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Abstract 

 

 

Background: Emotion dysregulation is central to the development and maintenance of 

psychopathology, and is common across many psychiatric disorders. Neurobiological models 

of emotion dysregulation involve the fronto-limbic brain network, including in particular the 

amygdala and prefrontal cortex (PFC). Neural variability has recently been suggested as an 

index of cognitive flexibility. We hypothesized that within-subject neural variability in the 

fronto-limbic network would be related to inter-individual variation in emotion dysregulation 

in the context of low affective control.  

Methods: In a multi-site cohort (N = 166, 93 females) of healthy individuals and individuals 

with emotional dysregulation (attention deficit/hyperactivity disorder (ADHD), bipolar 

disorder (BD), and borderline personality disorder (BPD)), we applied partial least squares 

(PLS), a multivariate data-driven technique, to derive latent components yielding maximal 

covariance between blood-oxygen level-dependent (BOLD) signal variability at rest and 

emotion dysregulation, as expressed by affective lability, depression and mania scores. 

Results: PLS revealed one significant latent component (r = 0.62, p = 0.001), whereby greater 

emotion dysregulation was associated with increased neural variability in the amygdala, 

hippocampus, ventromedial, dorsomedial and dorsolateral PFC, insula and motor cortex, and 

decreased neural variability in occipital regions. This spatial pattern bears a striking 

resemblance to the fronto-limbic network, which is thought to subserve emotion regulation, 

and is impaired in individuals with ADHD, BD, and BPD.  

Conclusions: Our work supports emotion dysregulation as a transdiagnostic dimension with 

neurobiological underpinnings that transcend diagnostic boundaries, and adds evidence to 

neural variability being a relevant proxy of neural efficiency. 

 

 

Keywords: Neural variability, Emotion dysregulation, Bipolar disorder, Borderline 

personality disorder, Attention deficit/hyperactivity disorder, Partial least squares. 
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1. Introduction  

 

Emotion regulation allows individuals to modulate, manage or organize emotions in 

order to help them meet the demands of the environment and achieve their goals (Campos 

et al., 1989; Gross, 1998; Hilt et al., 2011), implicating various processes and systems (e.g., 

cognitive, behavioural, social, biological). In contrast, emotion dysregulation has been 

described as “a pattern of emotional experience and/or expression that interferes with 

appropriate goal-directed behavior” (Beauchaine, 2015). Emotion dysregulation is a central 

feature of psychopathology, and is key to both the development and maintenance of mood, 

personality and anxiety disorders, among others (Aldao et al., 2010; Sheppes et al., 2015; 

Weissman et al., 2019). Because it is both a risk factor for psychopathology in the general 

population, and is common across many forms of psychiatric disorders, a better 

understanding of the neurobiological underpinnings of emotion dysregulation may have 

important clinical applications, for instance in predicting or measuring the efficacy of a 

therapeutic intervention (Fowler et al., 2016; Sloan et al., 2017) in a transdiagnostic setting. 

Emotion regulation is thought to rely on a fronto-limbic network, whereby the 

prefrontal cortex (PFC) exerts cognitive control over the amygdala, a subcortical structure 

that is central to emotion processing and salience perception (Adolphs, 2002; LeDoux, 

1996; Ochsner et al., 2012). Unsurprisingly, alterations in this network are central to the 

pathophysiology of bipolar disorder (BD), borderline personality disorder (BPD), and 

attention deficit/hyperactivity disorder (ADHD), which are all characterized by emotion 

dysregulation (Chase and Phillips, 2016; Phillips and Swartz, 2014; Ruocco and Carcone, 

2016; Schulze et al., 2016; Shaw et al., 2014; van Zutphen et al., 2015). Notably, the three 

disorders also share risk factors, such as childhood trauma and genetic overlap 

(Moukhtarian et al., 2018; Perroud et al., 2014; van Hulzen et al., 2017; Witt et al., 2017). 

This suggests that emotion dysregulation might have underlying neurobiological 

mechanisms that are shared across these disorders.  

A measure that has received increasing attention in the past few years is neural 

variability, obtained by computing within-subject BOLD signal variability over the 

timecourse. First considered as neural “noise”, it has since been proposed as an index of 

local system dynamics (McIntosh et al., 2010). Indeed, a certain level of instability is 

thought to be required for the brain to flexibly explore different functional network 

configurations and adapt to various environmental demands (Deco et al., 2009; Ghosh et 

al., 2008; McIntosh et al., 2008). Neural variability has been shown to vary with age 
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(Andrews-Hanna et al., 2007; Garrett et al., 2011, 2010; Guitart-Masip et al., 2016; Nomi 

et al., 2017; Samanez-Larkin et al., 2010), task performance (Armbruster-Genç et al., 2016; 

Garrett et al., 2011; Guitart-Masip et al., 2016; Raja Beharelle et al., 2012), but also 

symptom severity (Conio et al., 2019; Easson and McIntosh, 2019; Martino et al., 2016; 

Nomi et al., 2018). However, these relationships are often not linear (e.g., inverted U-shape 

in development and aging), and are task-, difficulty- and circuit-dependent (Armbruster-

Genç et al., 2016; Garrett et al., 2014; Mišić et al., 2010). Nevertheless, this body of work 

demonstrates the functional relevance of neural variability, and that it can provide 

meaningful information that is complementary to mean-based measures. 

Studies investigating neural variability in clinical populations have implicated neural 

circuits that are relevant for psychopathology. Indeed, brain signal variability in the medial 

PFC during rest was shown to correlate positively with increased ADHD symptoms and 

inattention in children with and without ADHD (Nomi et al., 2018). Furthermore, brain 

signal variability has been shown to vary with mood shifts. In patients with BD, opposing 

patterns of neural variability were found in the default and sensorimotor networks (SMN) 

between patients in the depressed and manic phases (Martino et al., 2016). This pattern 

mirrored the psychomotor behavior (i.e., acceleration/slowing), as well as the affective 

state (external/internal focus) that characterize the manic and depressive phases, 

respectively. Similarly, higher brain signal variability in the SMN was shown in individuals 

with a cyclothymic temperament compared to those with a depressive temperament in the 

general population (Conio et al., 2019). Interestingly, it was suggested that increased 

neuronal variability in specific circuits might facilitate local neuronal responses to 

incoming stimuli, and lead to over-excitation of specific behaviors/symptoms, e.g., 

psychomotor behavior, ruminations (Conio et al., 2019; Martino et al., 2016). However, to 

date, most studies looking at neural variability have relied on case-control comparisons, 

and few have tested for transnosographic, dimensional relationships.  

In contrast to traditional case-control reports, a recent movement in psychiatry has 

advocated for a dimensional approach in the search for neurobiological markers of 

psychiatric symptoms. The NIMH’s Research Domain Criteria (RDoC) framework is one 

of the initiatives working towards developing a neurobiologically-based classification of 

mental disorders that integrates findings from behavioral science, neuroscience, and 

genetics (Cuthbert, 2014; Insel et al., 2010). Consequently, we favored a transdiagnostic 

approach in the present work by leveraging a multi-site cohort of healthy individuals and 

individuals suffering from conditions strongly associated with emotion dysregulation 
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(ADHD, BD, BPD). We aimed to identify an emotion dysregulation dimension with 

associated patterns of blood-oxygen level-dependent (BOLD) variability, present in 

varying degrees among all individuals from our transdiagnostic cohort, which would 

suggest common neurobiological mechanisms that transcend diagnostic boundaries. We 

relied on partial least squares, a multivariate data-driven technique that extracts latent 

components by maximizing covariance between spatial patterns of neural variability and 

behavior (here, emotion dysregulation, as expressed by a combination of affective lability, 

depression and mania assessments). More specifically, we hypothesized that neural 

variability in the fronto-limbic circuit would be related to individual variation in emotion 

dysregulation.   
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2. Methods and Materials  

2.1 Participants 

Data for this study were collected from three sites (Geneva, Paris, Grenoble; see 

Supplementary Figure S1 for participants’ inclusion and exclusion criteria). All 

participants gave their written informed consent. The research was conducted according to 

the principles of the Declaration of Helsinki and was approved by the University of Geneva 

research Ethics Committee (CER 13–081), the Paris CPP Ile de France IX Ethics 

Committee, and the Grenoble University Hospital Ethics Committee (n° 2011-A00425-36). 

Inclusion criteria for all participants were age between 18 and 55, no history of alcohol or 

drug abuse/dependence, no current or past cardiac or neurological disease. Exclusion 

criteria for all participants were a history of neurological disease or head trauma with loss 

of consciousness, any significant cerebral anatomic abnormality, and contraindications for 

MRI. 

Patients with BD were recruited from the outpatient Mood Disorder Program of the 

Geneva University Hospital, from two university-affiliated participating centers (AP-HP, 

Henri Mondor Hospitals Créteil and Fernand Widal-Lariboisière Hospitals, Paris, France), 

and from the expert center for BD of Grenoble University Hospital. The clinical diagnosis 

was established using the DSM-IV-TR criteria by specialized psychiatrists and confirmed 

by the Mini-International Neuropsychiatric Interview (Sheehan et al., 1998), the Structured 

Clinical Interview for the DSM-IV (First et al., 2002), or the Diagnostic Interview for 

Genetic Studies (DIGS) (Nurnberger et al., 1994). Individuals were under stable medication 

for four weeks. Patients in Grenoble and Geneva were included in the study if they reported 

having been euthymic for at least one month prior to scanning and if they had a MADRS 

score < 15 and a YMRS score < 7. Patients in Paris were not in the acute phase of BD at 

the time of scanning. 

BPD and ADHD patients were recruited from the outpatient Emotional Dysregulation 

Unit for BPD and ADHD patients of the Geneva University Hospital. BPD diagnosis was 

established with the SCID for DSM-IV Axis II Personality Disorders (First et al., 1997), 

and ADHD diagnosis with the Diagnostic Interview for ADHD in Adults (DIVA 2.0), by 

trained clinicians as part of the standard procedure of these specialized programs. Some 

patients were under psychotropic medication for comorbidities, as reported in Table 1. 

