Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Efficacy and safety of TiNO-coated stents versus drug-eluting coronary stents. Systematic literature review and meta-analysis

View ORCID ProfileFrederic C. Daoud, Louis Létinier, Nicholas Moore, View ORCID ProfilePierre Coste, View ORCID ProfilePasi P. Karjalainen
doi: https://doi.org/10.1101/2020.12.19.20248564
Frederic C. Daoud
aUniv. Bordeaux, INSERM, BPH, U1219, F-33000, Bordeaux, France
MD, MSc
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Frederic C. Daoud
  • For correspondence: frederic.daoud-pineau@u-bordeaux.fr
Louis Létinier
aUniv. Bordeaux, INSERM, BPH, U1219, F-33000, Bordeaux, France
MD, MSc
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicholas Moore
aUniv. Bordeaux, INSERM, BPH, U1219, F-33000, Bordeaux, France
MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Coste
bCoronary Care Unit, Cardiologic Hospital, University of Bordeaux, Pessac, France
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Pierre Coste
Pasi P. Karjalainen
cCardiac unit, Heart and Lung Center, Helsinki University Hospital and Helsinki University, Helsinki, Finland
MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Pasi P. Karjalainen
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Objectives To compare clinical outcomes after percutaneous coronary intervention (PCI) using titanium-nitride-oxide coated stents (TiNOS) versus drug-eluting stents (DES) in coronary artery disease (CAD) including acute coronary syndrome (ACS).

Design Prospective systematic literature (SLR) conducted according to PRISMA. Medline, Embase, Cochrane, Web of Science were searched in March 2018 and updated.

Setting Interventional cardiology.

Participants Patients with CAD, including ACS, requiring PCI.

Interventions All prospective randomized controlled trials (RCTs) that compared clinical outcomes after PCI with DES versus TiNOS.

Outcome measures The pooled risk ratios (RR), TiNOS over DES, with 95% confidence intervals (CI) are computed for device-oriented Major Adverse Cardiac Events (MACE), non-fatal myocardial infarction (MI), cardiac death (CD), clinically driven target lesion revascularization (TLR), probable or definite stent thrombosis (ST), total mortality, at one to five years after PCI. Pooled RRs are stratified according to baseline ACS versus other CAD. Sensitivity analysis (SA) and certainty of the evidence are rated per GRADE.

Results Five RCTs are eligible with 1,855 patients with TiNOS versus 1,363 with DES at 1-year follow-up and 783 versus 771 at 5-year. Three RCTs included patients with ACS only. One-year RRs in ACS are: MACE 0.93 [0.72, 1.20], MI 0.48 [0.31, 0.73], CD 0.66 [0.33, 1.31], TLR 1.55 [1.10, 2.19] and ST 0.35 [0.20, 0.64]. One-year MACE, MI, and ST are robust to SA. The certainty of the evidence is high in MACE, moderate in MI, and low or very low in the other endpoints. There are too few observations to conclude about other CAD and 5-year outcomes. However, 5-year interim results are consistent with 1-year conclusions.

Conclusions A similar risk of MACE is found in TiNOS and DES, with potentially fewer MI and ST but more TLR in TiNOS. TiNOS are safe and effective in ACS at 1-year follow-up.

Registration PROSPERO CRD42018090622

Strengths and limitations of this study

  • - Strengths:

    • The level of certainty of the evidence is high for the primary endpoint at one-year follow-up in patients treated for acute coronary syndrome.

    • The primary endpoint and critical secondary endpoints are robust to sensitivity analysis.

  • - Limitations:

    • Outcomes in patients treated for chronic coronary artery disease cannot be analyzed.

    • The level of certainty of the evidence of secondary endpoints is moderate or low.

    • Analysis of five-year outcomes is still at an interim stage.

Objectives

Percutaneous coronary interventions (PCI) with drug-eluting stents (DES) is the standard of care in Coronary Artery Disease (CAD), including Acute Coronary Syndrome (ACS).1-6 mTOR inhibitors such as everolimus and paclitaxel have been the main drug types used on stents to inhibit post-stenting restenosis.7-9 Their side effect is the increased risk of stent thrombosis (ST), requiring prolonged Dual AntiPlatelet Therapy (DAPT) with its own risk of complications.10,11 Titanium-nitride-oxide coated coronary stents (TiNOS), also designated “bioactive stents” (BAS) have a pharmacologically inactive, non-absorbable coating. Preclinical data has shown less neointimal hyperplasia with TiNOS than with bare-metal stents (BMS).12,13,14

Several trials comparing TiNOS with DES have been conducted but no systematic review of that evidence has been published so far.

