Full title: EBV deletions as biomarkers of response to treatment of Chronic Active Epstein Barr Virus

Authors: Venturini Cristina¹, Houldcroft Charlotte J², Lazareva Arina³, Wegner Fanny¹, Morfopoulou Sofia¹, Amrolia Persis J.³, Golwala Zainab⁴, Rao Anupama⁴, Marks Stephen D.⁵,⁶, Simmonds Jacob⁴, Yoshikawa Tetsushi⁷, Farrell Paul J.⁸, Cohen Jeffrey I.⁹, Worth Austen J¹⁰, Breuer Judith¹¹,¹²

Affiliations:

¹ Institute of Child Health, University College London, London, UK
² Department of Medicine, University of Cambridge, Cambridge, UK
³ Bone Marrow Transplantation Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
⁴ Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
⁵ Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
⁶ University College London Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
⁷ Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan.
⁸ Section of Virology, Department of Infectious Disease, Imperial College Faculty of Medicine, London, UK
⁹ Laboratory of Infectious Disease, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
¹⁰ Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK

Corresponding author: Judith Breuer, Division of Institute Child Health, University College London, 30 Guilford St, Holborn, London WC1N 1EH. Contact email: j.breuer@ucl.ac.uk

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Key points:

- Unique EBV deletions are found in European CAEBV patients.
- Loss of deletions occurs following effective treatment and may prove useful in the management of disease.

Abstract:

Chronic active Epstein Barr Virus (CAEBV) is a rare and severe condition occurring in previously healthy individuals associated with persistent EBV viraemia, fever, lymphadenopathy and hepatosplenomegaly.

Specific deletions in the EBV genome have been found in CAEBV and certain lymphomas. However, it is unclear how stable these deletions are, whether they are present in different sites and how they evolve in response to treatment. We sequenced fifteen longitudinal blood samples from three CAEBV patients, comparing the results with 13 saliva samples from CAEBV patients and sequences from benign (both primary infection and reactivation) and malignant EBV-related conditions. We observed large EBV deletions in blood, some of which are predicted to disrupt viral replication, but not saliva from patients with CAEBV. Deletions were stable over time but were lost following successful peripheral blood stem cell transplants (PBSCT) or in one case, treatment with rituximab.

Our results are consistent with the likelihood that certain deletions occurring in virus from patients with CAEBV are associated with the evolution and persistence of haematological clones. We propose that the loss of EBV deletions following successful treatment should be investigated as a potential biomarker to aid management of CAEBV.
Introduction

Epstein-Barr virus (EBV) infects >95% of the population worldwide. A small number of patients develop life-threatening persistence of high level/sustained EBV replication following an infectious mononucleosis syndrome, often associated with splenomegaly and hepatitis. Chronic active EBV (CAEBV) (see “clinical definitions in Supplementary) is characterised by infiltration of tissues by EBV positive T, NK or less frequently B cells and can progress into lymphoproliferative disease. Clonal expansion of EBV-infected T or NK cells is well described.

To date, CAEBV has been mostly described in Asian or South/Central American patients. Frequent deletions in the EBV genome have been found in samples from Japanese CAEBV patients (35%) and other EBV-driven neoplasms. However, it is unclear if these deletions are specific for Asian EBV strains, whether they are present in viral genomes in different sites and how they evolve overtime.

We sequenced EBV from serial blood samples obtained from three UK patients with CAEBV. The results were compared with sequences from saliva of CAEBV patients and blood and tissue from other benign and malignant EBV-related conditions.

Methods

Study design

Fourteen blood samples from three CAEBV patients from Great Ormond Street Hospital (GOSH) were sequenced (Table 1 and Supplementary). All three received Rituximab, following which patient 2 became asymptomatic. Patients 1 and 3 received peripheral blood stem cell transplants (PBSCTs) due to relapse of EBV driven HLH. The data were compared with 67 EBV sequences from asymptomatic and other CAEBV patients, infectious mononucleosis (IM), post transfusion lymphoproliferative disease (PTLD), post solid organ transplant viraemia and lymphomas from different body-compartments (Table S1).
Statistical and sequence analysis

Samples were sequenced and analysed using a standard pipeline (Supplementary).

Diversity calculations and haplotype reconstruction have been described elsewhere \(^9,10\). All other statistical analyses were done with in-house R scripts \(^11\).