Participants were instructed not to take psychostimulants on the day of the study data 

acquisition.  
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Control participants were recruited via local databases as well as through web 

advertisement and were matched with patients in terms of age, sex, level of education, and 

handedness. Exclusion criteria were past or present neurological or psychiatric disorders 

(Geneva, Grenoble), personal or family history of Axis I mood disorder, schizophrenia, or 

schizoaffective disorder (Paris), use of psychotropic medication, and contraindication for 

MRI. All participants underwent clinical assessment by trained raters using the DIGS 

(Nurnberger et al., 1994). 

In total, 122 individuals with BD were recruited on all three sites, 93 healthy controls 

(HC) were recruited on two sites (i.e., Geneva and Paris), while 24 individuals with BPD 

and 21 individuals with ADHD were only recruited on one site (i.e., Geneva). We excluded 

10 participants (8 BD, 1 BPD, 1 HC) for excessive in-scanner motion; 69 participants (39 

BD, 2 BPD, 1 ADHD, 27 HC) because they had not completed the clinical measures of 

interest; 9 participants because they scored above 15 on the MADRS (7 BD, 2 BPD) and 6 

because they scored above 7 on the YMRS (5 BD, 1 HC). The final sample thus comprised 

166 participants, including 63 euthymic BD, 20 ADHD, 19 BPD, and 64 HC. The 

demographic, imaging, and clinical data of the final sample are shown in Table 1. 

2.2 Clinical assessment 

We used the Affective Lability Scales (ALS; (Harvey et al., 1989)), the Montgomery-

Åsberg Depression Rating Scale (MADRS; (Montgomery and Åsberg, 1979)), and the 

Young Mania Rating Scale (YMRS; (Young et al., 1978)) to measure different facets of 

emotion dysregulation. The ALS specifically measures affective lability, which refers to 

the frequency, speed, and range of changes in affective states (Aas et al., 2015). The ALS 

is a 54-item self-reported questionnaire on which participants rate the tendency of their 

mood to shift between a “normal state” and different affects (depression, anger, anxiety 

and elation), as well as their tendency to experience shifts between elation and depression, 

and between anxiety and depression. The total score was obtained by averaging across the 

6 subscales, i.e., anger, anxiety, anxiety/depression, depression, depression/elation, elation. 

The MADRS and YMRS are both clinician-rated scales that evaluate depressive and manic 

symptoms, respectively. The total score (sum across all items) was used for both scales. 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.20248457doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248457
http://creativecommons.org/licenses/by-nc/4.0/


 8 

Table 1. Demographic, imaging, and clinical profile of the sample used in the analyses (N = 

166).  

 

 Bipolar 
(N=75) 

ADHD   
(N=20) 

Borderline 
(N=21) 

Controls   
(N=65) 

F / 
chi² 

p val 

       
Demographics       

Age, mean (SD) 37.22 (11.61) 24.00 (3.45) 27.05 (4.67) 35.06 (12.01) 10.82 1.61E-06 
Sex (F/M) 30 / 33 7 / 13 19 / 0 37 / 27 20.39 1.41E-04 

Education, mean (SD) a 13.22 (2.70) 16.00 (2.81) 14.84 (3.18) 12.67 (2.86) 8.34 3.97E-05 
       

Imaging       

Scanner (1/2/3/4) 16 / 21 / 10 / 16 20 / 0 / 0 / 0 19 / 0 / 0 / 0 16 / 48 / 0 / 0 68.21 1.03E-14 

Framewise displacement, 
mean (SD) 0.17 (0.09) 0.14 (0.05) 0.13 (0.04) 0.17 (0.07) 

 
7.59 

 
8.83E-05 

       

Clinical       
ALS, mean (SD) 1.04 (0.64) 1.12 (0.48) 1.80 (0.46) 0.42 (0.40) 39.44 3.44E-19 
MADRS, mean (SD) 4.84 (4.51) 3.55 (3.44) 7.68 (3.45) 1.23 (2.17) 20.90 1.69E-11 
YMRS, mean (SD) 1.68 (1.87) 0.00 (0.00) 1.47 (1.39) 0.66 (1.39) 8.77 2.00E-05 
       

Disease severity       

Disease duration, mean (SD) b 14.59 (9.34) 6.80 (5.31) 9.23 (5.39) - - - 
# Hospitalizations, mean (SD) c 3.95 (3.24) 0.05 (0.22) 1.94 (2.54) - - - 
       

Medication (by target) d       

Dopaminergic, No. (%)  44 (70%) 15 (75%) 1 (5%) 0 (0%) - - 
Serotonergic, No. (%) 46 (73%) 1 (5%) 2 (11%) 0 (0%) - - 
Glutamatergic, No. (%) 42 (67%) 0 (0%) 0 (0%) 0 (0%) - - 
GABAergic, No. (%) 36 (57%) 0 (0%) 0 (0%) 0 (0%) - - 
Norepinephrinergic, No. (%) 30 (48%) 15 (75%) 0 (0%) 0 (0%) - - 
Lithium, No. (%) 38 (60%) 0 (0%) 0 (0%) 0 (0%) - - 
No medication, No. (%) 30 (48%) 5 (25%) 17 (89%) 46 (72%) - - 

Medication load, mean (SD) 2.14 (1.51) 0.85 (0.59) 0.16 (0.50) 0.31 (0.53) - - 

       

Groups were compared with either ANOVAs (for continuous measures) or chi-squared tests (for categorical 

measures). All p-values that survived false discovery rate (FDR) correction (q < 0.05) are indicated in bold. 

Disease severity and medication use are only shown for informative purposes, but were not compared 

between groups. a Based on 138 participants. b Based on 82 patients. c Based on 55 patients. d Medication was 

sorted by the neurotransmitter system(s) affected by the medication used by participants, based on the 

Neuroscience-based Nomenclature (NbN-2, (Zohar et al., 2015, 2014), http://nbn2r.com/). The list of 

medications and their categorization can be found in Supplementary Table S1. Note that percentages may 

add up to more than 100% because some individuals take more than one medication.  

 

 

2.3 Magnetic resonance imaging acquisition 

Briefly, participants were scanned on 3T MRI scanners (see detailed MRI acquisition 

parameters in the Supplementary Methods). A resting state (RS) functional magnetic 

resonance imaging (fMRI) sequence, as well as an anatomical scan were acquired in all 

participants. 

2.4 Rs fMRI preprocessing 

The 10 first RS functional images were discarded to ensure signal equilibration, and 

the remaining images were preprocessed using SPM12 tools 
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(http://fil.ion.ucl.ac.uk/spm/software/spm12). Functional images were first realigned, 

followed by co-registration of the mean functional image with the anatomical scan. 

Functional images were normalized to the MNI space with SPM12 “Segment”, resampled 

to 3mm isotropic voxels, and then spatially smoothed with a 6mm full-width-at-half-

maximum Gaussian filter. The average signal within a mask of white matter (WM) and 

cerebrospinal fluid (CSF) were extracted using the Data Processing Assistant for Resting-

State fMRI toolbox (Yan and Zang, 2010). The effects of WM, CSF and 6 motion 

parameters were regressed out from the time-course, and a bandpass filter (0.01 - 0.10 Hz) 

was applied. Motion scrubbing (Power et al., 2012) was applied to correct for motion 

artefacts; i.e., framewise displacement (FD) was calculated as the sum of the absolute 

values of the six realignment parameters, and scans with a FD higher than 0.5 mm, as well 

as one scan before and two scans after, were excluded from the analysis. Participants with 

a time-course containing less than 4mn of scanning were excluded (8 BD, 1 BPD, 1 HC). 

2.5 DARTEL group template 

A group template was generated with the Diffeomorphic Anatomical Registration 

Through Exponentiated Lie Algebra (DARTEL (Ashburner, 2007)) from the grey matter 

and white matter tissue segments of all the participants comprising the entire original 

sample (N = 250, see Figure S1). Participants’ T1 images were first segmented using the 

Computational Anatomy Toolbox (CAT12; http://www.neuro.uni-jena.de/cat/) “Segment 

Data” and the tissue segments were normalized to the tissue probability maps by means of 

an affine transformation. The group template was then normalized to the MNI space, and 

additional registration to the ICBM template was applied. Finally, the template was 

downsampled in order to match the dimensions of the functional images, and then binarized 

to include only voxels with a  50% grey matter probability.  

Because of incomplete cerebellar coverage in 33 participants, we decided to exclude 

the cerebellum from the DARTEL template. To do so, we used a bilateral mask of the 

cerebellum as defined in Hammers atlas (Gousias et al., 2008; Hammers et al., 2003), a 

probabilistic anatomical atlas based on 83 manually-delineated regions drawn on MR 

images of 30 healthy adult subjects. In order to encompass the whole cerebellum, we first 

smoothed the mask with a 25mm FWHM Gaussian filter, then downsampled the mask to 

match the dimensions of the DARTEL template, and excluded the cerebellum mask from 

the DARTEL template. 
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2.6 BOLD signal variability 

Voxel-wise BOLD signal variability was obtained for each participant by computing 

the standard deviation of each preprocessed time-course. This approach is equivalent to the 

frequency-domain computation of the amplitude of low-frequency fluctuations (ALFF) 

between 0.01 and 0.1 Hz (Garrett et al., 2013; Zöller et al., 2017), and is strongly correlated 

with mean-square successive differences (MSSD) (Garrett et al., 2011; Kielar et al., 2016). 

BOLD signal variability maps were constrained to the binarized DARTEL template 

(excluding the cerebellum), and were z-scored across all voxels included in the template 

(Zöller et al., 2017). Age, sex, scanner, and head motion (mean FD) were linearly regressed 

out from the imaging data prior to the PLS analysis using a general linear model on 

MATLAB. 

