010.147&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20453881&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000279385200007&link_type=ISI) 79. 79.Ladha J, Sinha S, Bhat V, Donakonda S, Rao SM. Identification of genomic targets of transcription factor AEBP1 and its role in survival of glioma cells. Mol Cancer Res. 2012;10(8):1039–1051. doi:10.1158/1541-7786.MCR-11-0488 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToibW9sY2FucmVzIjtzOjU6InJlc2lkIjtzOjk6IjEwLzgvMTAzOSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzEyLzIzLzIwMjAuMTIuMjEuMjAyNDg2MTYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 80. 80.Liu J, Li W, Liu S, Zheng X, Shi L, Zhang W, Yang H. Knockdown of Collagen Triple Helix Repeat Containing 1 (CTHRC1) Inhibits Epithelial-Mesenchymal Transition and Cellular Migration in Glioblastoma Cells. Oncol Res. 2017;25(2):225–232. doi:10.3727/096504016X14732772150587 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3727/096504016X14732772150587&link_type=DOI) 81. 81.Sun S, Wang Y, Wu Y, Gao Y, Li Q, Abdulrahman AA, Liu XF, Ji GQ, Gao J, Li L, et al. Identification of COL1A1 as an invasion-related gene in malignant astrocytoma. Int J Oncol. 2018;53(6):2542–2554. doi:10.3892/ijo.2018.4568 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/ijo.2018.4568&link_type=DOI) 82. 82.Gao YF, Mao XY, Zhu T, Mao CX, Liu ZX, Wang ZB, Li L, Li X, Yin JY, Zhang W, et al. COL3A1 and SNAP91: novel glioblastoma markers with diagnostic and prognostic value. Oncotarget. 2016;7(43):70494–70503. doi:10.18632/oncotarget.12038 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.12038&link_type=DOI) 83. 83.Miroshnikova YA, Mouw JK, Barnes JM, Pickup MW, Lakins JN, Kim Y, Lobo K, Persson AI, Reis GF, McKnight TR, et al. Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nat Cell Biol. 2016;18(12):1336–1345. doi:10.1038/ncb3429 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ncb3429&link_type=DOI) 84. 84.Zinn PO, Singh SK, Kotrotsou A, Hassan I, Thomas G, Luedi MM, Elakkad A, Elshafeey N, Idris T, Mosley J, et al. A Coclinical Radiogenomic Validation Study: Conserved Magnetic Resonance Radiomic Appearance of Periostin-Expressing Glioblastoma in Patients and Xenograft Models. Clin Cancer Res. 2018;24(24):6288–6299. doi:10.1158/1078-0432.CCR-17-3420 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjI0LzI0LzYyODgiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yMy8yMDIwLjEyLjIxLjIwMjQ4NjE2LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 85. 85.Gállego Pérez-Larraya J, Paris S, Idbaih A, Dehais C, Laigle-Donadey F, Navarro S, Capelle L, Mokhtari K, Marie Y, Sanson M, et al. Diagnostic and prognostic value of preoperative combined GFAP, IGFBP-2, and YKL-40 plasma levels in patients with glioblastoma. Cancer. 2014;120(24):3972–3980. doi:10.1002/cncr.28949 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/cncr.28949&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25139333&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 86. 86.Abdolhoseinpour H, Mehrabi F, Shahraki K, Khoshnood RJ, Masoumi B, Yahaghi E, Goudarzi PK.Investigation of serum levels and tissue expression of two genes IGFBP-2 and IGFBP-3 act as potential biomarker for predicting the progression and survival in patients with glioblastoma multiforme. J Neurol Sci. 2016;366:202–206. doi:10.1016/j.jns.2016.05.018 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jns.2016.05.018&link_type=DOI) 87. 87.Moreno MJ, Ball M, Andrade MF, McDermid A, Stanimirovic DB. Insulin-like growth factor binding protein-4 (IGFBP-4) is a novel anti-angiogenic and anti-tumorigenic mediator secreted by dibutyryl cyclic AMP (dB-cAMP)-differentiated glioblastoma cells. Glia. 2006;53(8):845–857. doi:10.1002/glia.20345 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/glia.20345&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16586492&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000237231400007&link_type=ISI) 88. 88.Tang H, Zhao J, Zhang L, Zhao J, Zhuang Y, Liang P. SRPX2 Enhances the Epithelial-Mesenchymal Transition and Temozolomide Resistance in Glioblastoma Cells. Cell Mol Neurobiol. 2016;36(7):1067–1076. doi:10.1007/s10571-015-0300-9 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10571-015-0300-9&link_type=DOI) 89. 89.Chen Q, Lu G, Cai Y, Li Y, Xu R, Ke Y, Zhang S. MiR-124-5p inhibits the growth of high-grade gliomas through posttranscriptional regulation of LAMB1. Neuro Oncol. 2014;16(5):637–651. doi:10.1093/neuonc/not300 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/neuonc/not300&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24497408&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 90. 90.Wang J, Zuo J, Wahafu A, Yu H, Xie W, Zhang H, Wang M. ESM1-dependent mesenchymal transition enhances radioresistance of glioblastoma via transcriptional regulation of NFκB [published online ahead of print, 2019 Oct 24]. Biochem Biophys Res Commun. 2019;S0006-291X(19)32028-5. doi:10.1016/j.bbrc.2019.10.126 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbrc.2019.10.126&link_type=DOI) 91. 91.Lin B, Madan A, Yoon JG, Fang X, Yan X, Kim TK, Hwang D, Hood L, Foltz G. Massively parallel signature sequencing and bioinformatics analysis identifies up-regulation of TGFBI and SOX4 in human glioblastoma. PLoS One. 2010;5(4):e10210. doi:10.1371/journal.pone.0010210 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0010210&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20419098&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 92. 92.Feng L, Ma J, Ji H, Liu Y, Hu W. miR-330-5p suppresses glioblastoma cell proliferation and invasiveness through targeting ITGA5. Biosci Rep. 2017;37(3):BSR20170019. doi:10.1042/BSR20170019 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6InBwYmlvc2NpcmVwIjtzOjU6InJlc2lkIjtzOjE2OiIzNy8zL0JTUjIwMTcwMDE5IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjMvMjAyMC4xMi4yMS4yMDI0ODYxNi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 93. 93.She X, Yu Z, Cui Y, Lei Q, Wang Z, Xu G, Xiang J, Wu M, Li G. miR-128 and miR-149 enhance the chemosensitivity of temozolomide by Rap1B-mediated cytoskeletal remodeling in glioblastoma. Oncol Rep. 2014;32(3):957–964. doi:10.3892/or.2014.3318 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/or.2014.3318&link_type=DOI) 94. 94.Quann K, Gonzales DM, Mercier I, Wang C, Sotgia F, Pestell RG, Lisanti MP, Jasmin JF. Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide. Cell Cycle. 2013;12(10):1510–1520. doi:10.4161/cc.24497 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4161/cc.24497&link_type=DOI) 95. 95.Ghosh D, Ulasov IV, Chen L, Harkins LE, Wallenborg K, Hothi P, Rostad S, Hood L, Cobbs CS. TGFβ-Responsive HMOX1 Expression Is Associated with Stemness and Invasion in Glioblastoma Multiforme. Stem Cells. 2016;34(9):2276–2289. doi:10.1002/stem.2411 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/stem.2411&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27354342&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 96. 96.Han S, Feng S, Yuan G, Dong T, Gao D, Liang G, Wei X. Lysyl oxidase genetic variants and the prognosis of glioma. APMIS. 2014;122(3):200–205. doi:10.1111/apm.12133 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/apm.12133&link_type=DOI) 97. 97.Chen Z, Hu T, Zhu S, Mukaisho K, El-Rifai W, Peng DF. Glutathione peroxidase 7 suppresses cancer cell growth and is hypermethylated in gastric cancer. Oncotarget. 2017;8(33):54345–54356. doi:10.18632/oncotarget.17527 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.17527&link_type=DOI) 98. 