Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Spatial Allocation of Scarce Vaccine and Antivirals for COVID-19*†‡

View ORCID ProfileFrançois M. Castonguay, View ORCID ProfileJulie C. Blackwood, View ORCID ProfileEmily Howerton, View ORCID ProfileKatriona Shea, View ORCID ProfileCharles Sims, View ORCID ProfileJames N. Sanchirico
doi: https://doi.org/10.1101/2020.12.18.20248439
François M. Castonguay
§Department of Agricultural and Resource Economics, University of California, Davis, Davis, CA 95616, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for François M. Castonguay
  • For correspondence: fcastonguay@ucdavis.edu
Julie C. Blackwood
¶Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Julie C. Blackwood
Emily Howerton
‖Department of Biology and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Emily Howerton
Katriona Shea
‖Department of Biology and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Katriona Shea
Charles Sims
**Howard H. Baker Jr. Center for Public Policy and Department of Economics, University of Tennessee, Knoxville, Knoxville, TN 37996, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Charles Sims
James N. Sanchirico
††Department of Environmental Science and Policy, University of California, Davis, Davis, CA 95616, USA and Resources for the Future, Washington DC 20036, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for James N. Sanchirico
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Although the COVID-19 disease burden is heterogeneous across space, the U.S. National Academies of Sciences, Engineering, and Medicine recommends an equitable spatial allocation of pharmaceutical interventions based, for example, on population size, in the interest of speed and workability. Utilizing economic–epidemiological modeling, we benchmark the performance of ad hoc allocation rules of scarce vaccines and drugs by comparing them to the rules for a vaccine and for a drug treatment that minimize the economic damages and expenditures over time, including a penalty cost representing the social costs of deviating from an ad hoc allocation. Under different levels of vaccine and drug scarcity, we consider scenarios where length of immunity and compliance to travel restrictions vary, and consider the robustness of the rules when assumptions regarding these factors are incorrect. Because drugs and vaccines attack different points in the disease pathology, the benefits from deviating from the ad hoc rule differ. For drug treatment, optimal policies often allocate all available treatments to one jurisdiction for a period of time, while ad hoc rules act to spread out treatments across jurisdictions. For vaccines, the benefits from deviating are especially high when immunity is permanent, when there is compliance to travel restrictions, and when the supply of vaccine is low. Interestingly, a lack of compliance to travel restrictions pushes the optimal allocations of vaccine towards the ad hoc and improves the relative robustness of the ad hoc rules, as the mixing of the populations reduces the spatial heterogeneity in disease burden.

JEL Classification C61, H12, H84, I18, Q54

Contribution Much of the discussion around pharmaceutical interventions for COVID-19 has focused on what segments of the population to prioritize for vaccines. Two important questions have received much less attention but could be just as significant in reducing the economic and public health costs of COVID-19. First, there is the question of how much of a limited vaccine to allocate across jurisdictions within a country and within each jurisdiction. Should we allocate based on relative population size, some normalized measure of disease burden (e.g., cases per 100,000), or should we base the allocation on numbers of essential workers? Second, other pharmaceutical interventions, such as antiviral drugs are coming online and will be in limited supply at least initially. How should these drugs be allocated across and within States? We investigate these questions by benchmarking the economic and public health performance of ad hoc allocation rules against optimally-derived rules. We also investigate how robust allocation rules are to compliance to nonpharmaceutical interventions, such as travel restrictions, and to uncertainty on the degree of immunity conveyed by the pharmaceutical interventions and prior infection. Knowledge on compliance to travel restrictions is critically important to the allocation question, as research has shown that varying levels of compliance across jurisdictions impacts the spatial distribution of disease burden. Whether the economic and public health implications from spatial allocation rules are as significant as allocation within jurisdictions to different classes of people is an open question and likely depends on the objectives of the policymakers. We find economic and public health gains from spatially targeted rules even after considering additional costs associated with deviations from the ad hoc rules.

Antiviral Drugs

  • Spatial Prioritization: Drugs should be directed towards the region that has fewer infections; optimal allocation gives rise to extreme allocations where it is preferable to give all of the allotment to one jurisdiction for a period of time rather than an allocation based on relative levels of infected individuals.