2.7 Partial least squares analysis 

We used partial least squares (PLS) analysis to identify BOLD variability spatial 

patterns related to emotion dysregulation across all participants. PLS is a multivariate data-

driven statistical technique that aims to maximize covariance between two matrices 

(Krishnan et al., 2011; McIntosh and Lobaugh, 2004). The optimal relationship between 

the two data matrices is represented as latent components (LCs), which are weighted linear 

combinations of the original data that maximally covary with each other. A LC is 

characterized by a spatial pattern of neural variability and a behavioral pattern of affective 

lability, depression, and mania (imaging and behavioral saliences, respectively). By 

linearly projecting the imaging and behavioral measures of each participant onto their 

respective saliences, we obtain individual-specific brain and behavior scores, which reflect 

the participants’ imaging and behavioral contribution to each LC. Importantly, the PLS 

analysis was agnostic on the diagnostic group, so that transdiagnostic brain-behavior 

associations could be extracted.  

 The statistical significance of the LCs was assessed by constructing a null distribution 

of the singular values using permutation testing (1’000 permutations), whereby the 

behavioral data was permuted within each diagnostic group, so that latent components 

would not be driven by group differences. FDR correction (q < 0.05) was applied when 

assessing significance of the LCs. To determine which behavioral measures and voxels 

were driving the significant LC, we computed Pearson’s correlations between the original 

imaging data and brain scores, as well as between the original behavioral measures and 
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behavioral scores (Courville and Thompson, 2001; Henson, 2002). A higher positive (or 

negative) correlation for a particular behavioral measure for a given LC indicates greater 

importance of the behavioral measure for the LC, while a higher positive (or negative) 

correlation for a particular imaging measure for a given LC indicates greater importance of 

that imaging value for the LC. We estimated confidence intervals for these correlations 

with a bootstrapping procedure that generated 1’000 samples with replacement from 

participants’ imaging and behavioral data, while accounting for diagnostic groups (i.e., 

bootstrap resampling was performed within each diagnostic group) in order to avoid spatial 

and behavioral patterns being driven by group differences, since our aim was to find 

transdiagnostic patterns of emotion dysregulation. Z-scores were computed by dividing 

each correlation coefficient by its bootstrap-estimated standard deviation, and were 

considered as strong contributors to LCs at absolute values >3, corresponding to a 

robustness at a confidence interval of approximately 99% (McIntosh and Lobaugh, 2004). 

See Supplementary Methods for more details. 

2.8 Posthoc analyses 

Two-sample t-tests were performed to test whether brain and behavioral scores for LC1 

were different between participants from different diagnostic groups. Group differences in 

demographics, head motion, and clinical measures were tested using one-way analysis of 

variance (ANOVA, for continuous measures) or chi-squared tests (for categorical 

measures). We also tested if there were any significant associations between PLS brain (or 

behavioral) scores and disease severity, as well as medication use, using either Pearson’s 

correlations (for continuous measures), or t-tests (for binary measures). All posthoc 

analyses were corrected for multiple comparisons at a false discovery rate (FDR) of q < 

0.05. 

2.9 Control analyses 

A number of control analyses were computed to assess the robustness of our results 

(detailed in the Supplementary Methods). Briefly, we used BOLD signal variability maps 

that included the cerebellum (N = 133); we accounted for education level (N = 138), early 

life trauma (N = 138), or disease severity (N = 55-82); we considered patients only (N = 

102); and we considered only participants from the one site that included individuals from 

all four diagnostic groups to control for scan effects (N = 71).  
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2.10 Code availability 

The code for the MRI preprocessing, BOLD signal variability extraction, as well as the 

PLS outputs can be found on <GITHUB_LINK> while the code for the PLS analysis is 

publicly available at https://github.com/danizoeller/myPLS. 
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3. Results 

3.1 Neural variability correlates of emotion dysregulation 

We applied PLS to whole-brain BOLD signal variability and a combination of clinical 

measures that characterize emotion dysregulation in 166 participants that were either 

healthy or had a diagnostic of ADHD, BD, or BPD. PLS revealed one significant latent 

component (LC1) that survived FDR correction (q < 0.05). LC1 revealed a significant 

association (r = 0.62, p = 0.001) between BOLD signal variability and emotion 

dysregulation (Figure 1a), accounting for 74% of the covariance between the two 

modalities.  

Healthy individuals had significantly lower brain and behavior scores compared to all 

patients groups (Figure 1b). Moreover, individuals with BPD had significantly higher 

brain and behavior scores compared to individuals with ADHD and BD. This dimension 

was therefore expressed more strongly by individuals with BPD, and less strongly by 

individuals with no psychiatric diagnosis, although there was a large overlap among 

individuals from all diagnostic groups (as shown on Figure 1a).  

Higher loadings on LC1 were associated with greater affective lability and depression, 

whereas mania did not yield a strong contribution (Figure 1c and Supplementary Table 

S2). On the imaging side, LC1 was characterized by increased brain signal variability in 

the left ventromedial PFC, bilateral dorsomedial PFC, subgenual ACC, bilateral amygdala, 

right hippocampus, bilateral motor cortex, and right insula, as well as decreased variability 

in occipital regions (Figure 1d and Supplementary Table S3 for the list of all reliable 

peaks and their MNI coordinates). This pattern recapitulates the emotion regulation 

network, which is known to be dysfunctional in ADHD, BD and BPD (Chase and Phillips, 

2016; Phillips and Swartz, 2014; Ruocco and Carcone, 2016; Schulze et al., 2016; Shaw et 

al., 2014; van Zutphen et al., 2015).  

Post-hoc associations between brain (or behavior scores) and disease severity, as well 

as medication use, can be found in Table 2 and Supplementary Table S4. Medication 

targeting the dopaminergic system was associated with higher brain scores, while using 

medication affecting the serotonergic system was associated with higher behavioral scores. 

When categorizing medication use by medication class, the use of stimulants was also 

associated with higher brain scores. 
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Figure 1. The first latent component (LC1) is characterized by high emotion dysregulation. 

(a) PLS correlation between individual brain and behavior scores for LC1. Each dot is a 

participant from any of the four diagnostic groups. (b) Group differences in brain and 

behavior scores for LC1. Bold lines are mean scores for each group, while asterisks indicate 

two-sample t-tests that have survived to FDR correction (q < 0.05). Controls have 

significantly lower brain and behavior scores compared to all patient groups. BPD patients 

have significantly higher brain and behavior scores compared to ADHD and BD patients. 

(c) Greater depression and affective lability characterize the behavioral pattern of LC1 (see 

Supplementary Table S2). Mania did not have a strong contribution to LC1 (z < 3). 

Loadings are Pearson’s correlations between participants’ original behavioral data and their 

behavior scores, and error bars indicate bootstrap-estimated standard deviations. (d) LC1 

is characterized by increased BOLD signal variability in the left ventromedial PFC, 

bilateral dorsomedial PFC, subgenual ACC, bilateral amygdala, right hippocampus, right 

insula, and bilateral motor cortex, as well as decreased BOLD signal variability in occipital 

regions (see Supplementary Table S3 for MNI coordinates of peaks of all significant 

clusters). Loadings are z-scores obtained from bootstrapping, thresholded at absolute 

values  3 (p < 0.01). 
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3.2 Control analyses 

Control analyses whereby we i) used BOLD signal variability maps including the 

cerebellum; ii) accounted for education level or early life trauma; iii) considered patients 

only (i.e., excluded control participants); and iv) considered only participants from one site, 

all yielded saliences that were similar to the original brain and behavior saliences (see 

Supplementary Table S5), all showing the reliability of our findings. Detailed results are 

reported in the Supplementary Results.  

 

 

Table 2. Post-hoc associations between participants’ brain (or behavioral) scores, disease 

severity, and medication use (categorized by the neurotransmitter target). Pearson 

correlations (for continuous measures) or t-tests (for categorical measures) were computed 

across all participants. Significant correlations or t-tests that survived FDR correction (q > 

0.05) are indicated in bold. The same analysis was performed after classifying medication by 

medication class (see Supplementary Table S4). 

 

 
 Brain scores Behavior scores 

 r / t                  p r / t p 

Disease severity     

Disease duration 0.11 0.334 0.01 0.958 

# Hospitalizations -0.16 0.253 0.16 0.244 

     

Medication use (by target)    

Dopaminergic -2.40 0.018 -2.10 0.037 

Serotonergic 0.10 0.924 -2.61 0.010 

Glutamatergic 0.18 0.860 0.04 0.969 

GABAergic 0.81 0.417 -1.46 0.146 

Norepinephrinergic -2.25 0.026 -0.89 0.376 

Lithium 1.87 0.064 -0.73 0.467 

No medication -0.99 0.325 0.74 0.458 

# Meds -0.12 0.153 0.14 0.090 
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4. Discussion 

 

In this work, we aimed to identify spatial patterns of neural variability related to 

emotion dysregulation in a multi-site transdiagnostic cohort, using a multivariate data-

driven approach. We found that emotion dysregulation was associated with a pattern of 

increased BOLD signal variability in the ventromedial PFC, dorsomedial and dorsolateral 

PFC, amygdala, hippocampus, insula and motor cortex, and decreased BOLD signal 

variability in occipital regions. Our findings are in line with emotion dysregulation being a 

dimensional construct that spans across individuals with affective disorders such as ADHD, 

BD and BPD, rather than being specific to any of these disorders. Importantly, the spatial 

pattern of brain signal variability associated with this dimension bears a compelling 

resemblance to the fronto-limbic circuit that is thought to subserve emotion regulation, and 

is impaired in ADHD, BD, and BPD. Our findings therefore add evidence to brain signal 

variability being a relevant proxy of neural efficiency, and support emotion dysregulation 

as a transdiagnostic dimension with neurobiological underpinnings that transcend 

diagnostic boundaries.  

The patterns of brain signal variability associated with greater emotion dysregulation 

were mainly located in the fronto-limbic system, which plays a key role in emotional 

control/regulation (Ochsner et al., 2012; Ochsner and Gross, 2005). Critically, 

abnormalities in the fronto-limbic network are thought to underpin emotion dysregulation 

in pathophysiological models of BD and BPD (Chase and Phillips, 2016; Phillips and 

Swartz, 2014; Ruocco and Carcone, 2016; Schulze et al., 2016; van Zutphen et al., 2015). 