Participants – Interventions - Outcome measures

The question was specified using the PICOS framework15: Patients presented CAD including ACS. Intervention was PCI using TiNOS. Comparator was PCI using DES. Outcomes were the device-oriented Major Adverse Cardiac Events (MACE) and the components of that composiste i.e., Cardiac death (CD), recurrent myocardial infarction (MI), and clinically driven target lesion revascularization (TLR). Probable or definite ST, and all-cause mortality (“total death”: TD) were also analyzed. Outcomes were assessed at 1-year and 5-year follow-ups. Study methods were prospective randomized controlled clinical trials (RCTs).

Methods

This systematic literature review (SLR) is the first to compare the efficacy and safety of TiNOS versus DES in CAD. It was designed and conducted according to methods described in the Cochrane Handbook with the use of “Grading of Recommendations Assessment, Development and Evaluation” (GRADE). The protocol was registered in PROSPERO (CRD4201809062) before initiation. It is reported according to “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA).16-18

Data recording and the meta-analysis were conducted in RevMan 5.3 (Review Manager Version 5.3 software. Copenhagen, Denmark: The Nordic Cochrane Centre, 2014). The certainty of evidence according was rated with GRADEpro GDT software 2020 on-line version, (https://gradepro.org). Additional analyses were performed in STATA 16 (StataCorp LP, College Station, Tx, USA) using the metan and metaprop packages.

Data sources

MEDLINE, EMBASE, the Cochrane Library, and Web of Science (WoS) electronic databases, were queried on March 8, 2018, using their search engines. The search terms were: ((bioactive OR (Titanium AND nitride AND oxide) OR TiNO OR TNO OR BAS) AND stent) AND (DES OR (drug AND eluting AND stent)) AND (RCT OR ((randomized OR randomised) AND controlled AND trial)). No exclusion filter was applied related to language, country, year, or any other aspect. The websites of AHA, TCT, ESC, EuroPCR, and clinicaltrials.gov were also searched. The queries were updated on July 22, 2020, when all initially identified RCTs were published to retrieve new evidence if any, from RCTs meeting the PICOS specifications of this SLR.

The downloaded record files were imported and pooled and sifted in EndNote X8 (Clarivate Analytics, Philadelphia, PA, USA). One reference only was selected when duplicates were identified. When differerent references concerned the same study, their information was pooled using the citation of the most recent one. Full articles were reviewed for all references.

Study selection and Data extraction

Two reviewers (FD and LL) performed independently the following steps: (1)Exhaustive reference screening, (2)Reference classification according to the inclusion and exclusion criteria, (3)Extraction of study methods, (4)Patient baseline data, (5)Treatment data and results of each eligible RCT, (6)Individual eligible RCT risk of bias rating, (7)Assessment of the certainty of the evidence for each outcome variable according to GRADE. The results were recorded in RevMan 5.3 file.

Differences were adjudicated by a third reviewer (NM). The similarity of the definitions of endpoints across the RCTs was discussed with one investigator (PK). The risk of bias of individual RCTs was rated according to the criteria proposed by the Cochrane Collaboration with operator blinding as a separate item.

The screened studies were included if they met the following criteria: First-hand clinical evidence with prospective inclusion; patients with CAD treated with coronary PCI; implantation of either TiNOS or DES after the random allocation of the stent type; target outcomes reported at 1-year and/or 5-year follow-up; the outcomes reported as the number of patients who were included along with the number or proportion of them who presented an event of interest. Studies were ruled out if any of the study selection criteria were not met or if IRB/ethics committee approval and patient informed consent were not explicitly required.

The term ACS referred to patients who presented at baseline with ST-elevated myocardial infarction (STEMI), or non-ST-elevated myocardial infarction (NSTEMI), or unstable angina pectoris.

The definitions of outcomes aimed in this SLR protocol are those defined by the Academic Research Consortium (ARC).19 Data extraction is stratified according to patient clinical presentation, i.e., ACS versus with other CAD.

Statistical analysis

The two treatment arms are compared for each endpoint using the risk ratio (RR) defined as ((n patients with an event in TiNOS)/(n patients in TiNOS))/((n patients with an event in DES)/(n patients in DES)). As a result, RR > 1 reflects a higher frequency of events in the TiNOS arm than in the DES arm and conversely. Outcomes are analyzed on an intention-to-treat (ITT) basis. The numerator is the number of patients presenting an event and counted in the treatment arm they were randomized to and the denominator is the sample size of the corresponding arm.