Results and discussion

EBV genomes in blood and saliva from CAEBV patients

EBV blood genomes from CAEBV patients clustered with European/US sequences; longitudinal samples, including those after PBSCT, clustered by patient (Supplementary figure 2). Within-host CAEBV nucleotide diversity (\(\pi\)) was low and comparable to that of EBV from other blood samples (Table S1 and Supplementary figure 4-5). In contrast CAEBV salivary samples showed significantly higher EBV diversity compared to blood and tumour samples (\(p<0.001\)), indicating the presence of multiple strains (Supplementary figure 6-8). Single nucleotide variants (SNVs) and small (<2kbp) deletions were present in all samples, largely located in latent genes as well as BPLF1 and BLLF1 [gp350] (Supplementary figures 9-17). Our results showed that EBV shed in saliva has the hallmarks of lytic replication and frequent mixed infections in line with previous studies \(^12,13\).

Larger Deletions

We identified low frequency larger (>2kb) EBV deletion in patient 1, as well as PTLD (2/4) and HL (2/7) tumour-tissue at position 120470-158062 (figure 1). This includes the BART miRNA clusters, as well as several lytic genes, including scaffold proteins (i.e. BdRF1, BVRF2), glycoproteins (i.e. BILF2, BXLF2), a tegument protein (BVRF1), and regulators of late gene transcription (BcRF1, BVLF1).

Interestingly, patient 1 also had a nonsense mutation in BXLF2. A second larger deletion at positions 12118-15159, which is part of the major EBV repeat (IR1) was present in blood from CAEBV patients (4/4) and one patient with PID.

EBV variation overtime in CAEBV patients
Analysis of variation overtime revealed that the blood from two CAEBV patients (1 and 3) with EBV present predominantly in T cells, showed higher EBV genomic heterogeneity with increasing number of low frequency (<50%) variants and deletions than patients with IM (Figure 1D, Supplementary figures 19-20). In contrast, patient 2, whose EBV was only found in B cells, had fewer SNVs and deletions with a picture similar to that seen in the blood from patients with PTLD with evidence of clonality. In patient 2, larger deletions were stable overtime but were lost after rituximab (Figure 1D). In CAEBV patient 1, larger deletions persisted despite rituximab. Associated clinical deterioration necessitated PBSCT (Table 1), following which both SNVs and deletions were absent from virus reactivating asymptotically. CAEBV patient 3, who also failed to respond to rituximab, lost most deletions, including the 12118-15159 IR1 deletion following PBSCT.

Discussion

EBV deletions were previously described only in CAEBV and malignancies patients of Asian origins, however we show that these deletions occur independently of geographic origin. Data from mouse models suggest that loss of the BART miRNAs and late lytic genes within 120470-158062 deletion may drive a more lytic phenotype and faster cell growth, this predisposing to tumour formation. Although, the mechanism is not entirely clear, Murata and colleagues argue that the abortive EBV replication resulting from the absence of these regions prevents normal cell death associated with lytic replication.

The 12118-15159 deletion overlaps with the IR1 which includes BWRF1 and Wp promoters. There is no direct evidence yet that BWRF1 is biologically significant, however it is known that some components are essential for the transformation of cells by EBV. Our deletion is similar to one identified in strain L591, a Hodgkin's lymphoma cell line (breakpoint 125bp upstream of hairpin). Persistence in longitudinally sampled blood of larger deletions has been associated with clonal expansion of the cells in which they are found. Importantly we show that clinical response to therapy is associated with loss of deletions in virus recovered after treatment. Our findings of low-
level potentially premalignant clones together with evidence of replicating virus in blood from patients with CAEBV fits with the hypothesis that deletions occur only when a particular subset of the patient's blood cells are infected with EBV. Progenitor lymphoid cells have been suggested to be the target cell type.

In conclusion, we confirm that clones containing EBV genomes with specific large deletions are found in blood but not saliva from CAEBV patients. While rituximab reduced the burden of EBV deletions in the blood of B cell-associated CAEBV, it had no impact on the prevalence of EBV deletions in T/NK-associated CAEBV. The absence of these EBV-deletions from virus reactivating following PBSCT suggests the loss of the pre-malignant clone and raises the possibility that these large deletions could be useful biomarkers for monitoring the success of treatments for CAEBV.

Data availability:
Sequence reads for CAEBV and PID patients have been deposited in the European Nucleotide Archive (ENA) under BioProject ID PRED41945. All accession numbers for the rest of the dataset are available in Table S1.

Acknowledgements:
We thank Prof. Richard Goldstein (Division of Infection & Immunity, UCL) and Dr Daniel P. Depledge (NYU Department of Medicine) for insightful comments and discussion. We acknowledge the support of the MRC/NIHR funded Pathogen Genomics Unit.

