It is made available under a CC-BY-NC-ND 4.0 International license .

- 1 Emergence and rising of ceftazidime-avibactam resistant KPC-producing
- 2 *Pseudomonas aeruginosa* in China: a molecular epidemiology study
- 3 Yiwei Zhu^{1,2,3}, Jie Chen^{1,2,3,a}, Han Shen⁴, Zhongju Chen⁵, Qi-wen Yang⁶,
- 4 Jin Zhu⁷, Xi Li⁸, Qing Yang⁹, Feng Zhao¹⁰, Jingshu Ji¹⁰, Heng Cai^{1,2,3}, Yue
- 5 Li^{1,2,3}, Linghong Zhang^{1,2,3}, Sebastian Leptihn¹¹, Xiaoting Hua^{1,2,3},
 6 Yunsong Yu^{1,2,3}
- ¹Department of Infectious Diseases, Sir Run Run Shaw Hospital,
 Zhejiang University School of Medicine, Hangzhou, China
- ⁹ ²Key Laboratory of Microbial Technology and Bioinformatics of
 ¹⁰ Zhejiang Province, Hangzhou, China
- ³Regional Medical Center for National Institute of Respiratory Diseases,
- 12 Sir Run Run Shaw Hospital, Zhejiang University School of Medicine,
- 13 Hangzhou, China
- ⁴Department of Laboratory Medicine, Nanjing Drum Tower Hospital,
- 15 Nanjing University Medical School, Nanjing, China

⁵Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ⁶Department of Laboratory Medicine and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of

- 21 Medical Sciences and Peking Union Medical College, Beijing, China
- ⁷Department of Clinical Laboratory, Quzhou People's Hospital, Affiliated

It is made available under a CC-BY-NC-ND 4.0 International license .

23	Quzhou Hospital of Wenzhou Medical University, Quzhou, China						
24	⁸ Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital,						
25	People's Hospital of Hangzhou Medical College, Hangzhou, China						
26	⁹ State Key Laboratory for Diagnosis and Treatment of Infectious						
27	Diseases, Collaborative Innovation Center for Diagnosis and Treatment						
28	of Infectious Diseases, The First Affiliated Hospital, College of Medicine,						
29	Zhejiang University, Hangzhou, China						
30	¹⁰ Department of Clinical Laboratory, Sir Run Run Shaw Hospital,						
31	Zhejiang University School of Medicine, Hangzhou, China						
32	¹¹ The Zhejiang University-University of Edinburgh Institute, Zhejiang						
33	University-Edinburgh University Institute, Zhejiang University,						
34	International Campus, Haining, China; Department of Infectious Diseases,						
35	Sir Run Run Shaw Hospital, Zhejiang University School of Medicine,						
36	Hangzhou, China; School of Medicine, Edinburgh University, Edinburgh,						
37	UK						
38	^a Present address: Department of Laboratory, Ningbo Medical Center						
39	Lihuili Hospital, Ningbo, China						
40	Correspondence:						
41	Xiaoting Hua address: No. 3, East Qingchun Rd, Jianggan District,						

42 Hangzhou, China, 310016 [xiaotinghua@zju.edu.cn]

43 Yunsong Yu address: No. 3, East Qingchun Rd, Jianggan District,

44 Hangzhou, China, 310016 [yvys119@zju.edu.cn]

45	Background: Infections by Carbapenem-resistant Pseudomonas
46	aeruginosa (CRPA) are difficult to treat and novel antibiotics are
47	desperately needed. Till today, ceftazidime-avibactam (CAZ-AVI) has
48	been used to treat infections caused by multidrug resistant (MDR)
49	Gram-negative bacteria, including Klebsiella pneumoniae carbapenemase
50	(KPC)-producing organisms. Although cases of KPC-producing P.
51	aeruginosa (KPC-PA) have been reported sporadically, data about
52	KPC-PA susceptibility to CAZ-AVI and its molecular characteristics are
53	limited.

54 **Methods:** CRPA were collected from seven hospitals in China from 2017 55 to 2018. PCR was deployed to screen for the bla_{KPC} gene. Antimicrobial 56 susceptibility of KPC-PA was determined by broth microdilution method 57 or agar dilution method. We combined Illumina sequencing and 58 Nanopore long-read sequencing to elucidate the genomic characteristics 59 of KPC-PA strains.

Results: KPC-PA strains were found in six out of seven hospitals. 151/374 (40.4%) CRPA clinical isolates harbored the bla_{KPC-2} gene. Among KPC-PA, ST463 (107/151) was predominant, followed by ST485 (14/151) and ST1212 (12/151). Approximately half of all KPC-PA (50.3%) were susceptible to CAZ-AVI. We found that the bla_{KPC-2} gene copy number correlated with CAZ-AVI MIC. In more than 90% (136/151) of the strains, we found plasmids that belonged to two types carrying

It is made available under a CC-BY-NC-ND 4.0 International license .