The suggested mechanism involves hyper-activation of limbic regions responsible for 

emotion generation – in particular, the amygdala, hippocampus, and ventral striatum-, 

coupled with hypo-activation of the PFC, which is responsible for cognitive control. This 

circuit has shown structural abnormalities in individuals with BD (Hanford et al., 2016; 

Hibar et al., 2018, 2016; Phillips and Swartz, 2014), BPD (Ruocco and Carcone, 2016; 

Schulze et al., 2016), but also ADHD (Hoogman et al., 2017), e.g., altered volumes of the 

amygdala and hippocampus, and cortical thinning of the PFC. In BPD patients, abnormal 

patterns of activity in the amygdala, hippocampus, vlPFC and dlPFC were shown during 

emotion processing (Ruocco et al., 2013; Ruocco and Carcone, 2016; Schulze et al., 2016), 

but also at rest, where the ACC, mPFC and dlPFC were found to be hyper-activated during 

resting state in BPD patients compared to control participants (Visintin et al., 2016). 

Furthermore, neural activation and connectivity of fronto-limbic regions, especially the 
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ACC, amygdala, insula, and vlPFC, showed changes following psychotherapy aimed at 

improving emotion regulation in BPD patients (Marceau et al., 2018). Abnormal patterns 

of activity and connectivity of fronto-limbic regions have been reported in euthymic BD 

patients, especially involving the amygdala and the medial PFC at rest (Favre et al., 2014; 

Rey et al., 2016), and during emotion regulation tasks (Favre et al., 2015; Rey et al., 2014). 

Moreover, psychosocial intervention in individuals with BD or at risk for BD may induce 

functional and structural changes in these regions (Favre et al., 2016, 2013; Garrett et al., 

2015). Emotion dysregulation is also prevalent in ADHD, and fronto-limbic alterations 

involving the amygdala, orbitofrontal cortex (OFC), ventral striatum and PFC have also 

been reported in this population (Shaw et al., 2014).  

Previous studies of neural variability in ADHD (Depue et al., 2010; Mowinckel et al., 

2017; Nomi et al., 2018; Sørensen et al., 2016), BD (Liu et al., 2012; Lu et al., 2014; Lui 

et al., 2015; Martino et al., 2016; Meda et al., 2015; Xu et al., 2014; Zhang et al., 2020), 

and BPD patients (Lei et al., 2017; Salvador et al., 2016) have failed to show any consistent 

pattern, although some have reported alterations in regions of the fronto-limbic network 

(mostly the PFC). In ADHD patients, increased BOLD signal variability in the dorsolateral 

PFC, inferior frontal and orbitofrontal cortex were found during a Stroop task (Depue et 

al., 2010), as well as increased brain signal variability in the ventromedial PFC during a 

vigilance task in adolescents with ADHD compared to controls (Sørensen et al., 2016). 

Moreover, greater MSSD in the dorsomedial PFC during rest was related to greater ADHD 

symptom severity, while greater MSSD in the ventromedial PFC was positively correlated 

with inattention across children with ADHD and typical developing children (Nomi et al., 

2018). In BPD patients, increased ALFF was shown in the hippocampus (Salvador et al., 

2016), while increased ALFF in the ventral PFC, dorsolateral PFC, and insula were found 

in euthymic BD patients (Xu et al., 2014), compared to controls. The fronto-limbic circuit 

also overlaps with the DMN, in particular the ventromedial PFC and hippocampus. We 

found increased neural variability of the ventromedial PFC to be associated with LC1, 

which was mostly driven by greater levels of depression. This partly corroborates a 

previous study contrasting neural variability patterns in the DMN and SMN, i.e., higher 

DMN/SMN ratio in the depressive phase of BD and the inverse pattern during mania, which 

were positively correlated with depression and mania scores, respectively (Martino et al., 

2016). Therefore, our findings somewhat corroborate previous reports of altered neural 

variability in these clinical populations, but for the first time in a network directly 

associated with emotion regulation. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.20248457doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248457
http://creativecommons.org/licenses/by-nc/4.0/


 18 

  Our findings may be in apparent contrast to the prevailing view that brain signal 

variability facilitates neural flexibility by allowing fluid transitions between brain states via 

a stochastic resonance effect (Deco et al., 2009; Ghosh et al., 2008). However, while it 

appears to be beneficial to task performance, heightened neural variability was also shown 

to correlate with worse clinical symptoms in various conditions (Easson and McIntosh, 

2019; Martino et al., 2016; Nomi et al., 2018). As neural variability is thought to increase 

the sensitivity to incoming stimuli, it is possible that heightened neural variability might 

lead to over-reactivity of specific neural circuits, as a maladaptive strategy to prepare for 

potentially relevant events, which instead supports the maintenance of emotion 

dysregulation in affective disorders. Consequently, our findings support the use of neural 

variability as a relevant proxy for dysfunctional emotional processing, which might be 

useful in tracking symptom severity and treatment efficacy (Dinstein et al., 2015).  

The present study has several strengths including the use of a multivariate data-driven 

approach and the relatively large transdiagnostic cohort. Moreover, our approach aligns 

with recent initiatives such as the RDoC (Cuthbert, 2014; Insel et al., 2010), that promote 

neurobiologically-based approaches to investigate dimensions of (ab)normal functioning, 

which often transcend classical nosological categories. Computational techniques may help 

in this endeavor by deriving brain-behavior associations that could serve as potential 

phenotypes. Moreover, by quantifying their neurobiological correlates, data-driven 

machine learning approaches such as PLS could help refine future taxonomies for mental 

disorders.  

However, this work also has some limitations. First, because of poor cerebellar 

coverage in a number of participants, we decided to exclude the cerebellum from our 

analyses, even though an increased number of reports implicate this structure in higher-

order processes. Moreover, the diagnostic groups were not balanced across the three sites, 

which is a common shortcoming in multi-site studies with different protocols. Most patients 

were also using psychotropic medication at the time of scanning, which is known to 

modulate intrinsic brain activity metrics (Pereira-Sanchez et al., 2020). Our post-hoc 

analyses showed mild associations (t < 3) between LC1 and medication use. Finally, while 

PLS is a powerful technique for identifying brain-behavior associations, they remain 

correlational and do not claim to imply any causal relationship. Future studies are needed 

to further replicate these effects. 

Despite some limitations, our findings have unveiled the neural variability correlates of 

emotion dysregulation in the fronto-limbic system, further improving our understanding of 
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the pathogenesis of affective disorders. Importantly, emotion dysregulation is a 

transdiagnostic construct that has shown clinical utility as a therapeutic target, as 

demonstrated by a decrease in maladaptive emotion regulation strategy use and symptom 

severity (depression, anxiety, substance use, etc.), regardless of the treatment protocol, the 

construct of emotion regulation that was examined, and the targeted disorder (Sloan et al., 

2017). Indeed, transdiagnostic protocols aimed at improving emotion regulation have been 

shown to provide rapid and significant improvement in individuals with various forms of 

severe mental illness (Fowler et al., 2016). In this context, our approach might also provide 

a robust way of tracking therapeutic effects of interventions aimed at enhancing emotion 

regulation. 

 

Acknowledgments 

We wish to thank Gwladys Rey for her initial help in gathering a multisite database, 

Anne-Lise Küng and Eleonore Pham for their help in the recruitment of participants, and 

Alexandre Dayer for his inspirational guidance and enthusiasm for this project. He will stay 

in our hearts. 

 

Financial support  

This work was supported by the Swiss National Center of Competence in Research; 

“Synapsy: the Synaptic Basis of Mental Diseases”, financed by the Swiss National Science 

Foundation (grant number 51NF40-158776), a grant of the Swiss National Science 

Foundation to JMA (grant number 32003B-156914) and the Fondamental Suisse 

Foundation.  

VK was partly supported by the Singapore National Research Foundation (NRF) 

Fellowship (Class of 2017) and the Singapore Ministry of Defense (Project CURATE). Her 

work utilized resources provided by the Center for Functional Neuroimaging Technologies, 

NIH P41EB015896 and instruments supported by NIH 1S10RR023401, NIH 

1S10RR019307, and NIH 1S10RR023043 from the Athinoula A. Martinos Center for 

Biomedical Imaging at the Massachusetts General Hospital. The computational work was 

partially performed on resources of the National Supercomputing Centre, Singapore 

(https://www.nscc.sg).  

This work was supported by the French ANR under the “VIP” (MNP 2008) Project; 

the Investissements d’Avenir programs managed by the ANR under references ANR-11-

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.20248457doi: medRxiv preprint 

http://www.google.com/url?q=http%3A%2F%2Flinks.nscc.sg%2Fwf%2Fclick%3Fupn%3DXr8ZzYUfdJqMgKQU8W-2BweYV2dcBYRgU4ykuTd3Py7Pg-3D_-2BPe06-2FbvfIwPZYvDYsJeB7r5FN5gqxZARjg-2BFiBtsgpfde-2BTJ2JzYIMRE6jaLBB34BX4ures0nBqF9SorM9tVN1PzibFORNP-2BLBtQ6pV0m129kB66IgzksWSOTrT-2FXMaFPFWYIH-2Fhqyb6qWsVC4kqdsXVbozeL95NE7i-2B5Csaf1Aq-2BQGtzzo4Mp7I2QptBAxmoseOZiNQF5IAhNBPLJNB3zq53-2FlXcvN6fQvk9At-2FPrtFhazuoNq1D1XnnbJc-2B7MpZerHWrplQOGn-2FEq3aDP-2BjgtrmGygV1LmP4CsWk5MOyz7ba3YLBW6SxKpmm-2FsBztYmxhfi2BUf3VEqjbJJMNYfr1GLsZoPCKmrMaZG0NOl1rnxWa0wyQVCG1hFoCyipm-2FHdO4Dx0tSc-2BTOnxSQTedw-3D-3D&sa=D&sntz=1&usg=AFQjCNE2HEJxjDlma16EuqbJiI0Yxh5P_g
https://doi.org/10.1101/2020.12.18.20248457
http://creativecommons.org/licenses/by-nc/4.0/


 20 

IDEX-004-02 (Labex BioPsy) and ANR-10-COHO-10-01; and the Fondation pour la 

Recherche Médicale ("Bioinformatique pour la biologie 2014").  