98.Liu JJ, Huang BH, Zhang J, Carson DD, Hooi SC. Repression of HIP/RPL29 expression induces differentiation in colon cancer cells. J Cell Physiol. 2006;207(2):287–292. doi:10.1002/jcp.20589 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jcp.20589&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16475173&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000236651800001&link_type=ISI) 99. 99.He Z, Xu Q, Wang X, Wang J, Mu X, Cai Y, Qian Y, Shao W, Shao Z. RPLP1 promotes tumor metastasis and is associated with a poor prognosis in triple-negative breast cancer patients. Cancer Cell Int. 2018;18:170. doi:10.1186/s12935-018-0658-0 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12935-018-0658-0&link_type=DOI) 100.100.Wang M, Hu Y, Stearns ME. RPS2: a novel therapeutic target in prostate cancer. J Exp Clin Cancer Res. 2009;28(1):6. doi:10.1186/1756-9966-28-6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1756-9966-28-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19138403&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 101.101.Slizhikova DK, Vinogradova TV, Sverdlov ED. The NOLA2 and RPS3A genes as highly informative markers of human squamous cell carcinoma of lung. Russian Journal of Bioorganic Chemistry. 2005;31(2):178–182. doi:10.1007/s11171-005-0024-6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11171-005-0024-6&link_type=DOI) 102.102.Guo X, Shi Y, Gou Y, Li J, Han S, Zhang Y, Huo J, Ning X, Sun L, Chen Y, et al. Human ribosomal protein S13 promotes gastric cancer growth through down-regulating p27(Kip1). J Cell Mol Med. 2011;15(2):296–306. doi:10.1111/j.1582-4934.2009.00969.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1582-4934.2009.00969.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19912438&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 103.103.Liu C, He X, Liu X, Yu J, Zhang M, Yu F, Wang Y. RPS15A promotes gastric cancer progression via activation of the Akt/IKK-β/NF-κ signalling pathway. J Cell Mol Med. 2019;23(3):2207–2218. doi:10.1111/jcmm.14141 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jcmm.14141&link_type=DOI) 104.104.Zhu Y, Lin H, Li Z, Wang M, Luo J. Modulation of expression of ribosomal protein L7a (rpL7a) by ethanol in human breast cancer cells. Breast Cancer Res Treat. 2001;69(1):29–38. doi:10.1023/a:1012293507534 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1023/A:1012293507534&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11759826&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 105.105.Qiu JJ, Guo JJ, Lv TJ, Jin HY, Ding JX, Feng WW, Zhang Y, Hua KQ. Prognostic value of centromere protein-A expression in patients with epithelial ovarian cancer. Tumour Biol. 2013;34(5):2971–2975. doi:10.1007/s13277-013-0860-6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s13277-013-0860-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23712606&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 106.106.Zhuo YJ, Xi M, Wan YP, Hua W, Liu YL, Wan S, Zhou YL, Luo HW, Wu SL, Zhong WD, et al. Enhanced expression of centromere protein F predicts clinical progression and prognosis in patients with prostate cancer. Int J Mol Med. 2015;35(4):966–972. doi:10.3892/ijmm.2015.2086 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/ijmm.2015.2086&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25647485&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 107.107.Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A, Petroulakis E, Robichaud N, Pollak M, Gaboury LA, et al. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci U S A. 2010;107(32):14134–14139. doi:10.1073/pnas.1005320107 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTA3LzMyLzE0MTM0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjMvMjAyMC4xMi4yMS4yMDI0ODYxNi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 108.108.Wang GH, Yao L, Xu HW, Tang WT, Fu JH, Hu XF, Cui L, Xu XM.Identification of MXRA5 as a novel biomarker in colorectal cancer. Oncol Lett. 2013;5(2):544–548. doi:10.3892/ol.2012.1038 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/ol.2012.1038&link_type=DOI) 109.109.Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, de Paula CA, Carneiro CR, Ortiz V, Toma L, Kao WW, Nader HB.Lumican expression, localization and antitumor activity in prostate cancer. Exp Cell Res. 2013;319(7):967–981. doi:10.1016/j.yexcr.2013.01.023 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.yexcr.2013.01.023&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23399832&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 110.110.Chen D, Zhang R, Shen W, Fu H, Liu S, Sun K, Sun X. RPS12-specific shRNA inhibits the proliferation, migration of BGC823 gastric cancer cells with S100A4 as a downstream effector. Int J Oncol. 2013;42(5):1763–1769. doi:10.3892/ijo.2013.1872 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/ijo.2013.1872&link_type=DOI) 111.111.Wu Q, Gou Y, Wang Q, Jin H, Cui L, Zhang Y, He L, Wang J, Nie Y, Shi Y, et al. Downregulation of RPL6 by siRNA inhibits proliferation and cell cycle progression of human gastric cancer cell lines. PLoS One. 2011;6(10):e26401. doi:10.1371/journal.pone.0026401 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0026401&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22043320&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 112.112.Yang ZX, Zhang B, Wei J, Jiang GQ, Wu YL, Leng BJ, Xing CG. MiR-539 inhibits proliferation and migration of triple-negative breast cancer cells by down-regulating LAMA4 expression. Cancer Cell Int. 2018;18:16. doi:10.1186/s12935-018-0512-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12935-018-0512-4&link_type=DOI) 113.113.Shi Q, Wang W, Jia Z, Chen P, Ma K, Zhou C. ISL1, a novel regulator of CCNB1, CCNB2 and c-MYC genes, promotes gastric cancer cell proliferation and tumor growth. Oncotarget. 2016;7(24):36489–36500. doi:10.18632/oncotarget.9269 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.9269&link_type=DOI) 114.114.Gao CL, Wang GW, Yang GQ, Yang H, Zhuang L. Karyopherin subunit-α 2 expression accelerates cell cycle progression by upregulating CCNB2 and CDK1 in hepatocellular carcinoma. Oncol Lett. 2018;15(3):2815–2820. doi:10.3892/ol.2017.7691 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/ol.2017.7691&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29435009&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 115.115.Thorenoor N, Faltejskova-Vychytilova P, Hombach S, Mlcochova J, Kretz M, Svoboda M, Slaby O. Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer. Oncotarget. 2016;7(1):622–637. doi:10.18632/oncotarget.5807 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.5807&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26506418&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 116.116.Goh SH, Hong SH, Lee BC, Ju MH, Jeong JS, Cho YR, Kim IH, Lee YS. eIF3m expression influences the regulation of tumorigenesis-related genes in human colon cancer. Oncogene. 2011;30(4):398–409. doi:10.1038/onc.2010.422 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/onc.2010.422&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20838379&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 117.117.Shriver SP, Shriver MD, Tirpak DL, Bloch LM, Hunt JD, Ferrell RE, Siegfried JM. Trinucleotide repeat length variation in the human ribosomal protein L14 gene (RPL14): localization to 3p21.3 and loss of heterozygosity in lung and oral cancers. Mutat Res. 1998;406(1):9–23. doi:10.1016/s1383-5726(98)00006-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s1383-5726(98)00006-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9920051&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000078127100002&link_type=ISI) 118.118.Lou J, Gong J, Ke J, Tian J, Zhang Y, Li J, Yang Y, Zhu Y, Gong Y, Li L, et al. A functional polymorphism located at transcription factor binding sites, rs6695837 near LAMC1 gene, confers risk of colorectal cancer in Chinese populations. Carcinogenesis. 