For each endpoint, individual study RRs are calculated with their 95% confidence interval (CI [,]) and their degree of heterogeneity is determined. If no significant heterogeneity is detected, the pooled RR is calculated with its CI using the M-H method with a fixed-effect model.16,20,21 In the case of significant heterogeneity, pooling uses the M-H method with a random-effects model. The pooled analysis is stratified according to baseline clinical presentation, ACS versus other CAD. One-year and 5-year outcomes are analyzed separately. Sensitivity analysis is performed by iteratively recalculating the pooled RR after removing one eligible RCT. As a result, the impact of each RCT on the pooled RR is estimated. It estimates the impact of differences in stent generations and the potential risk of indirection related to differences in outcome definitions.

Patient and public involvement

No patient involved.

Results

Overall

Study identification, screening, and selection are described in the PRISMA flowchart (Figure 1). One hundred and eleven references were identified and nine publications with first-hand data about five RCTs are eligible for inclusion in the meta-analysis.

Figure 1
  • Download figure
  • Open in new tab
Figure 1 PRISMA flow chart

The number of patients with 1-year follow-up data is 1,855 in the TiNOS arm versus 1,363 in the DES arm. Those numbers are 783 versus 773 patients at 5-year follow-up. Three RCTs enrolled only patients presenting with ACS and two enrolled and analyzed jointly patients presenting with ACS and other CAD. TIDE enrolled 143 patients with ACS (47%) and TITANIC-XV, 112 (64.7%). The baseline characteristics are summarized in Table 1. Funnel plots and Harbord tests did not detect a risk of publication bias concerning any of the endpoints at 1-year follow-up in all CAD (supplemental material).

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 1 Baseline characteristics

Four RCTs report or enable to deduct the number of cases of clinically driven TLR, CD, non-fatal recurrent MI, and the composite of CD or any non-fatal MI extended or clinically driven TLR. This results in a modified device-oriented MACE where MI “not clearly attributable to a nontarget vessel” is replaced by any MI. Given fatal MIs are counted as CD, this modification adds non-fatal MI in nontarget vessels.

In one RCT (TITANIC-XV), the primary endpoint is estimated from the available data as the sum of CD, any non-fatal MI, and any TLR assuming no overlap between those variables.

The risk of bias in individual RCTs is rated moderate or low except for the operator’s knowledge of the type of stent used during the intervention in all RCTs.

The pooled RRs of all outcomes at 1-year and 5-year follow-up are reported in Table 2 with CIs and sensitivity analyses. Results are reported overall and in the ACS subgroup. Given the 5-year follow-up of patients in the TIDES-ACS trial is ongoing, pooled RRs for 5-year outcomes are interim results.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 2 Pooled outcomes with sensitivity analysis

The stratified (ACS relative to other CAD) pooled RRs of effectiveness endpoints show no significant difference in 1-year MACE and a significantly higher rate of TLR with TiNOS (Figure 2). The stratified stratified pooled RRs of safety endpoints show no significant difference in 1-year CD, but significantly lower rates in non-fatal, MI and ST with TiNOS compared to DES (Figure 3). The pooled RR of TD is also not significant (supplemental file).

Figure 2
  • Download figure
  • Open in new tab
Figure 2 Effectiveness endpoints
Figure 3
  • Download figure
  • Open in new tab
Figure 3 Safety endpoints

The stratified pooled RRs analysis shows a much larger number of patients in the ACS subgroup compared to the other CAD subgroup (85.2% versus 14.8%). The overall effects are driven by the ACS subgroup. The results of the other CAD subgroup (TIDE and TITANIC-XV) are not interpretable because outcomes in patients with ACS are not reported separately. Therefore, the subsequent steps of this SLR are refocused on RCT about ACS only.

ACS at 1-year follow-up

The pooled RRs of effectiveness and safety endpoints in MACE are consistent with overall results but heterogeneity, robustness to sensitivity analysis (Table 2) and the level of certainty of the underlying evidence according to GRADE (supplemental material) need to be assessed separately.

The RR of MACE presents no significant heterogeneity, is robust to sensitivity analysis, and the certainty of evidence is rated high. The RR of clinically driven TLR presents no significant heterogeneity but results are not robust to sensitivity analysis, and the certainty of the evidence is rated low.

The pooled RRs of CD and TD present significant heterogeneity, are not robust to sensitivity analysis, and the certainty of the evidence is rated very low.

The pooled RR of non-fatal MI presents no significant heterogeneity, is robust to sensitivity analysis, and the certainty of the evidence is rated moderate.

The pooled RR of probable or definite SE presents no significant heterogeneity, is robust to sensitivity analysis, and the certainty of the evidence is rated low.