This work was also supported by research grants from Grenoble University Hospital 

(http://www.chu-grenoble.fr/). The Grenoble MRI facility IRMaGE was partly funded by 

the French program "Investissement d'avenir" run by the "Agence Nationale pour la 

Recherche" (http://www.agence-nationale-recherche.fr/): Grant "Infrastructure d'Avenir en 

Biologie Santé" (grant number ANR-11-INBS-0006).  

 

Declarations of interest: None 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.20248457doi: medRxiv preprint 

http://www.chu-grenoble.fr/
http://www.agence-nationale-recherche.fr/
https://doi.org/10.1101/2020.12.18.20248457
http://creativecommons.org/licenses/by-nc/4.0/


 21 

5. References 

 

Aas, M., Pedersen, G., Henry, C., Bjella, T., Bellivier, F., Leboyer, M., Kahn, J.-P., Cohen, 

R.F., Gard, S., Aminoff, S.R., Lagerberg, T.V., Andreassen, O.A., Melle, I., Etain, B., 

2015. Psychometric properties of the Affective Lability Scale (54 and 18-item 

version) in patients with bipolar disorder, first-degree relatives, and healthy controls. 

J. Affect. Disord. 172, 375–380. https://doi.org/10.1016/j.jad.2014.10.028 

Adolphs, R., 2002. Neural systems for recognizing emotion. Curr. Opin. Neurobiol. 12, 169–

177. https://doi.org/10.1016/S0959-4388(02)00301-X 

Aldao, A., Nolen-Hoeksema, S., Schweizer, S., 2010. Emotion-regulation strategies across 

psychopathology: A meta-analytic review. Clin. Psychol. Rev. 30, 217–237. 

https://doi.org/10.1016/j.cpr.2009.11.004 

Andrews-Hanna, J.R., Snyder, A.Z., Vincent, J.L., Lustig, C., Head, D., Raichle, M.E., 

Buckner, R.L., 2007. Disruption of Large-Scale Brain Systems in Advanced Aging. 

Neuron 56, 924–935. https://doi.org/10.1016/j.neuron.2007.10.038 

Armbruster-Genç, D.J.N., Ueltzhöffer, K., Fiebach, C.J., 2016. Brain signal variability 

differentially affects cognitive flexibility and cognitive stability. J. Neurosci. 36, 

3978–3987. https://doi.org/10.1523/JNEUROSCI.2517-14.2016 

Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–

113. https://doi.org/10.1016/j.neuroimage.2007.07.007 

Beauchaine, T.P., 2015. Future Directions in Emotion Dysregulation and Youth 

Psychopathology. J. Clin. Child Adolesc. Psychol. Off. J. Soc. Clin. Child Adolesc. 

Psychol. Am. Psychol. Assoc. Div. 53 44, 875–896. 

https://doi.org/10.1080/15374416.2015.1038827 

Campos, J.J., Campos, R.G., Barrett, K.C., 1989. Emergent themes in the study of emotional 

development and emotion regulation. Dev. Psychol. 25, 394–402. 

https://doi.org/10.1037/0012-1649.25.3.394 

Chase, H.W., Phillips, M.L., 2016. Elucidating Neural Network Functional Connectivity 

Abnormalities in Bipolar Disorder: Toward a Harmonized Methodological Approach. 

Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1, 288–298. 

https://doi.org/10.1016/j.bpsc.2015.12.006 

Conio, B., Magioncalda, P., Martino, M., Tumati, S., Capobianco, L., Escelsior, A., 

Adavastro, G., Russo, D., Amore, M., Inglese, M., Northoff, G., 2019. Opposing 

patterns of neuronal variability in the sensorimotor network mediate cyclothymic and 

depressive temperaments. Hum. Brain Mapp. 40, 1344–1352. 

https://doi.org/10.1002/hbm.24453 

Courville, T., Thompson, B., 2001. Use of structure coefficients in published multiple 

regression articles: β is not enough. Educ. Psychol. Meas. 61, 229–248. 

Cuthbert, B.N., 2014. The RDoC framework: facilitating transition from ICD/DSM to 

dimensional approaches that integrate neuroscience and psychopathology. World 

Psychiatry 13, 28–35. https://doi.org/10.1002/wps.20087 

Deco, G., Jirsa, V., McIntosh, A.R., Sporns, O., Kötter, R., 2009. Key role of coupling, delay, 

and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. 106, 10302–10307. 

https://doi.org/10.1073/pnas.0901831106 

Depue, B.E., Burgess, G.C., Willcutt, E.G., Bidwell, L.C., Ruzic, L., Banich, M.T., 2010. 

Symptom-correlated brain regions in young adults with combined-type ADHD: Their 

organization, variability, and relation to behavioral performance. Psychiatry Res. 

Neuroimaging 182, 96–102. https://doi.org/10.1016/j.pscychresns.2009.11.011 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.20248457doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248457
http://creativecommons.org/licenses/by-nc/4.0/


 22 

Dinstein, I., Heeger, D.J., Behrmann, M., 2015. Neural variability: friend or foe? Trends 

Cogn. Sci. 19, 322–328. https://doi.org/10.1016/j.tics.2015.04.005 

Easson, A.K., McIntosh, A.R., 2019. BOLD signal variability and complexity in children and 

adolescents with and without autism spectrum disorder. Dev. Cogn. Neurosci. 36, 

100630. https://doi.org/10.1016/j.dcn.2019.100630 

Favre, P., Baciu, M., Pichat, C., Bougerol, T., Polosan, M., 2014. fMRI evidence for 

abnormal resting-state functional connectivity in euthymic bipolar patients. J. Affect. 

Disord. 165, 182–189. https://doi.org/10.1016/j.jad.2014.04.054 

Favre, P., Baciu, M., Pichat, C., De Pourtalès, M.-A., Fredembach, B., Garçon, S., Bougerol, 

T., Polosan, M., 2013. Modulation of fronto-limbic activity by the psychoeducation in 

euthymic bipolar patients. A functional MRI study. Psychiatry Res. Neuroimaging 

214, 285–295. https://doi.org/10.1016/j.pscychresns.2013.07.007 

Favre, P., Houenou, J., Baciu, M., Pichat, C., Poupon, C., Bougerol, T., Polosan, M., 2016. 

White matter plasticity induced by Psychoeducation in bipolar patients: a controlled 

diffusion tensor imaging study. Psychother. Psychosom. 85, 58–60. 

Favre, P., Polosan, M., Pichat, C., Bougerol, T., Baciu, M., 2015. Cerebral Correlates of 

Abnormal Emotion Conflict Processing in Euthymic Bipolar Patients: A Functional 

MRI Study. PloS One 10, e0134961. https://doi.org/10.1371/journal.pone.0134961 

First, M.B., Gibbon, M., Spitzer, R.L., Benjamin, L.S., 1997. User’s guide for the structured 

clinical interview for DSM‐IV axis II personality disorders: SCID‐II. American 

Psychiatric Press, Washington, DC. 

First, M.B., Spitzer, R.L., Gibbon, M., Williams, J.B.W., 2002. Structured Clinical Interview 

for DSM-IV-TR Axis I Disorders, Research version, Patient edition (SCID-I/P). 

Fowler, J.C., Clapp, J.D., Madan, A., Allen, J.G., Oldham, J.M., Frueh, B.C., 2016. Emotion 

dysregulation as a cross-cutting target for inpatient psychiatric intervention. J. Affect. 

Disord. 206, 224–231. https://doi.org/10.1016/j.jad.2016.07.043 

Garrett, A.S., Miklowitz, D.J., Howe, M.E., Singh, M.K., Acquaye, T.K., Hawkey, C.G., 

Glover, G.H., Reiss, A.L., Chang, K.D., 2015. Changes in brain activation following 

psychotherapy for youth with mood dysregulation at familial risk for bipolar disorder. 

Prog. Neuropsychopharmacol. Biol. Psychiatry 56, 215–220. 

https://doi.org/10.1016/j.pnpbp.2014.09.007 

Garrett, D.D., Kovacevic, N., McIntosh, A.R., Grady, C.L., 2011. The importance of being 

variable. J. Neurosci. 31, 4496–4503. https://doi.org/10.1523/JNEUROSCI.5641-

10.2011 

Garrett, D.D., Kovacevic, N., McIntosh, A.R., Grady, C.L., 2010. Blood oxygen level-

dependent signal variability is more than just noise. J. Neurosci. 30, 4914–4921. 

https://doi.org/10.1523/JNEUROSCI.5166-09.2010 

Garrett, D.D., McIntosh, A.R., Grady, C.L., 2014. Brain Signal Variability is Parametrically 

Modifiable. Cereb. Cortex 24, 2931–2940. https://doi.org/10.1093/cercor/bht150 

Garrett, D.D., Samanez-Larkin, G.R., MacDonald, S.W.S., Lindenberger, U., McIntosh, 

A.R., Grady, C.L., 2013. Moment-to-moment brain signal variability: a next frontier 

in human brain mapping? Neurosci. Biobehav. Rev. 37, 610–624. 

https://doi.org/10.1016/j.neubiorev.2013.02.015 

Ghosh, A., Rho, Y., McIntosh, A.R., Kötter, R., Jirsa, V.K., 2008. Noise during rest enables 

the exploration of the brain’s dynamic repertoire. PLoS Comput. Biol. 4, e1000196. 

https://doi.org/10.1371/journal.pcbi.1000196 

Gousias, I.S., Rueckert, D., Heckemann, R.A., Dyet, L.E., Boardman, J.P., Edwards, A.D., 

Hammers, A., 2008. Automatic segmentation of brain MRIs of 2-year-olds into 83 

regions of interest. NeuroImage 40, 672–684. 

https://doi.org/10.1016/j.neuroimage.2007.11.034 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.20248457doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248457
http://creativecommons.org/licenses/by-nc/4.0/


 23 

Gross, J.J., 1998. The Emerging Field of Emotion Regulation: An Integrative Review. Rev. 

