Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Let the DOCTOR Decide Whom to Test: Adaptive Testing Strategies to Tackle the COVID-19 Pandemic

Yu Liang, Amulya Yadav
doi: https://doi.org/10.1101/2020.12.18.20248498
Yu Liang
Penn State University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: luy70@psu.edu
Amulya Yadav
Penn State University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

A robust testing program is necessary for containing the spread of COVID-19 infections before a vaccine becomes available. However, due to an acute shortage of testing kits (especially in low-resource developing countries), designing an optimal testing program/strategy is a challenging problem to solve. Prior literature on testing strategies suffers from two major limitations: (i) it does not account for the trade-off between testing of symptomatic and asymptomatic individuals, and (ii) it primarily focuses on static testing strategies, which leads to significant shortcomings in the testing program’s effectiveness. In this paper, we address these limitations by making five novel contributions. (i) We formally define the optimal testing problem and propose the DOCTOR POMDP model to tackle it. (ii) We solve the DOCTOR POMDP using a scalable Monte Carlo tree search based algorithm. (iii) We provide a rigorous experimental analysis of DOCTOR’s testing strategies against static baselines - our results show that when applied to the city of Santiago in Panama, DOCTOR’s strategies result in ∼40% fewer COVID-19 infections (over one month) as compared to state-of-the-art static baselines. (iv) In addition, we analyze DOCTOR’s testing policy to derive insights about the reasons behind the optimality of DOCTOR’s testing policy. (v) Finally, we characterize conditions (of the real world) under which DOCTOR’s optimization would be of most benefit to government policy makers, and thus requires significant attention from researchers in this area. Our work complements the growing body of research on COVID-19, and serves as a proof-of-concept that illustrates the benefit of having an AI-driven adaptive testing strategy for COVID-19.

Competing Interest Statement

The authors have declared no competing interest.

Clinical Trial

This paper is not related to clinical study.

Funding Statement

No funding.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

No approval needed.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • amulya{at}psu.edu

Data Availability

Panama's COVID-19 infections number

https://www.worldometers.info/coronavirus/country/panama/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted December 22, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Let the DOCTOR Decide Whom to Test: Adaptive Testing Strategies to Tackle the COVID-19 Pandemic
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Let the DOCTOR Decide Whom to Test: Adaptive Testing Strategies to Tackle the COVID-19 Pandemic
Yu Liang, Amulya Yadav
medRxiv 2020.12.18.20248498; doi: https://doi.org/10.1101/2020.12.18.20248498
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Let the DOCTOR Decide Whom to Test: Adaptive Testing Strategies to Tackle the COVID-19 Pandemic
Yu Liang, Amulya Yadav
medRxiv 2020.12.18.20248498; doi: https://doi.org/10.1101/2020.12.18.20248498

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (70)
  • Allergy and Immunology (168)
  • Anesthesia (50)
  • Cardiovascular Medicine (451)
  • Dentistry and Oral Medicine (83)
  • Dermatology (55)
  • Emergency Medicine (157)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (191)
  • Epidemiology (5258)
  • Forensic Medicine (3)
  • Gastroenterology (195)
  • Genetic and Genomic Medicine (757)
  • Geriatric Medicine (80)
  • Health Economics (213)
  • Health Informatics (698)
  • Health Policy (358)
  • Health Systems and Quality Improvement (223)
  • Hematology (99)
  • HIV/AIDS (163)
  • Infectious Diseases (except HIV/AIDS) (5867)
  • Intensive Care and Critical Care Medicine (361)
  • Medical Education (104)
  • Medical Ethics (25)
  • Nephrology (83)
  • Neurology (764)
  • Nursing (43)
  • Nutrition (130)
  • Obstetrics and Gynecology (142)
  • Occupational and Environmental Health (231)
  • Oncology (479)
  • Ophthalmology (152)
  • Orthopedics (38)
  • Otolaryngology (95)
  • Pain Medicine (39)
  • Palliative Medicine (20)
  • Pathology (141)
  • Pediatrics (223)
  • Pharmacology and Therapeutics (136)
  • Primary Care Research (96)
  • Psychiatry and Clinical Psychology (862)
  • Public and Global Health (2011)
  • Radiology and Imaging (348)
  • Rehabilitation Medicine and Physical Therapy (158)
  • Respiratory Medicine (285)
  • Rheumatology (94)
  • Sexual and Reproductive Health (74)
  • Sports Medicine (76)
  • Surgery (109)
  • Toxicology (25)
  • Transplantation (29)
  • Urology (39)