Discussion

TIDE and TITANIC-XV enrolled 255 patients with ACS but their data are not reported separately from the other patients. The impact of not including them in the ACS subgroup is limited given they represent 7.9% of all patients with ACS. The modified definition of device-oriented MACE results in including non-fatal MIs from nontarget vessels. One can reasonably assume the index stent does not affect those events. Ninety non-fatal MIs are reported. Assuming half of them are related to nontarget vessels (i.e., 45 cases), proportionality with sample size would lead to 27 fewer cases with TiNOS and 18 with DES, which would result in an RR of 0.19 [0.09, 0.42]. The inclusion of nontarget MIs thus results in a dilution that is favorable to DES. If the same numbers cases were removed from the count of MACE, the RR would be 0.98 [0.73, 1.30], which would not change the non-inferiority conclusion. The robustness to sensitivity analysis of the pooled RRs of MACE, MI, and ST in ACS, shows that the differences in DES generations, including the elution of paclitaxel and mTOR inhibitors do not significantly change those results. The interim 5-year pooled results will be updated when the final results of TIDES-ACS are published, but the current results are consistent with 1-year outcomes.

Conclusions

This systematic literature review shows that titanium-nitride oxide coated-coronary stents and drug-eluting stents have a similar risk of device-oriented major adverse cardiac events at one-year follow-up in patients with an acute coronary syndrome. This result is robust and the level of certainty of the evidence is high. It also shows a lower risk of recurrent myocardial infarction and stent thrombosis with titanium-nitride oxide coated-coronary stents than with drug-eluting stents with a potentially higher risk of target lesion revascularization. Interim five-year pooled outcomes are consistent with one-year outcomes. These results show that the titanium-nitride oxide coated-coronary stents are safe and effective in acute coronary syndrome at one-year follow-up.

Data Availability

This work used published summary data only.

Supplemental material

  • - Details of methods applied in this SLR.

  • - Methods of individual RCTs

  • - Table of the number of patients with events – ITT

  • - Funnel plots and results of Harbord tests.

  • - Summary of risk of bias in individual RCTs

  • - Pooled RR of CD or MI, and TD

  • - GRADE certainty of evidence assessment

  • - PRISMA checklist

Contributors

Frederic Daoud (FD): Main reviewer and meta-analyst with LL.

Louis Létinier (LL): Main reviewer and meta-analyst with with FD.

Nicholas Moore (NM): Third reviewer. Adjudicated disagreements.

Pierre Coste (PC): Advised on protocol and analysis.

Pasi Karjalainen (PK): Provided additional information about the methods of the individual trials.

Funding

This work was exclusively funded by the University of Bordeaux and INSERM BPH U1219, Bordeaux, France

Data sharing statement

All data included in this review are published.

Footnotes

  • 1) Made additional formal changes to group effectiveness endpoints and safety endpoints in two sections, each with a compiled image file.