2017;38(2):177–183. doi:10.1093/carcin/bgw204 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/carcin/bgw204&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28039327&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 119.119.Yan TT, Fu XL, Li J, Bian YN, Liu DJ, Hua R, Ren LL, Li CT, Sun YW, Chen HY, et al. Downregulation of RPL15 may predict poor survival and associate with tumor progression in pancreatic ductal adenocarcinoma. Oncotarget. 2015;6(35):37028–37042. doi:10.18632/oncotarget.5939 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.5939&link_type=DOI) 120.120.Li X, Li J, Li F. P21 activated kinase 4 binds translation elongation factor eEF1A1 to promote gastric cancer cell migration and invasion. Oncol Rep. 2017;37(5):2857–2864. doi:10.3892/or.2017.5543 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/or.2017.5543&link_type=DOI) 121.121.Liu CL, Pan HW, Torng PL, Fan MH, Mao TL. SRPX and HMCN1 regulate cancer - associated fibroblasts to promote the invasiveness of ovarian carcinoma. Oncol Rep. 2019;42(6):2706–2715. doi:10.3892/or.2019.7379 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/or.2019.7379&link_type=DOI) 122.122.Ao R, Guan L, Wang Y, Wang JN. Silencing of COL1A2, COL6A3, and THBS2 inhibits gastric cancer cell proliferation, migration, and invasion while promoting apoptosis through the PI3k-Akt signaling pathway. J Cell Biochem. 2018;119(6):4420–4434. doi:10.1002/jcb.26524 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jcb.26524&link_type=DOI) 123.123.Huang R, Gu W, Sun B, Gao L. Identification of COL4A1 as a potential gene conferring trastuzumab resistance in gastric cancer based on bioinformatics analysis. Mol Med Rep. 2018;17(5):6387–6396. doi:10.3892/mmr.2018.8664 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/mmr.2018.8664&link_type=DOI) 124.124.Liu W, Wei H, Gao Z, Chen G, Liu Y, Gao X, Bai G, He S, Liu T, Xu W, et al. COL5A1 may contribute the metastasis of lung adenocarcinoma. Gene. 2018;665:57–66. doi:10.1016/j.gene.2018.04.066 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.gene.2018.04.066&link_type=DOI) 125.125.Zeng XT, Liu XP, Liu TZ, Wang XH. The clinical significance of COL5A2 in patients with bladder cancer: A retrospective analysis of bladder cancer gene expression data. Medicine (Baltimore). 2018;97(10):e0091. doi:10.1097/MD.0000000000010091 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/MD.0000000000010091&link_type=DOI) 126.126.Shang J, Wang F, Chen P, Wang X, Ding F, Liu S, Zhao Q. Co-expression Network Analysis Identified COL8A1 Is Associated with the Progression and Prognosis in Human Colon Adenocarcinoma. Dig Dis Sci. 2018;63(5):1219–1228. doi:10.1007/s10620-018-4996-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10620-018-4996-5&link_type=DOI) 127.127.Andreuzzi E, Capuano A, Pellicani R, Poletto E, Doliana R, Maiero S, Fornasarig M, Magris R, Colombatti A, Cannizzaro R, et al. Loss of Multimerin-2 and EMILIN-2 Expression in Gastric Cancer Associate with Altered Angiogenesis. Int J Mol Sci. 2018;19(12):3983. doi:10.3390/ijms19123983 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/ijms19123983&link_type=DOI) 128.128.Yu C, Yu J, Yao X, Wu WK, Lu Y, Tang S, Li X, Bao L, Li X, Hou Y, et al. Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res. 2014;24(6):701–712. doi:10.1038/cr.2014.43 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/cr.2014.43&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24699064&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 129.129.Freier K, Sticht C, Hofele C, Flechtenmacher C, Stange D, Puccio L, Toedt G, Radlwimmer B, Lichter P, Joos S. Recurrent coamplification of cytoskeleton-associated genes EMS1 and SHANK2 with CCND1 in oral squamous cell carcinoma. Genes Chromosomes Cancer. 2006;45(2):118– 125. doi:10.1002/gcc.20270 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/gcc.20270&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16235239&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000234553000002&link_type=ISI) 130.130.Wu XY, Yu XY. Overexpression of KCNJ4 correlates with cancer progression and unfavorable prognosis in lung adenocarcinoma. J Biochem Mol Toxicol. 2019;33(4):e22270. doi:10.1002/jbt.22270 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jbt.22270&link_type=DOI) 131.131.Natrajan R, Little SE, Reis-Filho JS, Hing L, Messahel B, Grundy PE, Dome JS, Schneider T, Vujanic GM, Pritchard-Jones K, et al. Amplification and overexpression of CACNA1E correlates with relapse in favorable histology Wilms’ tumors. Clin Cancer Res. 2006;12(24):7284–7293. doi:10.1158/1078-0432.CCR-06-1567 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjEyLzI0LzcyODQiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yMy8yMDIwLjEyLjIxLjIwMjQ4NjE2LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 132.132.Maolakuerban N, Azhati B, Tusong H, Abula A, Yasheng A, Xireyazidan A. MiR-200c-3p inhibits cell migration and invasion of clear cell renal cell carcinoma via regulating SLC6A1. Cancer Biol Ther. 2018;19(4):282–291. doi:10.1080/15384047.2017.1394551 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/15384047.2017.1394551&link_type=DOI) 133.133.Longqiu Y, Pengcheng L, Xuejie F, Peng Z. A miRNAs panel promotes the proliferation and invasion of colorectal cancer cells by targeting GABBR1. Cancer Med. 2016;5(8):2022–2031. doi:10.1002/cam4.760 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/cam4.760&link_type=DOI) 134.134.Kimura R, Kasamatsu A, Koyama T, Fukumoto C, Kouzu Y, Higo M, Endo-Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, et al. Kimura R, Kasamatsu A, Koyama T, et al. Glutamate acid decarboxylase 1 promotes metastasis of human oral cancer by β-catenin translocation and MMP7 activation. BMC Cancer. 2013;13:555. doi:10.1186/1471-2407-13-555 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2407-13-555&link_type=DOI) 135.135.Liu Z, Wang J, Li Y, Fan J, Chen L, Xu R. MicroRNA-153 regulates glutamine metabolism in glioblastoma through targeting glutaminase. Tumour Biol. 2017;39(2):1010428317691429. doi:10.1177/1010428317691429 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1010428317691429&link_type=DOI) 136.136.Wang ZY, Xiong J, Zhang SS, Wang JJ, Gong ZJ, Dai MH. Up-Regulation of microRNA-183 Promotes Cell Proliferation and Invasion in Glioma By Directly Targeting NEFL. Cell Mol Neurobiol. 2016;36(8):1303–1310. doi:10.1007/s10571-016-0328-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10571-016-0328-5&link_type=DOI) 137.137.Yucebas M, Susluer SY, Caglar HO, Balci T, Sigva ZO, Akalin T, Oktar N, Dalbasti T, Avci CB, Gunduz C. Expression profiling of RE1-silencing transcription factor (REST), REST corepressor 1 (RCOR1), and Synapsin 1 (SYN1) genes in human gliomas. J BUON. 2016;21(4):964–972. 138.138.Lin B, Lee H, Yoon JG, Madan A, Wayner E, Tonning S, Hothi P, Schroeder B, Ulasov I, Foltz G, et al. Global analysis of H3K4me3 and H3K27me3 profiles in glioblastoma stem cells and identification of SLC17A7 as a bivalent tumor suppressor gene. Oncotarget. 