67	bla _{KPC-2} gene. The Type 1 plasmid, predominant in East China, was
68	identified in 118 strains and the Type 2 plasmid, belonged to a
69	megaplasmid family spreading globally, was identified in 19 strains. In
70	addition, we identified IS26- Δ Tn6296 and IS6100- Δ Tn6296-Tn1403 as
71	two mobile genetic elements that mediated bla_{KPC-2} gene transmission.
72	Conclusion: Our results suggest that the bla_{KPC-2} gene is becoming a
73	remarkable mediator of carbapenem resistance in P. aeruginosa in China.
74	The emergence and spread of such KPC-PA strains poses a threat on
75	clinical therapy as CAZ-AVI becomes inefficient. It would be beneficial
76	to screen for the $bla_{\rm KPC}$ gene in CRPA strains for antimicrobial
77	surveillance.

78 Keywords: *Pseudomonas aeruginosa*, *bla*_{KPC-2}, ceftazidime-avibactam
79

80 Background

81 Pseudomonas aeruginosa, one of major opportunistic pathogens, is notorious for its potency to resist antibiotics including carbapenems. 82 83 Although carbapenems are still among the first-line therapeutics for infections caused by multi-drug resistant (MDR) P. aeruginosa, 84 85 carbapenem-resistant P. aeruginosa (CRPA) are increasingly observed in the clinic. Indeed, CRPA is among the pathogens listed by the World 86 87 Health Organization (WHO) that are considered of high relevance for human health and for which new antibiotics or clinical strategies are 88

It is made available under a CC-BY-NC-ND 4.0 International license .

89 urgently needed [1].

Approved by the U.S. Food and Drug Administration (FDA) in 2015, 90 ceftazidime-avibactam (CAZ-AVI), 91 a novel β -lactam/ β -lactamase inhibitor combination, has been deployed in the clinic for complicated 92 intraabdominal infections and for hospital-acquired pneumonia caused by 93 94 multidrug-resistant Enterobacteriaceae and P. aeruginosa [2]. The 95 inhibition spectrum of avibactam includes the Klebsiella pneumoniae 96 carbapenemase family (KPC) [3]. According to INFORM surveillance 97 [4-6], CAZ-AVI susceptibility rates are between 84-90% to CRPA that do not express metallo- β -lactamase (MBL). However, no study has detailed 98 the CAZ-AVI susceptibility of KPC-PA as a single group, and 99 100 investigated occurring resistance mechanisms, possibly due to the 101 currently low prevalence of such strains. Perhaps unsurprisingly, an increasing number of $bla_{\rm KPC}$ genes have been detected in clinical P. 102 103 aeruginosa isolates over the last years [7-12]. An example is the Eastern 104 Chinese city of Hangzhou, where the rate of KPC-PA has increased 105 significantly since the first case was reported a decade ago [13, 14].

Most of the investigated $bla_{\rm KPC}$ genes in *P. aeruginosa* have been reported to be plasmid-encoded [15-18], while a small number are found on the bacterial chromosome, occasionally in prophage sequences [12, 19]. However, most of these studies are single case reports and focus on the description of the genetic structure of $bla_{\rm KPC}$ and its surrounding

It is made available under a CC-BY-NC-ND 4.0 International license .

sequences. Therefore, the importance of KPC-PA strains and theirrelevance for the clinic remain unclear.

In this study, we analyzed the prevalence of KPC-PA strains from seven hospitals in China and tested *in vitro* antimicrobial susceptibility. We used Illumina and Nanopore sequencing technology to elucidate the molecular epidemiology and genetic characteristics of the KPC-PA strains.

Our data revealed that the susceptibility to CAZ-AVI of *Pseudomonas aeruginosa* was 50.3% in China. We found that the distribution of resistance genes was mediated by two major KPC-carrying plasmid types. Our data showed that the bla_{KPC-2} gene copy number was associated with CAZ-AVI MIC.

123 Methods

124 Sample collection and antimicrobial susceptibility tests

Clinical CRPA isolates were collected from seven hospitals around China,
including from Sir Run Run Shaw Hospital (SRRSH), the First affiliated
hospital of Zhejiang University (FAHZU), Provincial People's Hospital
of Zhejiang (ZPPH), Quzhou People's Hospital (QZPH), Nanjing Drum
Tower Hospital (NDTH), Wuhan Tongji Hospital (WTJH) and Peking
Union Medical College Hospital (PUMCH). Five hospitals were located
in Eastern China (SRRSH, FAHZU, ZPPH, QZPH and NDTH), while

It is made available under a CC-BY-NC-ND 4.0 International license .

other two (WTJH, PUMCH) were in Central and Northern China,
respectively. All of these samples were isolated from patients between
January, 2017 to February, 2018 and sent to SRRSH for investigation.
The *bla*_{KPC} gene was screened by PCR using the primers KPC-2_FW
(5'-AGGTTCCGGTTTTGTCTC-3') and KPC-2_RV
(5'-AGGTTCCGGTTTTGTCTC-3').