References

  1. 1.↵
    Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, Khot UN, Lange RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Ting H, O’Gara PT, Kushner FG, Ascheim DD, Brindis RG, Casey Jr DE 1, Chung MK, de Lemos JA, Diercks DB, Fang JC, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011 Dec 6; 124(23):e574-651. doi: 10.1161/CIR.0b013e31823ba622. Epub 2011 Nov 7. Erratum in: Circulation. 2012 Feb 28;125(8):e412. Dosage error in article text. PMID: 22064601.
    OpenUrlFREE Full Text
  2. 2.
    O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX, Anderson JL, Jacobs AK, Halperin JL, Albert NM, Brindis RG, Creager MA, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Kushner FG, Ohman EM, Stevenson WG, Yancy CW; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013 Jan 29; 127(4):e362-425. doi: 10.1161/CIR.0b013e3182742cf6. Epub 2012 Dec 17. Erratum in: Circulation. 2013 Dec 24;128(25):e481. PMID: 23247304.
    OpenUrlFREE Full Text
  3. 3.
    Task Force Members, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, Bugiardini R, Crea F, Cuisset T, Di Mario C, Ferreira JR, Gersh BJ, Gitt AK, Hulot JS, Marx N, Opie LH, Pfisterer M, Prescott E, Ruschitzka F,Sabaté M, Senior R, Taggart DP, van der Wall EE, Vrints CJ; ESC Committee for Practice Guidelines, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S; Document Reviewers, Knuuti J, Valgimigli M, Bueno H, Claeys MJ, Donner-Banzhoff N, Erol C, Frank H, Funck-Brentano C, Gaemperli O, Gonzalez-Juanatey JR, Hamilos M, Hasdai D, Husted S, James SK, Kervinen K, Kolh P, Kristensen SD, Lancellotti P, Maggioni AP, Piepoli MF, Pries AR, Romeo F, Rydén L, Simoons ML, Sirnes PA, Steg PG, Timmis A, Wijns W, Windecker S, Yildirir A, Zamorano JL. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013; 34(38):2949–3003. doi: 10.1093/eurheartj/eht296. Epub 2013 Aug 30. Erratum in: Eur Heart J. 2014 Sep 1;35(33):2260–1. PMID: 23996286.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.
    Amsterdam EA, Wenger NK, Brindis RG, Casey DE Jr, Ganiats TG, Holmes DR Jr., Jaffe AS, Jneid H, Kelly RF, Kontos MC, Levine GN, Liebson PR, Mukherjee D, Peterson ED, Sabatine MS, Smalling RW, Zieman SJ; ACC/AHA Task Force Members; Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014; 130(25):2354-2394. doi: 10.1161/CIR.0000000000000133. Epub 2014 Sep 23. Erratum in: Circulation. 2014 Dec 23;130(25):e431-2. Dosage error in article text. PMID: 25249586.
    OpenUrlFREE Full Text
  5. 5.
    Collet J, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt D, Dendale P, Dorobantu M, Edvardsen T, Folliguet T, Gale C, Gilard M, Jobs A, Jüni P, Lambrinou E, Lewis B, Mehilli J, Meliga E, Merkely B, Mueller C, Roffi M, Rutten F, Sibbing D, Siontis G, ESC Scientific Document Group. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2020 Aug 29; ehaa575. doi: 10.1093/eurheartj/ehaa575. Epub ahead of print. PMID: 32860058.
    OpenUrlCrossRefPubMed
  6. 6.↵
    Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, Hindricks G, Kastrati A, Lenzen MJ, Prescott E, Roffi M, Valgimigli M, Varenhorst C, Vranckx P, Widimský P; ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018; 39(2):119–177. doi: 10.1093/eurheartj/ehx393. PMID: 28886621.
    OpenUrlCrossRefPubMed
  7. 7.↵
    Wessely R, Schömig A, Kastrati A. Sirolimus and Paclitaxel on polymer-based drug-eluting stents: similar but different. J Am Coll Cardiol. 2006; 47(4):708–714. doi: 10.1016/j.jacc.2005.09.047. Epub 2006 Jan 26. PMID: 16487832.
    OpenUrlFREE Full Text
  8. 8.
    Patterson C, Mapera S, Li HH, Madamanchi N, Hilliard E, Lineberger R, Herrmann R, Charles P. Comparative effects of paclitaxel and rapamycin on smooth muscle migration and survival: role of AKT-dependent signaling. Arterioscler Thromb Vasc Biol. 2006; 26(7):1473–1480. doi: 10.1161/01.ATV.0000223866.42883.3b. Epub 2006 Apr 27. PMID: 16645158.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    Yazdani SK, Sheehy A, Pacetti S, Rittlemeyer B, Kolodgie FD, Virmani R. Stent Coating Integrity of Durable and Biodegradable Coated Drug Eluting Stents. J Interv Cardiol. 2016; 29(5):483–490. doi: 10.1111/joic.12303. Epub 2016 Jun 10. PMID: 27282892.
    OpenUrlCrossRefPubMed
  10. 10.↵
    Costa F, Van Klaveren D, Feres F, James S, Räber L, Pilgrim T, Hong MK, Kim HS, Colombo A, Steg PG, Bhatt DL, Stone GW, Windecker S, Steyerberg EW, Valgimigli M; PRECISE-DAPT Study Investigators. Dual Antiplatelet Therapy Duration Based on Ischemic and Bleeding Risks After Coronary Stenting. J Am Coll Cardiol. 2019; 73(7):741–754. doi: 10.1016/j.jacc.2018.11.048. PMID: 30784667.
    OpenUrlFREE Full Text
  11. 11.↵
    Saito Y, Kobayashi Y. Update on Antithrombotic Therapy after Percutaneous Coronary Intervention Intern Med. 2020; 59(3):311–321. doi: 10.2169/internalmedicine.3685-19. Epub 2019 Oct 7. PMID: 31588089; PMCID: PMC7028427.
    OpenUrlCrossRefPubMed
  12. 12.↵