2015;6(7):5369– 5381. doi:10.18632/oncotarget.3030 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.3030&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25749033&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 139.139.Xiao B, Li J, Fan Y, Ye M, Lv S, Xu B, Chai Y, Zhou Z, Wu M, Zhu X. Downregulation of SYT7 inhibits glioblastoma growth by promoting cellular apoptosis. Mol Med Rep. 2017;16(6):9017–9022. doi:10.3892/mmr.2017.7723 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/mmr.2017.7723&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28990113&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 140.140.Han X, Wang X, Li H, Zhang H. Mechanism of microRNA-431-5p-EPB41L1 interaction in glioblastoma multiforme cells. Arch Med Sci. 2019;15(6):1555–1564. doi:10.5114/aoms.2019.88274 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.5114/aoms.2019.88274&link_type=DOI) 141.141.Jhaveri A, Deshpande P, Pattni B, Torchilin V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Control Release. 2018;277:89–101. doi:10.1016/j.jconrel.2018.03.006 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jconrel.2018.03.006&link_type=DOI) 142.142.Hauptman N, Jevšinek Skok D, Spasovska E, Boštjančič E, Glavač D. Genes CEP55, FOXD3, FOXF2, GNAO1, GRIA4, and KCNA5 as potential diagnostic biomarkers in colorectal cancer. BMC Med Genomics. 2019;12(1):54. doi:10.1186/s12920-019-0501-z [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12920-019-0501-z&link_type=DOI) 143.143.Basile MS, Fagone P, Mangano K, Mammana S, Magro G, Salvatorelli L, Li Destri G, La Greca G, Nicoletti F, Puleo S, et al. KCNMA1 Expression is Downregulated in Colorectal Cancer via Epigenetic Mechanisms. Cancers (Basel). 2019;11(2):245. doi:10.3390/cancers11020245 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/cancers11020245&link_type=DOI) 144.144.Kim JH, Kim TW, Kim SJ. Downregulation of ARFGEF1 and CAMK2B by promoter hypermethylation in breast cancer cells. BMB Rep. 2011;44(8):523–528. doi:10.5483/bmbrep.2011.44.8.523 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.5483/BMBRep.2011.44.8.523&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21871176&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 145.145.Velmurugan BK, Yeh KT, Hsieh MJ, Yeh CM, Lin CC, Kao CY, Huang LR, Lin SH. UNC13C Suppress Tumor Progression via Inhibiting EMT Pathway and Improves Survival in Oral Squamous Cell Carcinoma. Front Oncol. 2019;9:728. doi:10.3389/fonc.2019.00728 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fonc.2019.00728&link_type=DOI) 146.146.Wang CT, Chen TM, Mei CT, Chang CF, Liu LL, Chiu KH, Wu TM, Lan YC, Liu WS, Chen YH, et al. The Functional Haplotypes of CHRM3 Modulate mRNA Expression and Associate with Bladder Cancer among a Chinese Han Population in Kaohsiung City. Biomed Res Int. 2016;2016:4052846. doi:10.1155/2016/4052846 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1155/2016/4052846&link_type=DOI) 147.147.Zhi T, Jiang K, Xu X, Yu T, Wu W, Nie E, Zhou X, Jin X, Zhang J, Wang Y, et al. MicroRNA-520d-5p inhibits human glioma cell proliferation and induces cell cycle arrest by directly targeting PTTG1. Am J Transl Res. 2017;9(11):4872–4887. 148.148.Hong B, Muili K, Bolyard C, Russell L, Lee TJ, Banasavadi-Siddegowda Y, Yoo JY, Yan Y, Ballester LY, Bockhorst KH, et al. Suppression of HMGB1 Released in the Glioblastoma Tumor Microenvironment Reduces Tumoral Edema. Mol Ther Oncolytics. 2018;12:93–102. doi:10.1016/j.omto.2018.11.005 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.omto.2018.11.005&link_type=DOI) 149.149.Tang C, Yang Z, Chen D, Xie Q, Peng T, Wu J, Qi S. Downregulation of miR-130a promotes cell growth and epithelial to mesenchymal transition by activating HMGB2 in glioma. Int J Biochem Cell Biol. 2017;93:25–31. doi:10.1016/j.biocel.2017.08.010 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biocel.2017.08.010&link_type=DOI) 150.150.Li J, Zhou Y, Wang H, Gao Y, Li L, Hwang SH, Ji X, Hammock BD. COX-2/sEH dual inhibitor PTUPB suppresses glioblastoma growth by targeting epidermal growth factor receptor and hyaluronan mediated motility receptor. Oncotarget. 2017;8(50):87353–87363. doi:10.18632/oncotarget.20928 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.20928&link_type=DOI) 151.151.Areshkov PA, Kavsan VM. Chitinase 3-like protein 2 (CHI3L2, YKL-39) activates phosphorylation of extracellular signal-regulated kinases ERK1/ERK2 in human embryonic kidney (HEK293) and human glioblastoma (U87 MG) cells. Tsitol Genet. 2010;44(1):3–9. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21254615&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 152.152.Gong J, Zhu S, Zhang Y, Wang J. Interplay of VEGFa and MMP2 regulates invasion of glioblastoma. Tumour Biol. 2014;35(12):11879–11885. doi:10.1007/s13277-014-2438-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s13277-014-2438-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25213694&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 153.153.Balzeau J, Peterson A, Eyer J. The vimentin-tubulin binding site peptide (Vim-TBS.58-81) crosses the plasma membrane and enters the nuclei of human glioma cells. Int J Pharm. 2012;423(1):77–83. doi:10.1016/j.ijpharm.2011.04.067 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijpharm.2011.04.067&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21575694&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 154.154.Suvasini R, Shruti B, Thota B, Shinde SV, Friedmann-Morvinski D, Nawaz Z, Prasanna KV, Thennarasu K, Hegde AS, Arivazhagan A, et al. Insulin growth factor-2 binding protein 3 (IGF2BP3) is a glioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways by modulating IGF-2. J Biol Chem. 2011;286(29):25882–25890. doi:10.1074/jbc.M110.178012 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyODYvMjkvMjU4ODIiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yMy8yMDIwLjEyLjIxLjIwMjQ4NjE2LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 155.155.Boukhari A, Alhosin M, Bronner C, Sagini K, Truchot C, Sick E, Schini-Kerth VB, Andre P, Mely Y, Mousli M, et al. CD47 activation-induced UHRF1 over-expression is associated with silencing of tumor suppressor gene p16INK4A in glioblastoma cells. Anticancer Res. 2015;35(1):149–157. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImFudGljYW5yZXMiO3M6NToicmVzaWQiO3M6ODoiMzUvMS8xNDkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yMy8yMDIwLjEyLjIxLjIwMjQ4NjE2LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 156.156.Yang W, Wang L, Roehn G, Pearlstein RD, Ali Osman F, Pan H, Goldbrunner R, Krantz M, Harms C, Paschen W. Small ubiquitin-like modifier 1-3 conjugation is activated in human astrocytic brain tumors and is required for glioblastoma cell survival. Cancer Sci. 2013;104(1):70–77. doi:10.1111/cas.12047 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/cas.12047&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23078246&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 157.157.Kruthika BS, Jain R, Arivazhagan A, Bharath RD, Yasha TC, Kondaiah P, Santosh V. Transcriptome profiling reveals PDZ binding kinase as a novel biomarker in peritumoral brain zone of glioblastoma. J Neurooncol. 2019;141(2):315–325. doi:10.1007/s11060-018-03051-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11060-018-03051-5&link_type=DOI) 158.158.Qiao W, Guo B, Zhou H, Xu W, Chen Y, Liang Y, Dong B. miR-124 suppresses glioblastoma growth and potentiates chemosensitivity by inhibiting AURKA. Biochem Biophys Res Commun. 2017;486(1):43–48. doi:10.1016/j.bbrc.2017.02.120 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbrc.2017.02.120&link_type=DOI) 159.159.Yan Y, Xu Z, Chen X, Wang X, Zeng S, Zhao Z, Qian L, Li Z, Wei J, Huo L, et al. Novel Function of lncRNA ADAMTS9-AS2 in Promoting Temozolomide Resistance in Glioblastoma via Upregulating the FUS/MDM2 Ubiquitination Axis. Front Cell Dev Biol. 2019;7:217. doi:10.3389/fcell.2019.00217 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fcell.2019.00217&link_type=DOI) 160.160.Guo L, Ding Z, Huang N, Huang Z, Zhang N, Xia Z. Forkhead Box M1 positively regulates UBE2C and protects glioma cells from autophagic death. Cell Cycle. 