CV was supported by the Wellcome Trust Collaborative Award [20470/Z/16/Z]; SM by a WT Henry Wellcome fellowship [206478/Z/17/Z]. PJF was supported by MRC grant MR/S022597/1 and by NIHR Imperial BRC. JB is supported by the NIHR UCL/UCLH BRC. This work was supported by the intramural research program of the National of Allergy and Infectious Diseases.
Authorship contributions:

JB conceived the study, CV and JB designed the study and wrote the manuscript; CV performed bioinformatics analysis with contributions from SoM and FW; AW, AR and PA were responsible for care of the patients and provided clinical details. CH, AL, ZG collected clinical samples and data. SDM JS, JIC, YT and PJF provided additional samples and data. All authors read and participate in critical revision of the article.

Disclosure of conflicts of interest:

The authors declare no conflict of interest.

Reference:

Figure Legends

Figure 1A: Viraemia and treatment in GOSH CAEBV patient. Patient 1 and 3 received PBSCT (in red) and all patients received 4 to 5 doses of rituximab (blue lines). Samples sequenced are indicated in grey filled dots.

Figure 1B: Summary of deletions (> 30 bp). Samples for healthy (healthy-S), infectious mononucleosis (IM-B), CAEBV (CAEBV-S, CAEBV-B), primary immunodeficiency (PID) as well as EBV-positive solid organ transplant (SOT-B), PTLD (PTLD-B and PTLD-T) and HL (HL-T). Each line represents an EBV genome from a single patient (if multiple samples from one patient were available, only the one with the highest read depth was included here).

Figure 1C: Representation of the IR1 deletion in CAEBV. Representative portion of the alignment file for a blood CAEBV sample to demonstrate IR1 deletion (represented by red reads and black lines) compared to a IM blood sample where the deletion is not present (reads in grey).

Figure 1D: Analysis of longitudinal samples in CAEBV patients. Genes affected by larger deletions (≥ 2k) are shown in the heatmap; overtime all larger deletions are lost. Non-synonymous low frequency variants (<50%) are shown in the bubble plot.
<table>
<thead>
<tr>
<th>Pat</th>
<th>Sex</th>
<th>Description</th>
<th>Treatment</th>
<th>Transplant</th>
<th>Reactivation</th>
<th>N samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>M</td>
<td>o EBV driven HLH</td>
<td>o HLH 94 protocol</td>
<td>Alemtuzumab/Fludarabine/Melphalan conditioned matched unrelated donor (MUD) peripheral blood stem cell transplant (PBSCT)</td>
<td>4 months post HST had reactivation of EBV without signs of PTLD and resolved without therapy</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o primary and secondary immunodeficiency excluded</td>
<td>o 5 doses of Rituximab (pre-transplant)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The patient did not proceed to BMT as she responded well to HLH treatment and had no evidence of ongoing HLH activity despite ongoing EBV viraemia</td>
<td>Remained EBV PCR positive for 3.5 years without symptoms. As for November 2018 EBV PCR is negative.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>F</td>
<td>o EBV driven HLH</td>
<td>o HLH 94 protocol</td>
<td>The patient did not proceed to BMT as she responded well to HLH treatment and had no evidence of ongoing HLH activity despite ongoing EBV viraemia</td>
<td>Remained EBV PCR positive for 3.5 years without symptoms. As for November 2018 EBV PCR is negative.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o primary and secondary immunodeficiency excluded</td>
<td>o 4 doses of Rituximab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The patient did not proceed to BMT as she responded well to HLH treatment and had no evidence of ongoing HLH activity despite ongoing EBV viraemia</td>
<td>Remained EBV PCR positive for 3.5 years without symptoms. As for November 2018 EBV PCR is negative.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The patient did not proceed to BMT as she responded well to HLH treatment and had no evidence of ongoing HLH activity despite ongoing EBV viraemia</td>
<td>Remained EBV PCR positive for 3.5 years without symptoms. As for November 2018 EBV PCR is negative.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The patient did not proceed to BMT as she responded well to HLH treatment and had no evidence of ongoing HLH activity despite ongoing EBV viraemia</td>
<td>Remained EBV PCR positive for 3.5 years without symptoms. As for November 2018 EBV PCR is negative.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The patient did not proceed to BMT as she responded well to HLH treatment and had no evidence of ongoing HLH activity despite ongoing EBV viraemia</td>
<td>Remained EBV PCR positive for 3.5 years without symptoms. As for November 2018 EBV PCR is negative.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The patient did not proceed to BMT as she responded well to HLH treatment and had no evidence of ongoing HLH activity despite ongoing EBV viraemia</td>
<td>Remained EBV PCR positive for 3.5 years without symptoms. As for November 2018 EBV PCR is negative.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The patient did not proceed to BMT as she responded well to HLH treatment and had no evidence of ongoing HLH activity despite ongoing EBV viraemia</td>
<td>Remained EBV PCR positive for 3.5 years without symptoms. As for November 2018 EBV PCR is negative.</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Patients descriptions and clinical details. HLH= Haemophagocytic lymphohistiocytosis.