    Windecker S, Mayer I, De Pasquale G, Maier W, Dirsch O, De Groot P, Wu YP, Noll G, Leskosek B, Meier B, Hess OM; Working Group on Novel Surface Coating of Biomedical Devices (SCOL). Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation. 2001; 104(8):928–933. doi: 10.1161/hc3401.093146. PMID: 11514381.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    Ignarro LJ, Buga GM, Wei LH, Bauer PM, Wu G, del Soldato P. Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc Natl Acad Sci U S A. 2001; 98(7):4202–4208. doi: 10.1073/pnas.071054698. Epub 2001 Mar 20. PMID: 11259671; PMCID: PMC31203.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    Windecker S, Simon R, Lins M, Klauss V, Eberli FR, Roffi M, Pedrazzini G, Moccetti T, Wenaweser P, Togni M, Tüller D, Zbinden R, Seiler C, Mehilli J, Kastrati A, Meier B, Hess OM. Randomized comparison of a titanium-nitride-oxide-coated stent with a stainless steel stent for coronary revascularization: the TiNOX trial. Circulation. 2005; 111(20):2617–2622. doi: 10.1161/CIRCULATIONAHA.104.486647. Epub 2005 May 9. PMID: 15883209.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    Huang X, Lin J, Demner-Fushman D. Evaluation of PICO as a knowledge representation for clinical questions. AMIA Annu Symp Proc. 2006; 2006:359–363. PMID: 17238363; PMCID: PMC1839740.
    OpenUrlPubMed
  16. 16.↵
    Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions. www.cochrane-handbook.org, version 5.1.0 updated March 2011.
  17. 17.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009; 339:b2700. doi: 10.1136/bmj.b2700. PMID: 19622552; PMCID: PMC2714672.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    Schünemann H, Brożek J, Guyatt G, Oxman A, editors. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from guidelinedevelopment.org/handbook.
  19. 19.↵
    Garcia-Garcia HM, McFadden EP, Farb A, Mehran R, Stone GW, Spertus J, Onuma Y, Morel MA, van Es GA, Zuckerman B, Fearon WF, Taggart D, Kappetein AP, Krucoff MW, Vranckx P, Windecker S, Cutlip D, Serruys PW; Academic Research Consortium.. Standardized End Point Definitions for Coronary Intervention Trials: The Academic Research Consortium-2 Consensus Document.. Eur Heart J. 2018 Jun 14;39(23):2392–2207. doi: 10.1093/eurheartj/ehy223.; PMID: 29897428.
    OpenUrlCrossRefPubMed
  20. 20.↵
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7(3):177–88. doi: 10.1016/0197-2456(86)90046-2. PMID: 3802833.
    OpenUrlCrossRefPubMedWeb of Science
  21. 21.↵
    Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010; 1(2):97–111. doi: 10.1002/jrsm.12. Epub 2010 Nov 21. PMID: 26061376.
    OpenUrlCrossRefPubMed
  22. 22.
    Karjalainen PP, Ylitalo A, Niemelä M, Kervinen K, Mäkikallio T, Pietili M, Sia J, Tuomainen P, Nyman K, Airaksinen KE. Titanium-nitride-oxide coated stents versus paclitaxel-eluting stents in acute myocardial infarction: a 12-months follow-up report from the TITAX AMI trial. EuroIntervention. 2008; 4(2):234–241. doi: 10.4244/eijv4i2a42. PMID: 19110789.
    OpenUrlCrossRefPubMed
  23. 23.
    Tuomainen PO, Ylitalo A, Niemelä M, Kervinen K, Pietilä M, Sia J, Nyman K, Nammas W, Airaksinen KE, Karjalainen PP. Five-year clinical outcome of titanium-nitride-oxide-coated bioactive stents versus paclitaxel-eluting stents in patients with acute myocardial infarction: long-term follow-up from the TITAX AMI trial. Int J Cardiol. 2013; 168(2):1214–1219. doi: 10.1016/j.ijcard.2012.11.060. Epub 2012 Dec 3. PMID: 23218575.
    OpenUrlCrossRefPubMed
  24. 24.
    Pilgrim T, Räber L, Limacher A, Löffel L, Wenaweser P, Cook S, Stauffer JC, Togni M, Vogel R, Garachemani A, Moschovitis A, Khattab AA, Seiler C, Meier B, Jüni P, Windecker S. Comparison of titanium-nitride-oxide-coated stents with zotarolimus-eluting stents for coronary revascularization a randomized controlled trial. JACC Cardiovasc Interv. 2011; 4(6):672–682. doi: 10.1016/j.jcin.2011.02.017. PMID: 21700254.
    OpenUrlAbstract/FREE Full Text
  25. 25.
    López-Mínguez JR, Nogales-Asensio JM, Doncel-Vecino LJ, Merchán-Herrera A, Pomar-Domingo F, Martínez-Romero P, Fernández-Díaz JA, Valdesuso-Aguilar R, Moreu-Burgos J, Díaz-Fernández J; members of the TITANIC XV Working Group. A randomized study to compare bioactive titanium stents and everolimus-eluting stents in diabetic patients (TITANIC XV): 1-year results. Rev Esp Cardiol (Engl Ed). 2014; 67(7):522–530. doi: 10.1016/j.rec.2013.10.021. Epub 2014 Apr 3. PMID: 24952391.
    OpenUrlCrossRefPubMed
  26. 26.
    Karjalainen PP, Nammas W, Ylitalo A, de Bruyne B, Lalmand J, de Belder A, Rivero-Crespo F, Kervinen K, Airaksinen JKE. Long-term clinical outcome of titanium-nitride-oxide-coated stents versus everolimus-eluting stents in acute coronary syndrome: Final report of the BASE ACS trial. Int J Cardiol. 2016; 222:275-280. doi: 10.1016/j.ijcard.2016.07.267. Epub 2016 Aug 1. PMID: 27497110.
    OpenUrlCrossRefPubMed
  27. 27.
    Karjalainen PP, Niemelä M, Airaksinen JK, Rivero-Crespo F, Romppanen H, Sia J, Lalmand J, de Bruyne B, Debelder A, Carlier M, Nammas W, Ylitalo A, Hess OM; BACE-ACS study investigators. A prospective randomised comparison of titanium-nitride-oxide-coated bioactive stents with everolimus-eluting stents in acute coronary syndrome: the BASE-ACS trial. EuroIntervention. 2012; 8(3):306–315. doi: 10.4244/EIJV8I3A49. PMID: 22829506.