2017;16(18):1705–1718. doi:10.1080/15384101.2017.1356507 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/15384101.2017.1356507&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28767320&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 161.161.Bassett EA, Palanichamy K, Pearson M, McElroy JP, Haque SJ, Bell EH, Chakravarti A. Calpastatin phosphorylation regulates radiation-induced calpain activity in glioblastoma. Oncotarget. 2018;9(18):14597–14607. doi:10.18632/oncotarget.24523 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.24523&link_type=DOI) 162.162.Panner A, Crane CA, Weng C, Feletti A, Fang S, Parsa AT, Pieper RO. Ubiquitin-specific protease 8 links the PTEN-Akt-AIP4 pathway to the control of FLIPS stability and TRAIL sensitivity in glioblastoma multiforme. Cancer Res. 2010;70(12):5046–5053. doi:10.1158/0008-5472.CAN-09-3979 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI3MC8xMi81MDQ2IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjMvMjAyMC4xMi4yMS4yMDI0ODYxNi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 163.163.Aaberg-Jessen C, Sørensen MD, Matos AL, Moreira JM, Brünner N, Knudsen A, Kristensen BW. Co-expression of TIMP-1 and its cell surface binding partner CD63 in glioblastomas. BMC Cancer. 2018;18(1):270. doi:10.1186/s12885-018-4179-y [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12885-018-4179-y&link_type=DOI) 164.164.Solga R, Behrens J, Ziemann A, Riou A, Berwanger C, Becker L, Garrett L, de Angelis MH, Fischer L, Coras R, et al. CRN2 binds to TIMP4 and MMP14 and promotes perivascular invasion of glioblastoma cells. Eur J Cell Biol. 2019;98(5-8):151046. doi:10.1016/j.ejcb.2019.151046 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ejcb.2019.151046&link_type=DOI) 165.165.Brown DV, Filiz G, Daniel PM, Hollande F, Dworkin S, Amiridis S, Kountouri N, Ng W, Morokoff AP, Mantamadiotis T. Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity. PLoS One. 2017;12(2):e0172791. doi:10.1371/journal.pone.0172791 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0172791&link_type=DOI) 166.166.Karkavelas G, Mavropoulou S, Fountzilas G, Christoforidou V, Karavelis A, Foroglou G, Papadimitriou C. Correlation of proliferating cell nuclear antigen assessment, histologic parameters and age with survival in patients with glioblastoma multiforme. Anticancer Res. 1995;15(2):531– 536. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7763035&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1995QZ54300050&link_type=ISI) 167.167.Qiu X, He X, Huang Q, Liu X, Sun G, Guo J, Yuan D, Yang L, Ban N, Fan S, et al. Overexpression of CCT8 and its significance for tumor cell proliferation, migration and invasion in glioma. Pathol Res Pract. 2015;211(10):717–725. doi:10.1016/j.prp.2015.04.012 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.prp.2015.04.012&link_type=DOI) 168.168.Wang Y, Wong CW, Yan M, Li L, Liu T, Or PM, Tsui SK, Waye MM, Chan AM. Differential regulation of the pro-inflammatory biomarker, YKL-40/CHI3L1, by PTEN/Phosphoinositide 3-kinase and JAK2/STAT3 pathways in glioblastoma. Cancer Lett. 2018;429:54–65. doi:10.1016/j.canlet.2018.04.040 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.canlet.2018.04.040&link_type=DOI) 169.169.Cheng SX, Tu Y, Zhang S. FoxM1 promotes glioma cells progression by up-regulating Anxa1 expression. PLoS One. 2013;8(8):e72376. doi:10.1371/journal.pone.0072376 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0072376&link_type=DOI) 170.170.Huang H, Han Y, Zhang C, Wu J, Feng J, Qu L, Shou C. HNRNPC as a candidate biomarker for chemoresistance in gastric cancer. Tumour Biol. 2016;37(3):3527–3534. doi:10.1007/s13277-015-4144-1 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s13277-015-4144-1&link_type=DOI) 171.171.Wu FH, Yuan Y, Li D, Liao SJ, Yan B, Wei JJ, Zhou YH, Zhu JH, Zhang GM, Feng ZH. Extracellular HSPA1A promotes the growth of hepatocarcinoma by augmenting tumor cell proliferation and apoptosis-resistance. Cancer Lett. 2012;317(2):157–164. doi:10.1016/j.canlet.2011.11.020 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.canlet.2011.11.020&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22115967&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 172.172.Wang J, Chen W, Wei W, Lou J. Oncogene TUBA1C promotes migration and proliferation in hepatocellular carcinoma and predicts a poor prognosis. Oncotarget. 2017;8(56):96215–96224. doi:10.18632/oncotarget.21894 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.21894&link_type=DOI) 173.173.Shi YX, Zhu T, Zou T, Zhuo W, Chen YX, Huang MS, Zheng W, Wang CJ, Li X, Mao XY et al. Prognostic and predictive values of CDK1 and MAD2L1 in lung adenocarcinoma. Oncotarget. 2016;7(51):85235–85243. doi:10.18632/oncotarget.13252 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.13252&link_type=DOI) 174.174.Hoffmann C, Mao X, Brown-Clay J, Moreau F, Al Absi A, Wurzer H, Sousa B, Schmitt F, Berchem G, Janji B et al. Hypoxia promotes breast cancer cell invasion through HIF-1α mediated up-regulation of the invadopodial actin bundling protein CSRP2. Sci Rep. 2018;8(1):10191. doi:10.1038/s41598-018-28637-x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-018-28637-x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29976963&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 175.175.Shibamoto M, Hirata H, Eguchi H, Sawada G, Sakai N, Kajiyama Y, Mimori K. The loss of CASP4 expression is associated with poor prognosis in esophageal squamous cell carcinoma. Oncol Lett. 2017;13(3):1761–1766. doi:10.3892/ol.2017.5646 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/ol.2017.5646&link_type=DOI) 176.176.Liao H, Duka T, Teng FY, Sun L, Bu WY, Ahmed S, Tang BL, Xiao ZC. Nogo-66 and myelin-associated glycoprotein (MAG) inhibit the adhesion and migration of Nogo-66 receptor expressing human glioma cells. J Neurochem. 2004;90(5):1156–1162. doi:10.1111/j.1471-4159.2004.02573.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1471-4159.2004.02573.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15312170&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000223366500013&link_type=ISI) 177.177.Vila-Carriles WH, Zhou ZH, Bubien JK, Fuller CM, Benos DJ. Participation of the chaperone Hsc70 in the trafficking and functional expression of ASIC2 in glioma cells. J Biol Chem. 2007;282(47):34381– 34391. doi:10.1074/jbc.M705354200 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyODIvNDcvMzQzODEiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yMy8yMDIwLjEyLjIxLjIwMjQ4NjE2LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 178.178.Devireddy LR, Kumar KU, Pater MM, Pater A. Evidence for a mechanism of demyelination by human JC virus: negative transcriptional regulation of RNA and protein levels from myelin basic protein gene by large tumor antigen in human glioblastoma cells. J Med Virol. 