  • Epidemiological Consequences of Spatial Prioritization: Compared to the ad hoc allocation rule, where more treatments go to locations with more infected individuals, the optimal allocation results in a higher number of cumulative cases in the jurisdictions that have a higher initial level of infected individuals and fewer cumulative cases in the jurisdictions that have a lower initial level of infected individuals. Over the period of four months, however, how well the optimal more extreme allocation does in aggregate (across jurisdictions) relative to an aggregate ad hoc allocation is dependent on epidemiological, behavioral, and logistical factors.

  • Robustness of Spatial Allocation: The optimal allocations are not robust to incomplete information on compliance to travel restrictions and immunity, and perform worse than the ad hoc allocations in cases where they are designed under one set of assumptions but yet the true state of the world is different.

  • Policy Recommendation: Until we have more information about compliance and immunity, our analysis leads us to conclude that ad hoc allocations may be the least risky option for the allocation of antiviral drugs.

Vaccines

  • Spatial Prioritization: Compared to an ad hoc allocation rule based on relative population size as recommended by the US National Academies of Science, Engineering, and Medicine, the optimal allocation of vaccine favors the least-burdened jurisdiction, resulting in an unequal distribution from a resource allocation perspective.

  • Epidemiological Consequences of Spatial Prioritization: The optimal allocation results in a more equal level of infection across jurisdictions in each period while the ad hoc allocation results in a more equal distribution of aggregate cumulative infections.

  • Robustness of Spatial Allocation: In terms of economic expenditures and cumulative cases, the optimal allocation is less impacted when assumptions on immunity are incorrect than when wrong about compliance to travel restrictions.

  • Policy Recommendation: Imposing strict travel restrictions, or e.g. forcing quarantine when traveling to another jurisdiction, and prioritizing vaccination in jurisdictions that have lower initial disease burden could prevent a significant number of cases.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

F.M.C. acknowledges funding from the Henry A. Jastro Graduate Research Scholarship Award. K.S and E.H. acknowledge funding from the Huck Institutes for the Life Sciences at The Pennsylvania State University. J.N.S. is a member of the Giannini Foundation of Agricultural Economics and acknowledges support from National Institute of Food and Agriculture (CA-D-ESP-7853-H).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

No human or animal subjects were involved in this study.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • † We thank for useful comments participants of the NatuRE Policy Lab at UC Davis (naturepolicy.ucdavis.edu) and participants of the internal seminars at Université du Québec à Montréal (UQAM).

  • ‡ For the code used in this paper, see: https://github.com/fmcastonguay/SpatialAllocationCOVID19

  • 1- Added an executive summary at the beginning of the manuscript to help the reader identify key takeaways of our paper. 2- Typo corrected in the initial conditions in Table A2 in Appendix B. 3- Removed middle initial from author EH in the funding statement.

  • 7 Calibrated using a R0 estimate from Li et al. (2020) and estimates of effects of nonpharmaceutical interventions from Tian et al. (2020); this yields a R0 of approximately 1.4 when there is compliance to travel restrictions and to match a R0 of approximately 2.1 when there is no compliance to travel restrictions; these two values representing respectively a “medium” and “low” effect of the nonpharmaceutical intervention.

  • 8 Using estimates from Davies et al. (2020); this represents a 3-day latency period and a 5-day recovery period.

  • 9 Representing a 6-month immunity period in the scenarios where we assume immunity is not permanent; based on Edridge et al. (2020).

  • 10 Calibrated by using a case-fatility rate of 1.78% (adjusted for mis- and under-reporting; see Abdollahi et al., 2020).

  • 11 Representing the disability associated with severe lower respiratory tract infections because, to our knowledge, there are no official disability estimates associated with COVID-19; see Nurchis et al. (2020).

  • 12 According to the U.S. Department of Health and Human Services, Food and Drug Administration (FDA), Center for Biologics Evaluation and Research (CBER), and Center for Drug Evaluation and Research (CDER) (2019), there is no required effectiveness for a newly developed drug, however, what is necessary is that: “it is well established that the effect shown in the adequate and well-controlled clinical investigations, must be, in FDA’s judgment, clinically meaningful.” As a result, and to be consistent across both types of pharmaceutical interventions, we assume in the base case the effectiveness of the drug is 0.65.

  • 13 Following Buckner et al. (2020), we base this parameter value on the efficiency of the influenza vaccine (see Ohmit et al., 2014). Note that the U.S. Department of Health and Human Services, Food and Drug Administration (FDA), and Center for Biologics Evaluation and Research (CBER) (2020) requires that a future COVID-19 vaccine must have an effectiveness of at least 50%.