    OpenUrlCrossRefPubMed
  28. 28.
    Colkesen EB, Eefting FD, Rensing BJ, Suttorp MJ, Ten Berg JM, Karjalainen PP, Van Der Heyden JA. TIDES-ACS Trial: comparison of titanium-nitride-oxide coated bio-active-stent to the drug (everolimus)-eluting stent in acute coronary syndrome. Study design and objectives. Minerva Cardioangiol. 2015; 63(1):21–29. PMID: 25670057.
    OpenUrlPubMed
  29. 29.
    Tonino PAL, Pijls NHJ, Collet C, Nammas W, Van der Heyden J, Romppanen H, Kervinen K, Airaksinen JKE, Sia J, Lalmand J, Frambach P, Penaranda AS, De Bruyne B, Karjalainen PP; TIDES-ACS Study Group. Titanium-Nitride-Oxide-Coated Versus Everolimus-Eluting Stents in Acute Coronary Syndrome: The Randomized TIDES-ACS Trial. JACC Cardiovasc Interv. 2020; 13(14):1697–1705. doi: 10.1016/j.jcin.2020.04.021. PMID: 32703593.
    OpenUrlAbstract/FREE Full Text
  30. 30.
    Savović J, Weeks L, Sterne JA, Turner L, Altman DG, Moher D, Higgins JP. Evaluation of the Cochrane Collaboration’s tool for assessing the risk of bias in randomized trials: focus groups, online survey, proposed recommendations and their implementation. Syst Rev. 2014; 3:37. doi: 10.1186/2046-4053-3-37. PMID: 24731537; PMCID: PMC4022341.
    OpenUrlCrossRefPubMed
  31. 31.
    Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ; GRADE Working Group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008; 336(7650):924–926. doi: 10.1136/bmj.39489.470347.AD. PMID: 18436948; PMCID: PMC2335261.
    OpenUrlFREE Full Text
  32. 32.
    Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, Devereaux PJ, Montori VM, Freyschuss B, Vist G, Jaeschke R, Williams JW Jr., Murad MH, Sinclair D, Falck-Ytter Y, Meerpohl J, Whittington C, Thorlund K, Andrews J, Schünemann HJ. GRADE guidelines 6. Rating the quality of evidence--imprecision. J Clin Epidemiol. 2011; 64(12):1283–1293. doi: 10.1016/j.jclinepi.2011.01.012. Epub 2011 Aug 11. PMID: 21839614.
    OpenUrlCrossRefPubMed
  33. 33.
    GRADEpro GDT: GRADEpro Guideline Development Tool [Software]. McMaster University, 2015 (developed by Evidence Prime, Inc.). Available from https://gdt.gradepro.org
  34. 34.
    Pogue JM, Yusuf S. Cumulating evidence from randomized trials: utilizing sequential monitoring boundaries for cumulative meta-analysis. Control Clin Trials. 1997; 18(6):580–593; discussion 661-6. doi: 10.1016/s0197-2456(97)00051-2. PMID: 9408720.
    OpenUrlCrossRefPubMedWeb of Science
  35. 35.
    Seeger P, Gabrielsson A. Applicability of the Cochran Q test and the F test for statistical analysis of dichotomous data for dependent samples. Psychol Bull. 1968; 69(4):269–277. doi: 10.1037/h0025667. PMID: 5659656.
    OpenUrlCrossRefPubMedWeb of Science
  36. 36.
    Gavaghan DJ, Moore RA, McQuay HJ. An evaluation of homogeneity tests in meta-analyses in pain using simulations of individual patient data. Pain. 2000; 85(3):415–424. doi: 10.1016/s0304-3959(99)00302-4. PMID: 10781914.
    OpenUrlCrossRefPubMedWeb of Science
  37. 37.
    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21(11):1539–1558. doi: 10.1002/sim.1186. PMID: 12111919.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327(7414):557–560. doi: 10.1136/bmj.327.7414.557. PMID: 12958120; PMCID: PMC192859.
    OpenUrlFREE Full Text
  39. 39.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315(7109):629–634. doi: 10.1136/bmj.315.7109.629. PMID: 9310563; PMCID: PMC2127453.
    OpenUrlAbstract/FREE Full Text
  40. 40.
    Egger M, Smith GD. Bias in location and selection of studies. BMJ. 1998; 316(7124):61–66. doi: 10.1136/bmj.316.7124.61. PMID: 9451274; PMCID: PMC2665334.
    OpenUrlFREE Full Text
  41. 41.
    1. Egger M,
    2. Davey Smith G,
    3. Altman DG
    Sterne JAC, Egger M,Davey Smith G. Investigating and dealing with publication and other biases. In: Egger M, Davey Smith G, Altman DG (eds). Systematic Reviews in Health Care: Meta-Analysis in Context. London: BMJ Publishing Group, 2001:189–208.
  42. 42.
    Harbord RM, Egger M, Sterne JA. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006; 25(20):3443–3457. doi: 10.1002/sim.2380. PMID: 16345038.
    OpenUrlCrossRefPubMedWeb of Science
Back to top
PreviousNext
Posted January 30, 2021.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Efficacy and safety of TiNO-coated stents versus drug-eluting coronary stents. Systematic literature review and meta-analysis
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Efficacy and safety of TiNO-coated stents versus drug-eluting coronary stents. Systematic literature review and meta-analysis
Frederic C. Daoud, Louis Létinier, Nicholas Moore, Pierre Coste, Pasi P. Karjalainen
medRxiv 2020.12.19.20248564; doi: https://doi.org/10.1101/2020.12.19.20248564
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Efficacy and safety of TiNO-coated stents versus drug-eluting coronary stents. Systematic literature review and meta-analysis
Frederic C. Daoud, Louis Létinier, Nicholas Moore, Pierre Coste, Pasi P. Karjalainen
medRxiv 2020.12.19.20248564; doi: https://doi.org/10.1101/2020.12.19.20248564