1996;49(3):205–211. doi:10.1002/(SICI)1096-9071(199607)49:3<205::AID-JMV8>3.0.CO;2-8 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/(SICI)1096-9071(199607)49:3<205::AID-JMV8>3.0.CO;2-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8818966&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 179.179.Zorniak M, Clark PA, Leeper HE, Tipping MD, Francis DM, Kozak KR, Salamat MS, Kuo JS. Differential expression of 2’,3’-cyclic-nucleotide 3’-phosphodiesterase and neural lineage markers correlate with glioblastoma xenograft infiltration and patient survival. Clin Cancer Res. 2012;18(13):3628–3636. doi:10.1158/1078-0432.CCR-12-0339 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjE4LzEzLzM2MjgiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8xMi8yMy8yMDIwLjEyLjIxLjIwMjQ4NjE2LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 180.180.Skubal M, Gielen GH, Waha A, Gessi M, Kaczmarczyk L, Seifert G, Freihoff D, Freihoff J, Pietsch T, Simon M et al. Altered splicing leads to reduced activation of CPEB3 in high-grade gliomas. Oncotarget. 2016;7(27):41898–41912. doi:10.18632/oncotarget.9735 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.9735&link_type=DOI) 181.181.Qu M, Yu J, Liu H, Ren Y, Ma C, Bu X, Lan Q. The Candidate Tumor Suppressor Gene SLC8A2 Inhibits Invasion, Angiogenesis and Growth of Glioblastoma. Mol Cells. 2017;40(10):761–772. doi:10.14348/molcells.2017.0104 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.14348/molcells.2017.0104&link_type=DOI) 182.182.Phillips E, Lang V, Bohlen J, Bethke F, Puccio L, Tichy D, Herold Mende C, Hielscher T, Lichter P, Goidts V. Targeting atypical protein kinase C iota reduces viability in glioblastoma stem-like cells via a notch signaling mechanism. Int J Cancer. 2016;139(8):1776–1787. doi:10.1002/ijc.30234 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ijc.30234&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27299852&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 183.183.Schulze M, Violonchi C, Swoboda S, Welz T, Kerkhoff E, Hoja S, Brüggemann S, Simbürger J, Reinders J, Riemenschneider MJ. RELN signaling modulates glioblastoma growth and substrate-dependent migration. Brain Pathol. 2018;28(5):695–709. doi:10.1111/bpa.12584 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/bpa.12584&link_type=DOI) 184.184.Han M, Wang S, Yang N, Wang X, Zhao W, Saed HS, Daubon T, Huang B, Chen A, Li G, et al. herapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma. EMBO Mol Med. 2019;e10924. doi:10.15252/emmm.201910924 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.15252/emmm.201910924&link_type=DOI) 185.185.Gao YF, Mao XY, Zhu T, Mao CX, Liu ZX, Wang ZB, Li L, Li X, Yin JY, Zhang W, et al. COL3A1 and SNAP91: novel glioblastoma markers with diagnostic and prognostic value. Oncotarget. 2016;7(43):70494–70503. doi:10.18632/oncotarget.12038 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.12038&link_type=DOI) 186.186.Guo Y, Zhang P, Zhang H, Zhang P, Xu R. RNAi for contactin 2 inhibits proliferation of U87-glioma stem cells by downregulating AICD, EGFR, and HES1. Onco Targets Ther. 2017;10:791–801. doi:10.2147/OTT.S113390 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2147/OTT.S113390&link_type=DOI) 187.187.Grouzmann E, Meyer C, Bürki E, Brunner H. Neuropeptide Y Y2 receptor signalling mechanisms in the human glioblastoma cell line LN319. Peptides. 2001;22(3):379–386. doi:10.1016/s0196-9781(01)00344-8 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0196-9781(01)00344-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11287092&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 188.188.Bao MH, Lv QL, Szeto V, Wong R, Zhu SZ, Zhang YY, Feng ZP, Sun HS. TRPM2-AS inhibits the growth, migration, and invasion of gliomas through JNK, c-Jun, and RGS4 [published online ahead of print, 2019 Oct 21]. J Cell Physiol. 2019;10.1002/jcp.29336. doi:10.1002/jcp.29336 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jcp.29336&link_type=DOI) 189.189.McAvoy S, Ganapathiraju S, Perez DS, James CD, Smith DI. DMD and IL1RAPL1: two large adjacent genes localized within a common fragile site (FRAXC) have reduced expression in cultured brain tumors. Cytogenet Genome Res. 2007;119(3-4):196–203. doi:10.1159/000112061 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000112061&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18253029&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 190.190.Song K, Yuan Y, Lin Y, Wang YX, Zhou J, Gai QJ, Zhang L, Mao M, Yao XX, Qin Y, et al. ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells. Am J Cancer Res. 2018;8(5):792–809. 191.191.Zhu Y, Zhang X, Wang L, Ji Z, Xie M, Zhou X, Liu Z, Shi H, Yu R. Loss of SH3GL2 promotes the migration and invasion behaviours of glioblastoma cells through activating the STAT3/MMP2 signalling. J Cell Mol Med. 2017;21(11):2685–2694. doi:10.1111/jcmm.13184 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jcmm.13184&link_type=DOI) 192.192.Delic S, Lottmann N, Jetschke K, Reifenberger G, Riemenschneider MJ. Identification and functional validation of CDH11, PCSK6 and SH3GL3 as novel glioma invasion-associated candidate genes. Neuropathol Appl Neurobiol. 2012;38(2):201–212. doi:10.1111/j.1365-2990.2011.01207.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1365-2990.2011.01207.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21722156&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 193.193.Zhang YX, Li XF, Yuan GQ, Hu H, Song XY, Li JY, Miao XK, Zhou TX, Yang WL, Zhang XW, et al. β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G2/M phase transition. J Biol Chem. 2017;292(21):8933–8947. doi:10.1074/jbc.M116.770420 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjExOiIyOTIvMjEvODkzMyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzEyLzIzLzIwMjAuMTIuMjEuMjAyNDg2MTYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 194.194.Yang JK, Song J, Huo HR, Zhao YL, Zhang GY, Zhao ZM, Sun GZ, Jiao BH. DNM3, p65 and p53 from exosomes represent potential clinical diagnosis markers for glioblastoma multiforme. Ther Adv Med Oncol. 2017;9(12):741–754. doi:10.1177/1758834017737471 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1758834017737471&link_type=DOI) 195.195.Yu F, Li G, Gao J, Sun Y, Liu P, Gao H, Li P, Lei T, Chen Y, Cheng Y, et al. SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and Temozolomide resistance. Cell Prolif. 2016;49(2):195–206. doi:10.1111/cpr.12241 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/cpr.12241&link_type=DOI) 196.196.Oikonomou E, Buchfelder M, Adams EF. Cholecystokinin (CCK) and CCK receptor expression by human gliomas: Evidence for an autocrine/paracrine stimulatory loop. Neuropeptides. 2008;42(3):255–265. doi:10.1016/j.npep.2008.02.005 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.npep.2008.02.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18423848&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 197.197.Suh JH, Park CK, Park SH. Alpha internexin expression related with molecular characteristics in adult glioblastoma and oligodendroglioma. J Korean Med Sci. 2013;28(4):593–601. doi:10.3346/jkms.2013.28.4.593 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3346/jkms.2013.28.4.593&link_type=DOI) 198.198.Igci YZ, Bozgeyik E, Borazan E, Pala E, Suner A, Ulasli M, Gurses SA, Yumrutas O, Balik AA, Igci M. Expression profiling of SCN8A and NDUFC2 genes in colorectal carcinoma. Exp Oncol. 2015;37(1):77–80. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25804238&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 199.199.Wang H, Liu XB, Chen JH, Wang QQ, Chen JP, Xu JF, Sheng CY, Ni QC. Decreased expression and prognostic role of cytoplasmic BRSK1 in human breast carcinoma: correlation with Jab1 stability and PI3K/Akt pathway. Exp Mol Pathol. 