  • 14 Based on results from John et al. (2019) that suggest a yearly discount rate between 0.3% and 1.5% for health related expenditures; we chose a 1.5% annual discount rate in the main set of results. This gives a monthly discount rate of r = 0.0013.

  • 15 Based on current expectations of the costs of REGN-COV2, the medicine produced by Regeneron that President Trump took following his COVID-19 diagnosis. According to information from U.S. Food and Drug Administration (FDA), CBS News, and Regeneron, the drug is expected to cost between $1,500 and $6,500 depending on the exact number of doses required by a patient; see: https://www.cbsnews.com/news/what-is-regeneron-covid-antibody-cocktail-trump-covid-19/.

  • 16 Assuming an individual requires two doses; based on current agreements between the U.S. federal government and biotech companies; see https://www.npr.org/sections/health-shots/2020/08/06/899869278/prices-for-covid-19-vaccines-are-starting-to-come-into-focus. For a list of current vaccine prices, and particularly the price of the influenza vaccine, see https://www.cdc.gov/vaccines/programs/vfc/awardees/vaccine-management/price-list/index.html.

  • 17 Value based on a certain proportion of the value of statistical life, c; in the base case we assume it is 2 orders of magnitude smaller.

  • 18 Represents a value of statistical life of 10M U.S. dollars. Based on the value of a statistical life that the U.S. Environmental Protection Agency (2020) uses: approximately $7.4 million ($2006) which is equivalent to approximately $9.54 million ($2020).

Data Availability

The parameter values used to run the numerical simulations are publicly available from the citations included in the text.

https://github.com/fmcastonguay/SpatialAllocationCOVID19

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted December 26, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Spatial Allocation of Scarce Vaccine and Antivirals for COVID-19*†‡
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Spatial Allocation of Scarce Vaccine and Antivirals for COVID-19*†‡
François M. Castonguay, Julie C. Blackwood, Emily Howerton, Katriona Shea, Charles Sims, James N. Sanchirico
medRxiv 2020.12.18.20248439; doi: https://doi.org/10.1101/2020.12.18.20248439
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Spatial Allocation of Scarce Vaccine and Antivirals for COVID-19*†‡
François M. Castonguay, Julie C. Blackwood, Emily Howerton, Katriona Shea, Charles Sims, James N. Sanchirico
medRxiv 2020.12.18.20248439; doi: https://doi.org/10.1101/2020.12.18.20248439

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Economics
Subject Areas
All Articles
  • Addiction Medicine (62)
  • Allergy and Immunology (142)
  • Anesthesia (44)
  • Cardiovascular Medicine (408)
  • Dentistry and Oral Medicine (67)
  • Dermatology (47)
  • Emergency Medicine (141)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (171)
  • Epidemiology (4815)
  • Forensic Medicine (3)
  • Gastroenterology (177)
  • Genetic and Genomic Medicine (671)
  • Geriatric Medicine (70)
  • Health Economics (187)
  • Health Informatics (621)
  • Health Policy (314)
  • Health Systems and Quality Improvement (200)
  • Hematology (85)
  • HIV/AIDS (155)
  • Infectious Diseases (except HIV/AIDS) (5282)
  • Intensive Care and Critical Care Medicine (326)
  • Medical Education (91)
  • Medical Ethics (24)
  • Nephrology (73)
  • Neurology (677)
  • Nursing (41)
  • Nutrition (111)
  • Obstetrics and Gynecology (124)
  • Occupational and Environmental Health (203)
  • Oncology (438)
  • Ophthalmology (138)
  • Orthopedics (36)
  • Otolaryngology (88)
  • Pain Medicine (35)
  • Palliative Medicine (15)
  • Pathology (128)
  • Pediatrics (193)
  • Pharmacology and Therapeutics (129)
  • Primary Care Research (84)
  • Psychiatry and Clinical Psychology (769)
  • Public and Global Health (1799)
  • Radiology and Imaging (321)
  • Rehabilitation Medicine and Physical Therapy (138)
  • Respiratory Medicine (255)
  • Rheumatology (86)
  • Sexual and Reproductive Health (69)
  • Sports Medicine (61)
  • Surgery (100)
  • Toxicology (23)
  • Transplantation (28)
  • Urology (37)