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cardiovascular Medicine
Subject Areas
All Articles
  • Addiction Medicine (269)
  • Allergy and Immunology (550)
  • Anesthesia (135)
  • Cardiovascular Medicine (1749)
  • Dentistry and Oral Medicine (238)
  • Dermatology (172)
  • Emergency Medicine (310)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (654)
  • Epidemiology (10786)
  • Forensic Medicine (8)
  • Gastroenterology (585)
  • Genetic and Genomic Medicine (2937)
  • Geriatric Medicine (286)
  • Health Economics (531)
  • Health Informatics (1919)
  • Health Policy (833)
  • Health Systems and Quality Improvement (743)
  • Hematology (291)
  • HIV/AIDS (627)
  • Infectious Diseases (except HIV/AIDS) (12502)
  • Intensive Care and Critical Care Medicine (685)
  • Medical Education (299)
  • Medical Ethics (86)
  • Nephrology (323)
  • Neurology (2786)
  • Nursing (150)
  • Nutrition (431)
  • Obstetrics and Gynecology (556)
  • Occupational and Environmental Health (597)
  • Oncology (1458)
  • Ophthalmology (441)
  • Orthopedics (172)
  • Otolaryngology (255)
  • Pain Medicine (190)
  • Palliative Medicine (56)
  • Pathology (380)
  • Pediatrics (865)
  • Pharmacology and Therapeutics (362)
  • Primary Care Research (334)
  • Psychiatry and Clinical Psychology (2634)
  • Public and Global Health (5342)
  • Radiology and Imaging (1004)
  • Rehabilitation Medicine and Physical Therapy (595)
  • Respiratory Medicine (724)
  • Rheumatology (329)
  • Sexual and Reproductive Health (289)
  • Sports Medicine (278)
  • Surgery (327)
  • Toxicology (47)
  • Transplantation (149)
  • Urology (125)