2014;97(2):191–201. doi:10.1016/j.yexmp.2014.07.012 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.yexmp.2014.07.012&link_type=DOI) 200.200.Eckel-Passow JE, Serie DJ, Bot BM, Joseph RW, Cheville JC, Parker AS. ANKS1B is a smoking-related molecular alteration in clear cell renal cell carcinoma. BMC Urol. 2014;14:14. doi:10.1186/1471-2490-14-14 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2490-14-14&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24479813&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 201.201.Stevenson L, Allen WL, Proutski I, Stewart G, Johnston L, McCloskey K, Wilson PM, Longley DB, Johnston PG. Calbindin 2 (CALB2) regulates 5-fluorouracil sensitivity in colorectal cancer by modulating the intrinsic apoptotic pathway. PLoS One. 2011;6(5):e20276. doi:10.1371/journal.pone.0020276 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0020276&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21629658&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 202.202.Chen A, Wang L, Li BY, Sherman J, Ryu JE, Hamamura K, Liu Y, Nakshatri H, Yokota H. Reduction in Migratory Phenotype in a Metastasized Breast Cancer Cell Line via Downregulation of S100A4 and GRM3. Sci Rep. 2017;7(1):3459. doi:10.1038/s41598-017-03811-9 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-017-03811-9&link_type=DOI) 203.203.Correa RG, de Carvalho AF, Pinheiro NA, Simpson AJ, de Souza SJ. NABC1 (BCAS1): alternative splicing and downregulation in colorectal tumors. Genomics. 2000;65(3):299–302. doi:10.1006/geno.2000.6172 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1006/geno.2000.6172&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10857754&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000087127500012&link_type=ISI) 204.204.Chen H, Liu Y, Jiang CJ, Chen YM, Li H, Liu QA. Calcium-Activated Chloride Channel A4 (CLCA4) Plays Inhibitory Roles in Invasion and Migration Through Suppressing Epithelial-Mesenchymal Transition via PI3K/AKT Signaling in Colorectal Cancer. Med Sci Monit. 2019;25:4176–4185. doi:10.12659/MSM.914195 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.12659/MSM.914195&link_type=DOI) 205.205.Sun Y, Ye D, Li Y, Chen E, Hao R, Cai Y, Wang Q, Wang O, Zhang X. CUX2 functions as an oncogene in papillary thyroid cancer. Onco Targets Ther. 2018;12:217–224. doi:10.2147/OTT.S185710 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2147/OTT.S185710&link_type=DOI) 206.206.Yan H, Zheng C, Li Z, Bao B, Yang B, Hou K, Qu X, Xiao J, Che X, Liu Y. NPTX1 promotes metastasis via integrin/FAK signaling in gastric cancer. Cancer Manag Res. 2019;11:3237–3251. doi:10.2147/CMAR.S196509 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2147/CMAR.S196509&link_type=DOI) 207.207.Bong AHL, Robitaille M, Milevskiy MJG, Roberts-Thomson SJ, Monteith GR. NCS-1 expression is higher in basal breast cancers and regulates calcium influx and cytotoxic responses to doxorubicin. Mol Oncol. 2019. doi:10.1002/1878-0261.12589 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/1878-0261.12589&link_type=DOI) 208.208.Jeon TW, Yang H, Lee CG, Oh ST, Seo D, Baik IH, Lee EH, Yun I, Park KR, Lee YH. Electro-hyperthermia up-regulates tumour suppressor Septin 4 to induce apoptotic cell death in hepatocellular carcinoma. Int J Hyperthermia. 2016;32(6):648–656. doi:10.1080/02656736.2016.1186290 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/02656736.2016.1186290&link_type=DOI) 209.209.Chen J, Wu D, Zhang Y, Yang Y, Duan Y, An Y. LncRNA DCST1-AS1 functions as a competing endogenous RNA to regulate FAIM2 expression by sponging miR-1254 in hepatocellular carcinoma. Clin Sci (Lond). 2019;133(2):367–379. doi:10.1042/CS20180814 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToicHBjbGluc2NpIjtzOjU6InJlc2lkIjtzOjk6IjEzMy8yLzM2NyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzEyLzIzLzIwMjAuMTIuMjEuMjAyNDg2MTYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 210.210.Ou Y, Zheng X, Gao Y, Shu M, Leng T, Li Y, Yin W, Zhu W, Huang Y, Zhou Y, et al. Activation of cyclic AMP/PKA pathway inhibits bladder cancer cell invasion by targeting MAP4-dependent microtubule dynamics. Urol Oncol. 2014;32(1):47.e21–47.e4.7E28. doi:10.1016/j.urolonc.2013.06.017 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.urolonc.2013.06.017&link_type=DOI) 211.211.Zhao L, Xue M, Zhang L, Guo B, Qin Y, Jiang Q, Sun R, Yang J, Wang L, Liu L, et al. MicroRNA-4268 inhibits cell proliferation via AKT/JNK signalling pathways by targeting Rab6B in human gastric cancer. Cancer Gene Ther. 2019. doi:10.1038/s41417-019-0118-6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41417-019-0118-6&link_type=DOI) 212.212.Bhandari A, Shen Y, Sindan N, Xia E, Gautam B, Lv S, Zhang X. MAL2 promotes proliferation, migration, and invasion through regulating epithelial-mesenchymal transition in breast cancer cell lines. Biochem Biophys Res Commun. 2018;504(2):434–439. doi:10.1016/j.bbrc.2018.08.187 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbrc.2018.08.187&link_type=DOI) 213.213.Ye YP, Jiao HL, Wang SY, Xiao ZY, Zhang D, Qiu JF, Zhang LJ, Zhao YL, Li TT, Liao WT, et al. Hypermethylation of DMTN promotes the metastasis of colorectal cancer cells by regulating the actin cytoskeleton through Rac1 signaling activation. J Exp Clin Cancer Res. 2018;37(1):299. doi:10.1186/s13046-018-0958-1 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13046-018-0958-1&link_type=DOI) 214.214.Liu YS, Lin HY, Lai SW, Huang CY, Huang BR, Chen PY, Wei KC, Lu DY. MiR-181b modulates EGFR-dependent VCAM-1 expression and monocyte adhesion in glioblastoma. MiR-181b modulates EGFR-dependent VCAM-1 expression and monocyte adhesion in glioblastoma. Oncogene. 2017;36(35):5006–5022. doi:10.1038/onc.2017.129 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/onc.2017.129&link_type=DOI) 215.215.Luan W, Wang Y, Chen X, Shi Y, Wang J, Zhang J, Qian J, Li R, Tao T, Wei W, et al. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop. Oncotarget. 2015;6(15):13006–13018. doi:10.18632/oncotarget.3514 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.3514&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25948776&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 216.216.Zhu H, Chen D, Tang J, Huang C, Lv S, Wang D, Li G. Overexpression of centrosomal protein 55 regulates the proliferation of glioma cell and mediates proliferation promoted by EGFRvIII in glioblastoma U251 cells. Oncol Lett. 2018;15(2):2700–2706. doi:10.3892/ol.2017.7573 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/ol.2017.7573&link_type=DOI) 217.217.Keohane ME, Hall SW, VandenBerg SR, Gonias SL. Secretion of alpha 2-macroglobulin, alpha 2-antiplasmin, and plasminogen activator inhibitor-1 by glioblastoma multiforme in primary organ culture. J Neurosurg. 1990;73(2):234–241. doi:10.3171/jns.1990.73.2.0234 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/00006123-199002000-00008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=1694891&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1990DQ17500011&link_type=ISI) 218.218.Koessinger D, Albrecht V, Faber F, Jaehnert I, Schichor C. ETS-1 Expression Is Hypoxia-independent in Glioblastoma-derived Endothelial and Mesenchymal Stem-like Cells. Anticancer Res. 2018;38(6):3347–3355. doi:10.21873/anticanres.12601 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImFudGljYW5yZXMiO3M6NToicmVzaWQiO3M6OToiMzgvNi8zMzQ3IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjMvMjAyMC4xMi4yMS4yMDI0ODYxNi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 219.219.Kim SK, Kim K, Ryu JW, Ryu TY, Lim JH, Oh JH, Min JK, Jung CR, Hamamoto R, Son MY, et al. The novel prognostic marker, EHMT2, is involved in cell proliferation via HSPD1 regulation in breast cancer. Int J Oncol. 