Gen. Psychol. 2, 271–299. https://doi.org/10.1037/1089-2680.2.3.271 

Guitart-Masip, M., Salami, A., Garrett, D., Rieckmann, A., Lindenberger, U., Bäckman, L., 

2016. BOLD Variability is Related to Dopaminergic Neurotransmission and 

Cognitive Aging. Cereb. Cortex 26, 2074–2083. 

https://doi.org/10.1093/cercor/bhv029 

Hammers, A., Allom, R., Koepp, M.J., Free, S.L., Myers, R., Lemieux, L., Mitchell, T.N., 

Brooks, D.J., Duncan, J.S., 2003. Three-dimensional maximum probability atlas of 

the human brain, with particular reference to the temporal lobe. Hum. Brain Mapp. 

19, 224–247. https://doi.org/10.1002/hbm.10123 

Hanford, L.C., Nazarov, A., Hall, G.B., Sassi, R.B., 2016. Cortical thickness in bipolar 

disorder: a systematic review. Bipolar Disord. 18, 4–18. 

https://doi.org/10.1111/bdi.12362 

Harvey, P.D., Greenberg, B.R., Serper, M.R., 1989. The affective lability scales: 

development, reliability, and validity. J. Clin. Psychol. 45, 786–793. 

https://doi.org/10.1002/1097-4679(198909)45:5<786::aid-jclp2270450515>3.0.co;2-p 

Henson, R.K., 2002. The Logic and Interpretation of Structure Coefficients in Multivariate 

General Linear Model Analyses. 

Hibar, D.P., Westlye, L.T., Doan, N.T., Jahanshad, N., Cheung, J.W., Ching, C.R.K., 

Versace, A., Bilderbeck, A.C., Uhlmann, A., Mwangi, B., Krämer, B., Overs, B., 

Hartberg, C.B., Abé, C., Dima, D., Grotegerd, D., Sprooten, E., Bøen, E., Jimenez, E., 

Howells, F.M., Delvecchio, G., Temmingh, H., Starke, J., Almeida, J.R.C., Goikolea, 

J.M., Houenou, J., Beard, L.M., Rauer, L., Abramovic, L., Bonnin, M., Ponteduro, 

M.F., Keil, M., Rive, M.M., Yao, N., Yalin, N., Najt, P., Rosa, P.G., Redlich, R., 

Trost, S., Hagenaars, S., Fears, S.C., Alonso-Lana, S., van Erp, T.G.M., Nickson, T., 

Chaim-Avancini, T.M., Meier, T.B., Elvsåshagen, T., Haukvik, U.K., Lee, W.H., 

Schene, A.H., Lloyd, A.J., Young, A.H., Nugent, A., Dale, A.M., Pfennig, A., 

McIntosh, A.M., Lafer, B., Baune, B.T., Ekman, C.J., Zarate, C.A., Bearden, C.E., 

Henry, C., Simhandl, C., McDonald, C., Bourne, C., Stein, D.J., Wolf, D.H., Cannon, 

D.M., Glahn, D.C., Veltman, D.J., Pomarol-Clotet, E., Vieta, E., Canales-Rodriguez, 

E.J., Nery, F.G., Duran, F.L.S., Busatto, G.F., Roberts, G., Pearlson, G.D., Goodwin, 

G.M., Kugel, H., Whalley, H.C., Ruhe, H.G., Soares, J.C., Fullerton, J.M., 

Rybakowski, J.K., Savitz, J., Chaim, K.T., Fatjó-Vilas, M., Soeiro-de-Souza, M.G., 

Boks, M.P., Zanetti, M.V., Otaduy, M.C.G., Schaufelberger, M.S., Alda, M., Ingvar, 

M., Phillips, M.L., Kempton, M.J., Bauer, M., Landén, M., Lawrence, N.S., van 

Haren, N.E.M., Horn, N.R., Freimer, N.B., Gruber, O., Schofield, P.R., Mitchell, 

P.B., Kahn, R.S., Lenroot, R., Machado-Vieira, R., Ophoff, R.A., Sarró, S., Frangou, 

S., Satterthwaite, T.D., Hajek, T., Dannlowski, U., Malt, U.F., Arolt, V., Gattaz, W.F., 

Drevets, W.C., Caseras, X., Agartz, I., Thompson, P.M., Andreassen, O.A., 2018. 

Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from 

the ENIGMA Bipolar Disorder Working Group. Mol. Psychiatry 23, 932–942. 

https://doi.org/10.1038/mp.2017.73 

Hibar, D.P., Westlye, L.T., van Erp, T.G.M., Rasmussen, J., Leonardo, C.D., Faskowitz, J., 

Haukvik, U.K., Hartberg, C.B., Doan, N.T., Agartz, I., Dale, A.M., Gruber, O., 

Krämer, B., Trost, S., Liberg, B., Abé, C., Ekman, C.J., Ingvar, M., Landén, M., 

Fears, S.C., Freimer, N.B., Bearden, C.E., Sprooten, E., Glahn, D.C., Pearlson, G.D., 

Emsell, L., Kenney, J., Scanlon, C., McDonald, C., Cannon, D.M., Almeida, J., 

Versace, A., Caseras, X., Lawrence, N.S., Phillips, M.L., Dima, D., Delvecchio, G., 

Frangou, S., Satterthwaite, T.D., Wolf, D., Houenou, J., Henry, C., Malt, U.F., Bøen, 

E., Elvsåshagen, T., Young, A.H., Lloyd, A.J., Goodwin, G.M., Mackay, C.E., 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.20248457doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248457
http://creativecommons.org/licenses/by-nc/4.0/


 24 

Bourne, C., Bilderbeck, A., Abramovic, L., Boks, M.P., van Haren, N.E.M., Ophoff, 

R.A., Kahn, R.S., Bauer, M., Pfennig, A., Alda, M., Hajek, T., Mwangi, B., Soares, 

J.C., Nickson, T., Dimitrova, R., Sussmann, J.E., Hagenaars, S., Whalley, H.C., 

McIntosh, A.M., Thompson, P.M., Andreassen, O.A., 2016. Subcortical volumetric 

abnormalities in bipolar disorder. Mol. Psychiatry 21, 1710–1716. 

https://doi.org/10.1038/mp.2015.227 

Hilt, L.M., Hanson, J.L., Pollack, S.D., 2011. Emotion dysregulation, in: Encyclopedia of 

Adolescence. Elsevier, New York, pp. 160–169. 

Hoogman, M., Bralten, J., Hibar, D.P., Mennes, M., Zwiers, M.P., Schweren, L.S.J., van 

Hulzen, K.J.E., Medland, S.E., Shumskaya, E., Jahanshad, N., Zeeuw, P. de, Szekely, 

E., Sudre, G., Wolfers, T., Onnink, A.M.H., Dammers, J.T., Mostert, J.C., Vives-

Gilabert, Y., Kohls, G., Oberwelland, E., Seitz, J., Schulte-Rüther, M., Ambrosino, S., 

Doyle, A.E., Høvik, M.F., Dramsdahl, M., Tamm, L., van Erp, T.G.M., Dale, A., 

Schork, A., Conzelmann, A., Zierhut, K., Baur, R., McCarthy, H., Yoncheva, Y.N., 

Cubillo, A., Chantiluke, K., Mehta, M.A., Paloyelis, Y., Hohmann, S., Baumeister, S., 

Bramati, I., Mattos, P., Tovar-Moll, F., Douglas, P., Banaschewski, T., Brandeis, D., 

Kuntsi, J., Asherson, P., Rubia, K., Kelly, C., Martino, A.D., Milham, M.P., 

Castellanos, F.X., Frodl, T., Zentis, M., Lesch, K.-P., Reif, A., Pauli, P., Jernigan, 

T.L., Haavik, J., Plessen, K.J., Lundervold, A.J., Hugdahl, K., Seidman, L.J., 

Biederman, J., Rommelse, N., Heslenfeld, D.J., Hartman, C.A., Hoekstra, P.J., 

Oosterlaan, J., Polier, G. von, Konrad, K., Vilarroya, O., Ramos-Quiroga, J.A., 

Soliva, J.C., Durston, S., Buitelaar, J.K., Faraone, S.V., Shaw, P., Thompson, P.M., 

Franke, B., 2017. Subcortical brain volume differences in participants with attention 

deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. 

Lancet Psychiatry 4, 310–319. https://doi.org/10.1016/S2215-0366(17)30049-4 

Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D.S., Quinn, K., Sanislow, C., Wang, 

P., 2010. Research domain criteria (RDoC): toward a new classification framework 

for research on mental disorders. Am. J. Psychiatry 167, 748–751. 

https://doi.org/10.1176/appi.ajp.2010.09091379 

Kielar, A., Deschamps, T., Chu, R.K.O., Jokel, R., Khatamian, Y.B., Chen, J.J., Meltzer, 

J.A., 2016. Identifying Dysfunctional Cortex: Dissociable Effects of Stroke and 

Aging on Resting State Dynamics in MEG and fMRI. Front. Aging Neurosci. 8. 

https://doi.org/10.3389/fnagi.2016.00040 

Krishnan, A., Williams, L.J., McIntosh, A.R., Abdi, H., 2011. Partial Least Squares (PLS) 

methods for neuroimaging: a tutorial and review. NeuroImage 56, 455–475. 

https://doi.org/10.1016/j.neuroimage.2010.07.034 

LeDoux, J.E., 1996. The emotional brain: The mysterious underpinnings of emotional life, 

Simon&Schuster. ed. New York. 

Lei, X., Zhong, M., Liu, Y., Jin, X., Zhou, Q., Xi, C., Tan, C., Zhu, X., Yao, S., Yi, J., 2017. 