2019;54(1):65–76. doi:10.3892/ijo.2018.4608 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/ijo.2018.4608&link_type=DOI) 220.220.Chung IC, Chen LC, Chung AK, Chao M, Huang HY, Hsueh C, Tsang NM, Chang KP, Liang Y, Li HP, et al. Matrix metalloproteinase 12 is induced by heterogeneous nuclear ribonucleoprotein K and promotes migration and invasion in nasopharyngeal carcinoma. BMC Cancer. 2014;14:348. doi:10.1186/1471-2407-14-348 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2407-14-348&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24885469&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 221.221.Xu J, Zhu C, Yu Y, Wu W, Cao J, Li Z, Dai J, Wang C, Tang Y, Zhu Q, et al. Systematic cancer-testis gene expression analysis identified CDCA5 as a potential therapeutic target in esophageal squamous cell carcinoma. EBioMedicine. 2019;46:54–65. doi:10.1016/j.ebiom.2019.07.030 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ebiom.2019.07.030&link_type=DOI) 222.222.Takane K, Midorikawa Y, Yagi K, Sakai A, Aburatani H, Takayama T, Kaneda A. Aberrant promoter methylation of PPP1R3C and EFHD1 in plasma of colorectal cancer patients. Cancer Med. 2014;3(5):1235–1245. doi:10.1002/cam4.273 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/cam4.273&link_type=DOI) 223.223.Yu C, Cao H, He X, Sun P, Feng Y, Chen L, Gong H. Cyclin-dependent kinase inhibitor 3 (CDKN3) plays a critical role in prostate cancer via regulating cell cycle and DNA replication signaling. Biomed Pharmacother. 2017;96:1109–1118. doi:10.1016/j.biopha.2017.11.112 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopha.2017.11.112&link_type=DOI) 224.224.Li J, Ying Y, Xie H, Jin K, Yan H, Wang S, Xu M, Xu X, Wang X, Yang K, et al. Dual regulatory role of CCNA2 in modulating CDK6 and MET-mediated cell-cycle pathway and EMT progression is blocked by miR-381-3p in bladder cancer. FASEB J. 2019;33(1):1374–1388. doi:10.1096/fj.201800667R [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1096/fj.201800667R&link_type=DOI) 225.225.Hua K, Jin J, Zhang H, Zhao B, Wu C, Xu H, Fang L. MicroRNA-7 inhibits proliferation, migration and invasion of thyroid papillary cancer cells via targeting CKS2. Int J Oncol. 2016;49(4):1531–1540. doi:10.3892/ijo.2016.3660 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/ijo.2016.3660&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 226.226.Kim HE, Kim DG, Lee KJ, Son JG, Song MY, Park YM, Kim JJ, Cho SW, Chi SG, Cheong HS, et al. Frequent amplification of CENPF, GMNN and CDK13 genes in hepatocellular carcinomas. PLoS One. 2012;7(8):e43223. doi:10.1371/journal.pone.0043223 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0043223&link_type=DOI) 227.227.Li J, Liu Q, Liu Z, Xia Q, Zhang Z, Zhang R, Gao T, Gu G, Wang Y, Wang D, et al. KPNA2 promotes metabolic reprogramming in glioblastomas by regulation of c-myc. J Exp Clin Cancer Res. 2018;37(1):194. doi:10.1186/s13046-018-0861-9 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13046-018-0861-9&link_type=DOI) 228.228.Lei X, Deng L, Liu D, Liao S, Dai H, Li J, Rong J, Wang Z, Huang G, Tang C, et al. ARHGEF7 promotes metastasis of colorectal adenocarcinoma by regulating the motility of cancer cells. Int J Oncol. 2018;53(5):1980– 1996. doi:10.3892/ijo.2018.4535 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/ijo.2018.4535&link_type=DOI) 229.229.Lescarbeau RS, Lei L, Bakken KK, Sims PA, Sarkaria JN, Canoll P, White FM. Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma. Mol Cancer Ther. 2016;15(6):1332–1343. doi:10.1158/1535-7163.MCT-15-0692 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6Im1vbGNhbnRoZXIiO3M6NToicmVzaWQiO3M6OToiMTUvNi8xMzMyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMTIvMjMvMjAyMC4xMi4yMS4yMDI0ODYxNi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 230.230.Bittencourt LF, Negreiros-Lima GL, Sousa LP, Silva AG, Souza IB, Ribeiro RI, Dutra MF, Silva RF, Dias AC, Soriani FM, et al. Correction to: G3BP1 knockdown sensitizes U87 glioblastoma cell line to Bortezomib by inhibiting stress granules assembly and potentializing apoptosis. J Neurooncol. 2019;144(3):475. doi:10.1007/s11060-019-03276-y [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11060-019-03276-y&link_type=DOI) 231.231.Wang JZ, Yang SX, Ye F, Xia XP, Shao XX, Xia SL, Zheng B, Xu CL. Hypoxia-induced Rab11-family interacting protein 4 expression promotes migration and invasion of colon cancer and correlates with poor prognosis. Mol Med Rep. 2018;17(3):3797–3806. doi:10.3892/mmr.2017.8283 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/mmr.2017.8283&link_type=DOI) 232.232.Pellegatta S, Ianni ND, Pessina S, Paterra R, Anghileri E, Eoli M, Finocchiaro G. ABCC3 Expressed by CD56dim CD16+ NK Cells Predicts Response in Glioblastoma Patients Treated with Combined Chemotherapy and Dendritic Cell Immunotherapy. Int J Mol Sci. 2019;20(23):E5886. doi:10.3390/ijms20235886 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/ijms20235886&link_type=DOI) 233.233.Soichi O, Masanori N, Hideo T, Kazunori A, Nobuya I, Jun-ichi K. Clinical significance of ABCA2’ a possible molecular marker for oligodendrogliomas. Neurosurgery. 2007;60(4):707–714. doi:10.1227/01.NEU.0000255395.15657.06 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1227/01.NEU.0000255395.15657.06&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17415208&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) 234.234.Yang J, Min KW, Kim DH, Son BK, Moon KM, Wi YC, Bang SS, Oh YH, Do SI, Chae SW, et al. High TNFRSF12A level associated with MMP-9 overexpression is linked to poor prognosis in breast cancer: Gene set enrichment analysis and validation in large-scale cohorts. PLoS One. 2018;13(8):e0202113. doi:10.1371/journal.pone.0202113 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0202113&link_type=DOI) 235.235.Zhou J, Wang H, Lu A, Hu G, Luo A, Ding F, Zhang J, Wang X, Wu M, Liu Z. A novel gene, NMES1, downregulated in human esophageal squamous cell carcinoma. Int J Cancer. 2002;101(4):311–316. doi:10.1002/ijc.10600 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ijc.10600&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12209954&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F12%2F23%2F2020.12.21.20248616.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000177805500002&link_type=ISI) 236.236.Aguilar-Morante D, Morales-Garcia JA, Santos A, Perez-Castillo A. CCAAT/enhancer binding protein β induces motility and invasion of glioblastoma cells through transcriptional regulation of the calcium binding protein S100A4. Oncotarget. 2015;6(6):4369–4384. doi:10.18632/oncotarget.2976 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.2976&link_type=DOI) 237.237.Chen L, Gong X, Huang M. YY1-Activated Long Noncoding RNA SNHG5 Promotes Glioblastoma Cell Proliferation Through p38/MAPK Signaling Pathway. Cancer Biother Radiopharm. 2019;34(9):589–596. doi:10.1089/cbr.2019.2779 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1089/cbr.2019.2779&link_type=DOI) 238.238.Raja R, Sahasrabuddhe NA, Radhakrishnan A, Syed N, Solanki HS, Puttamallesh VN, Balaji SA, Nanjappa V, Datta KK, Babu N, et al. Chronic exposure to cigarette smoke leads to activation of p21 (RAC1)-activated kinase 6 (PAK6) in non-small cell lung cancer cells. Oncotarget. 2016;7(38):61229–61245. doi:10.18632/oncotarget.11310 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18632/oncotarget.11310&link_type=DOI) 239.239.Kundu S, Ramshankar V, Verma AK, Thangaraj SV, Krishnamurthy A, Kumar R, Kannan R, Ghosh SK. Association of DFNA5, SYK, and NELL1 variants along with HPV infection in oral cancer among the prolonged tobacco-chewers. Tumour Biol. 2018;40(8):1010428318793023. doi:10.1177/1010428318793023 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1010428318793023&link_type=DOI)