A resting-state fMRI study in borderline personality disorder combining amplitude of 

low frequency fluctuation, regional homogeneity and seed based functional 

connectivity. J. Affect. Disord. 218, 299–305. 

https://doi.org/10.1016/j.jad.2017.04.067 

Liu, C.-H., Ma, X., Wu, X., Li, F., Zhang, Y., Zhou, F.-C., Wang, Y.-J., Tie, C.-L., Zhou, Z., 

Zhang, D., Dong, J., Yao, L., Wang, C.-Y., 2012. Resting-state abnormal baseline 

brain activity in unipolar and bipolar depression. Neurosci. Lett. 516, 202–206. 

https://doi.org/10.1016/j.neulet.2012.03.083 

Lu, D., Jiao, Q., Zhong, Y., Gao, W., Xiao, Q., Liu, X., Lin, X., Cheng, W., Luo, L., Xu, C., 

Lu, G., Su, L., 2014. Altered baseline brain activity in children with bipolar disorder 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.20248457doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248457
http://creativecommons.org/licenses/by-nc/4.0/


 25 

during mania state: a resting-state study. Neuropsychiatr. Dis. Treat. 10, 317–323. 

https://doi.org/10.2147/NDT.S54663 

Lui, S., Yao, L., Xiao, Y., Keedy, S.K., Reilly, J.L., Keefe, R.S., Tamminga, C.A., Keshavan, 

M.S., Pearlson, G.D., Gong, Q., Sweeney, J.A., 2015. Resting-state brain function in 

schizophrenia and psychotic bipolar probands and their first-degree relatives. Psychol. 

Med. 45, 97–108. https://doi.org/10.1017/S003329171400110X 

Marceau, E.M., Meuldijk, D., Townsend, M.L., Solowij, N., Grenyer, B.F.S., 2018. 

Biomarker correlates of psychotherapy outcomes in borderline personality disorder: A 

systematic review. Neurosci. Biobehav. Rev. 94, 166–178. 

https://doi.org/10.1016/j.neubiorev.2018.09.001 

Martino, M., Magioncalda, P., Huang, Z., Conio, B., Piaggio, N., Duncan, N.W., Rocchi, G., 

Escelsior, A., Marozzi, V., Wolff, A., 2016. Contrasting variability patterns in the 

default mode and sensorimotor networks balance in bipolar depression and mania. 

Proc. Natl. Acad. Sci. 113, 4824–4829. 

McIntosh, A.R., Kovacevic, N., Itier, R.J., 2008. Increased brain signal variability 

accompanies lower behavioral variability in development. PLoS Comput. Biol. 4, 

e1000106. https://doi.org/10.1371/journal.pcbi.1000106 

McIntosh, A.R., Kovacevic, N., Lippe, S., Garrett, D., Grady, C., Jirsa, V., 2010. The 

development of a noisy brain. Arch. Ital. Biol. 148, 323–337. 

McIntosh, A.R., Lobaugh, N.J., 2004. Partial least squares analysis of neuroimaging data: 

applications and advances. NeuroImage 23 Suppl 1, S250-263. 

https://doi.org/10.1016/j.neuroimage.2004.07.020 

Meda, S.A., Wang, Z., Ivleva, E.I., Poudyal, G., Keshavan, M.S., Tamminga, C.A., Sweeney, 

J.A., Clementz, B.A., Schretlen, D.J., Calhoun, V.D., Lui, S., Damaraju, E., Pearlson, 

G.D., 2015. Frequency-Specific Neural Signatures of Spontaneous Low-Frequency 

Resting State Fluctuations in Psychosis: Evidence From Bipolar-Schizophrenia 

Network on Intermediate Phenotypes (B-SNIP) Consortium. Schizophr. Bull. 41, 

1336–1348. https://doi.org/10.1093/schbul/sbv064 

Mišić, B., Mills, T., Taylor, M.J., McIntosh, A.R., 2010. Brain Noise Is Task Dependent and 

Region Specific. J. Neurophysiol. 104, 2667–2676. 

https://doi.org/10.1152/jn.00648.2010 

Montgomery, S.A., Åsberg, M., 1979. A New Depression Scale Designed to be Sensitive to 

Change. Br. J. Psychiatry 134, 382–389. https://doi.org/10.1192/bjp.134.4.382 

Moukhtarian, T.R., Mintah, R.S., Moran, P., Asherson, P., 2018. Emotion dysregulation in 

attention-deficit/hyperactivity disorder and borderline personality disorder. Borderline 

Personal. Disord. Emot. Dysregulation 5, 9. https://doi.org/10.1186/s40479-018-0086-

8 

Mowinckel, A.M., Alnæs, D., Pedersen, M.L., Ziegler, S., Fredriksen, M., Kaufmann, T., 

Sonuga-Barke, E., Endestad, T., Westlye, L.T., Biele, G., 2017. Increased default-

mode variability is related to reduced task-performance and is evident in adults with 

ADHD. NeuroImage Clin. 16, 369–382. https://doi.org/10.1016/j.nicl.2017.03.008 

Nomi, J.S., Bolt, T.S., Ezie, C.E.C., Uddin, L.Q., Heller, A.S., 2017. Moment-to-moment 

BOLD signal variability reflects regional changes in neural flexibility across the 

lifespan. J. Neurosci. 37, 5539–5548. https://doi.org/10.1523/JNEUROSCI.3408-

16.2017 

Nomi, J.S., Schettini, E., Voorhies, W., Bolt, T.S., Heller, A.S., Uddin, L.Q., 2018. Resting-

State Brain Signal Variability in Prefrontal Cortex Is Associated With ADHD 

Symptom Severity in Children. Front. Hum. Neurosci. 12, 90. 

https://doi.org/10.3389/fnhum.2018.00090 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.20248457doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248457
http://creativecommons.org/licenses/by-nc/4.0/


 26 

Nurnberger, J.I., Blehar, M.C., Kaufmann, C.A., York-Cooler, C., Simpson, S.G., Harkavy-

Friedman, J., Severe, J.B., Malaspina, D., Reich, T., 1994. Diagnostic interview for 

genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. 

Arch. Gen. Psychiatry 51, 849–859; discussion 863-864. 

https://doi.org/10.1001/archpsyc.1994.03950110009002 

Ochsner, K.N., Gross, J.J., 2005. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–

249. https://doi.org/10.1016/j.tics.2005.03.010 

Ochsner, K.N., Silvers, J.A., Buhle, J.T., 2012. Functional imaging studies of emotion 

regulation: a synthetic review and evolving model of the cognitive control of emotion. 

Ann. N. Y. Acad. Sci. 1251, E1–E24. https://doi.org/10.1111/j.1749-

6632.2012.06751.x 

Pereira-Sanchez, V., Franco, A.R., Vieira, D., de Castro-Manglano, P., Soutullo, C., Milham, 

M.P., Castellanos, F.X., 2020. Systematic Review: Medication Effects on Brain 

Intrinsic Functional Connectivity in Patients With Attention-Deficit/Hyperactivity 

Disorder. J. Am. Acad. Child Adolesc. Psychiatry. 

https://doi.org/10.1016/j.jaac.2020.10.013 

Perroud, N., Cordera, P., Zimmermann, J., Michalopoulos, G., Bancila, V., Prada, P., Dayer, 

A., Aubry, J.-M., 2014. Comorbidity between attention deficit hyperactivity disorder 

(ADHD) and bipolar disorder in a specialized mood disorders outpatient clinic. J. 

Affect. Disord. 168, 161–166. https://doi.org/10.1016/j.jad.2014.06.053 

Phillips, M.L., Swartz, H.A., 2014. A Critical Appraisal of Neuroimaging Studies of Bipolar 

Disorder: Toward a New Conceptualization of Underlying Neural Circuitry and a 

Road Map for Future Research. Am. J. Psychiatry 171, 829–843. 

https://doi.org/10.1176/appi.ajp.2014.13081008 

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but 

systematic correlations in functional connectivity MRI networks arise from subject 

motion. NeuroImage 59, 2142–2154. 

https://doi.org/10.1016/j.neuroimage.2011.10.018 

Raja Beharelle, A., Kovačević, N., McIntosh, A.R., Levine, B., 2012. Brain signal variability 

relates to stability of behavior after recovery from diffuse brain injury. NeuroImage 

60, 1528–1537. https://doi.org/10.1016/j.neuroimage.2012.01.037 

Rey, G., Desseilles, M., Favre, S., Dayer, A., Piguet, C., Aubry, J.-M., Vuilleumier, P., 2014. 

Modulation of brain response to emotional conflict as a function of current mood in 

bipolar disorder: preliminary findings from a follow-up state-based fMRI study. 

Psychiatry Res. Neuroimaging 223, 84–93. 

Rey, G., Piguet, C., Benders, A., Favre, S., Eickhoff, S.B., Aubry, J.-M., Vuilleumier, P., 

2016. Resting-state functional connectivity of emotion regulation networks in 

euthymic and non-euthymic bipolar disorder patients. Eur. Psychiatry 34, 56–63. 

https://doi.org/10.1016/j.eurpsy.2015.12.005 

Ruocco, A.C., Amirthavasagam, S., Choi-Kain, L.W., McMain, S.F., 2013. Neural Correlates 

of Negative Emotionality in Borderline Personality Disorder: An Activation-

Likelihood-Estimation Meta-Analysis. Biol. Psychiatry, Risk Mechanisms for Bipolar 

Disorder 73, 153–160. https://doi.org/10.1016/j.biopsych.2012.07.014 

Ruocco, A.C., Carcone, D., 2016. A Neurobiological Model of Borderline Personality 

Disorder: Systematic and Integrative Review. Harv. Rev. Psychiatry 24, 311–329. 

https://doi.org/10.1097/HRP.0000000000000123 

Salvador, R., Vega, D., Pascual, J.C., Marco, J., Canales-Rodríguez, E.J., Aguilar, S., 

Anguera, M., Soto, A., Ribas, J., Soler, J., Maristany, T., Rodríguez-Fornells, A., 

Pomarol-Clotet, E., 2016. Converging Medial Frontal Resting State and Diffusion-

Based Abnormalities in Borderline Personality Disorder. Biol. Psychiatry, Borderline 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.20248457doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248457
http://creativecommons.org/licenses/by-nc/4.0/


 27 

Personality Disorder: Mechanisms of Emotion Dysregulation 79, 107–116. 

https://doi.org/10.1016/j.biopsych.2014.08.026 

Samanez-Larkin, G.R., Kuhnen, C.M., Yoo, D.J., Knutson, B., 2010. Variability in nucleus 

accumbens activity mediates age-related suboptimal financial risk taking. J. Neurosci. 

30, 1426–1434. https://doi.org/10.1523/JNEUROSCI.4902-09.2010 

Schulze, L., Schmahl, C., Niedtfeld, I., 2016. Neural Correlates of Disturbed Emotion 

Processing in Borderline Personality Disorder: A Multimodal Meta-Analysis. Biol. 

Psychiatry, Borderline Personality Disorder: Mechanisms of Emotion Dysregulation 

79, 97–106. https://doi.org/10.1016/j.biopsych.2015.03.027 

Shaw, P., Stringaris, A., Nigg, J., Leibenluft, E., 2014. Emotion dysregulation in attention 

deficit hyperactivity disorder. Am. J. Psychiatry 171, 276–293. 

https://doi.org/10.1176/appi.ajp.2013.13070966 

Sheppes, G., Suri, G., Gross, J.J., 2015. Emotion regulation and psychopathology. Annu. 

Rev. Clin. Psychol. 11, 379–405. https://doi.org/10.1146/annurev-clinpsy-032814-

112739 

Sloan, E., Hall, K., Moulding, R., Bryce, S., Mildred, H., Staiger, P.K., 2017. Emotion 

regulation as a transdiagnostic treatment construct across anxiety, depression, 

substance, eating and borderline personality disorders: A systematic review. Clin. 

Psychol. Rev. 57, 141–163. https://doi.org/10.1016/j.cpr.2017.09.002 

Sørensen, L., Eichele, T., van Wageningen, H., Plessen, K.J., Stevens, M.C., 2016. 

Amplitude variability over trials in hemodynamic responses in adolescents with 

ADHD: The role of the anterior default mode network and the non-specific role of the 

striatum. NeuroImage Clin. 12, 397–404. https://doi.org/10.1016/j.nicl.2016.08.007 

van Hulzen, K.J.E., Scholz, C.J., Franke, B., Ripke, S., Klein, M., McQuillin, A., Sonuga-

Barke, E.J., Kelsoe, J.R., Landén, M., Andreassen, O.A., Lesch, K.-P., Weber, H., 

Faraone, S.V., Arias-Vasquez, A., Reif, A., 2017. Genetic Overlap Between 

Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder: Evidence From 

Genome-wide Association Study Meta-analysis. Biol. Psychiatry, Attention-

Deficit/Hyperactivity Disorder: Predictors of Treatment Response and Comorbidities 

82, 634–641. https://doi.org/10.1016/j.biopsych.2016.08.040 

van Zutphen, L., Siep, N., Jacob, G.A., Goebel, R., Arntz, A., 2015. Emotional sensitivity, 

emotion regulation and impulsivity in borderline personality disorder: a critical 

review of fMRI studies. Neurosci. Biobehav. Rev. 51, 64–76. 

https://doi.org/10.1016/j.neubiorev.2015.01.001 

Visintin, E., De Panfilis, C., Amore, M., Balestrieri, M., Wolf, R.C., Sambataro, F., 2016. 

Mapping the brain correlates of borderline personality disorder: A functional 

neuroimaging meta-analysis of resting state studies. J. Affect. Disord. 204, 262–269. 

https://doi.org/10.1016/j.jad.2016.07.025 

Weissman, D.G., Bitran, D., Miller, A.B., Schaefer, J.D., Sheridan, M.A., McLaughlin, K.A., 

2019. Difficulties with emotion regulation as a transdiagnostic mechanism linking 

child maltreatment with the emergence of psychopathology. Dev. Psychopathol. 31, 

899–915. https://doi.org/10.1017/S0954579419000348 

Witt, S.H., Streit, F., Jungkunz, M., Frank, J., Awasthi, S., Reinbold, C.S., Treutlein, J., 

Degenhardt, F., Forstner, A.J., Heilmann-Heimbach, S., Dietl, L., Schwarze, C.E., 

Schendel, D., Strohmaier, J., Abdellaoui, A., Adolfsson, R., Air, T.M., Akil, H., Alda, 

M., Alliey-Rodriguez, N., Andreassen, O.A., Babadjanova, G., Bass, N.J., Bauer, M., 

Baune, B.T., Bellivier, F., Bergen, S., Bethell, A., Biernacka, J.M., Blackwood, 

D.H.R., Boks, M.P., Boomsma, D.I., Børglum, A.D., Borrmann-Hassenbach, M., 

Brennan, P., Budde, M., Buttenschøn, H.N., Byrne, E.M., Cervantes, P., Clarke, T.-

K., Craddock, N., Cruceanu, C., Curtis, D., Czerski, P.M., Dannlowski, U., Davis, T., 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.20248457doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248457
http://creativecommons.org/licenses/by-nc/4.0/


 28 

de Geus, E.J.C., Di Florio, A., Djurovic, S., Domenici, E., Edenberg, H.J., Etain, B., 

Fischer, S.B., Forty, L., Fraser, C., Frye, M.A., Fullerton, J.M., Gade, K., Gershon, 

E.S., Giegling, I., Gordon, S.D., Gordon-Smith, K., Grabe, H.J., Green, E.K., 

Greenwood, T.A., Grigoroiu-Serbanescu, M., Guzman-Parra, J., Hall, L.S., 

Hamshere, M., Hauser, J., Hautzinger, M., Heilbronner, U., Herms, S., 

Hitturlingappa, S., Hoffmann, P., Holmans, P., Hottenga, J.-J., Jamain, S., Jones, I., 

Jones, L.A., Juréus, A., Kahn, R.S., Kammerer-Ciernioch, J., Kirov, G., Kittel-

Schneider, S., Kloiber, S., Knott, S.V., Kogevinas, M., Landén, M., Leber, M., 

Leboyer, M., Li, Q.S., Lissowska, J., Lucae, S., Martin, N.G., Mayoral-Cleries, F., 

McElroy, S.L., McIntosh, A.M., McKay, J.D., McQuillin, A., Medland, S.E., 

Middeldorp, C.M., Milaneschi, Y., Mitchell, P.B., Montgomery, G.W., Morken, G., 

Mors, O., Mühleisen, T.W., Müller-Myhsok, B., Myers, R.M., Nievergelt, C.M., 

Nurnberger, J.I., O’Donovan, M.C., Loohuis, L.M.O., Ophoff, R., Oruc, L., Owen, 

M.J., Paciga, S.A., Penninx, B.W.J.H., Perry, A., Pfennig, A., Potash, J.B., Preisig, 

M., Reif, A., Rivas, F., Rouleau, G.A., Schofield, P.R., Schulze, T.G., Schwarz, M., 

Scott, L., Sinnamon, G.C.B., Stahl, E.A., Strauss, J., Turecki, G., Van der Auwera, S., 

Vedder, H., Vincent, J.B., Willemsen, G., Witt, C.C., Wray, N.R., Xi, H.S., Tadic, A., 

Dahmen, N., Schott, B.H., Cichon, S., Nöthen, M.M., Ripke, S., Mobascher, A., 

Rujescu, D., Lieb, K., Roepke, S., Schmahl, C., Bohus, M., Rietschel, M., 2017. 

Genome-wide association study of borderline personality disorder reveals genetic 

overlap with bipolar disorder, major depression and schizophrenia. Transl. Psychiatry 

7, e1155–e1155. https://doi.org/10.1038/tp.2017.115 

Xu, K., Liu, H., Li, H., Tang, Y., Womer, F., Jiang, X., Chen, K., Zhou, Y., Jiang, W., Luo, 

X., Fan, G., Wang, F., 2014. Amplitude of low-frequency fluctuations in bipolar 

disorder: A resting state fMRI study. J. Affect. Disord. 152–154, 237–242. 

https://doi.org/10.1016/j.jad.2013.09.017 

Yan, C., Zang, Y., 2010. DPARSF: a MATLAB toolbox for “pipeline” data analysis of 

resting-state fMRI. Front. Syst. Neurosci. 4. https://doi.org/10.3389/fnsys.2010.00013 

Young, R.C., Biggs, J.T., Ziegler, V.E., Meyer, D.A., 1978. A rating scale for mania: 

reliability, validity and sensitivity. Br. J. Psychiatry J. Ment. Sci. 133, 429–435. 

Zhang, Z., Bo, Q., Li, F., Zhao, L., Wang, Y., Liu, R., Chen, X., Wang, C., Zhou, Y., 2020. 

Increased ALFF and functional connectivity of the right striatum in bipolar disorder 

patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 110140. 

https://doi.org/10.1016/j.pnpbp.2020.110140 

Zohar, J., Nutt, D.J., Kupfer, D.J., Moller, H.-J., Yamawaki, S., Spedding, M., Stahl, S.M., 

2014. A proposal for an updated neuropsychopharmacological nomenclature. Eur. 

Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 24, 1005–1014. 

https://doi.org/10.1016/j.euroneuro.2013.08.004 

Zohar, J., Stahl, S., Moller, H.-J., Blier, P., Kupfer, D., Yamawaki, S., Uchida, H., Spedding, 

M., Goodwin, G.M., Nutt, D., 2015. A review of the current nomenclature for 

psychotropic agents and an introduction to the Neuroscience-based Nomenclature. 

Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 25, 2318–2325. 

https://doi.org/10.1016/j.euroneuro.2015.08.019 

Zöller, D., Schaer, M., Scariati, E., Padula, M.C., Eliez, S., Van De Ville, D., 2017. 

Disentangling resting-state BOLD variability and PCC functional connectivity in 

22q11.2 deletion syndrome. NeuroImage 149, 85–97. 

https://doi.org/10.1016/j.neuroimage.2017.01.064 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.20248457doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248457
http://creativecommons.org/licenses/by-nc/4.0/

	1. Introduction
	2. Methods and Materials
	2.1 Participants
	2.2 Clinical assessment
	2.3 Magnetic resonance imaging acquisition
	2.4 Rs fMRI preprocessing
	2.5 DARTEL group template
	2.6 BOLD signal variability
	2.7 Partial least squares analysis
	2.8 Posthoc analyses
	2.9 Control analyses
	2.10 Code availability

	3. Results
	3.1 Neural variability correlates of emotion dysregulation
	3.2 Control analyses

	4. Discussion
	Acknowledgments
	Financial support
	5. References