138 In vitro antibiotic susceptibility of 13 antipseudomonal antimicrobial 139 agents was determined by broth microdilution or agar dilution method. The antibiotics included piperacillin-tazobactam, ceftazidime, cefepime, 140 ceftazidime-avibactam, aztreonam, imipenem, meropenem, amikacin, 141 tobramycin, ciprofloxacin, levofloxacin and colistin. 142 gentamycin. 143 Antimicrobial agents were prepared from commercially available sources. 144 Breakpoints were referred to Clinical and Laboratory Standards Institute 145 (CLSI) M100 [20]. P. aeruginosa strain ATCC 27853 and K. pneumoniae 146 strain ATCC700603 was used as the quality control. Difficult-to-treat 147 resistance (DTR) is defined as *P. aeruginosa* exhibiting non-susceptibility 148 to all of the following: piperacillin-tazobactam, ceftazidime, cefepime, 149 aztreonam, meropenem, imipenem-cilastatin, ciprofloxacin, and 150 levofloxacin [21].

151 Whole-genome sequencing

152 For each KPC-PA strain, a single clone was inoculated into 5 mL

153	Luria-Bertani broth and incubated in a 37 shaker overnight. Bacteria					
154	were lysed by FastPrep-24 TM 5G bead beating grinder (MP Biomedicals,					
155	CA, USA) at 6.0m/sec for 40 seconds twice. Genome DNA were					
156	extracted using QIAamp DNA Mini Kit (Qiagen, Hilden, Germany)					
157	according to the manufacturer. DNA concentration was quantified using a					
158	NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA),					
159	and verified by agarose gel electrophoresis. Libraries were prepared using					
160	the TruePrep DNA Library Prep Kit V2 for Illumina (Vazyme Biotech,					
161	Nanjing, China), and sequenced on an Illumina X Ten platform (Illumina					
162	Inc., San Diego, CA, USA) and 150-bp paired end reads were generated.					
163	The Illumina sequence data were <i>de novo</i> assembled by shovill v1.1.0 [22]					
164	with options "mincov 10minlen 200trim" and SPAdes v.3.13-v.3.14					
165	[23] as the assembler.					

To further investigate the molecular characteristics of KPC-PA, we 166 pursued Nanopore MinION long-read sequencing (Oxford Nanopore 167 Technologies, Oxford, UK) on 6 isolates (SRRSH1002, SRRSH1408, 168 NDTH10366, SRRSH15, WTJH12 and QZPH41). These isolates were 169 170 selected based on their sequence type, plasmid type, bla_{KPC-2} copy number and geographic distribution. Another strain, SRRSH1101, 171 *bla*_{KPC-2}-negative but harboring Type 1 plasmid, also underwent Nanopore 172 173 sequencing to help illuminate the dynamics of multiple bla_{KPC-2} copies. The raw reads of the sequenced isolates were mapped onto three 174

It is made available under a CC-BY-NC-ND 4.0 International license .

representative plasmid sequences (GenBank accession: KY296095.1,
MN433457.1 and KU578314.1) by bwa-mem v.0.7.17 [24] to identify
plasmid type. These plasmids were categorized into three types based on
sequence similarity (cutoff is 50%).

179 Gene synteny

To attribute contigs to plasmid, genome draft of each strain was aligned 180 to representative plasmid of each type by mummer v.4.0.0beta [25]. 181 182 Results were filtered with a minimum length of 1000bp. The sum length 183 of each contigs which matched with respective representative plasmid 184 was calculated by a custom R script. Only contigs with more than 50% of 185 length matched with representative plasmid were attributed to plasmid 186 contigs. These plasmid contigs were re-annotated by Prokka v.1.14.6 [26], with representative plasmid as the prior source. Orthologs were found by 187 188 Orthofinder v.2.4.0 [27]. Gene synteny was visualized by Cytoscape v.3.8.0 [28], according to a published script [29], with minute 189 190 modification.

191 Sequencing depth measurement

To estimate the mean sequencing depth of each strain, SeqKit v.0.13.2 [30] was used to calculate total base amount in reads and genome drafts of each strain. Seqtk v.1.3-r106 [31] was used to subsample short reads

195 randomly to approximately $100 \times$ of sequencing depth. Short reads were realigned to genome drafts by bwa-mem v.0.7.17 [24]. To assess the 196 197 chromosome sequencing depth, single copy gene regions were selected to calculate their average depth with samtools v.1.11 [32] depth with option 198 "-aa". These single-copy genes were derived from BUSCO v.4.0.0 199 200 *Pseudomonadales* ortholog database (10th edition) [33], which including 201 782 single copy genes. Each strain contained 776 (99.3%) single-copy 202 genes on average. Plasmid sequencing depth were represented by that of 203 *repA* gene. To assess the copy numbers of bla_{KPC-2} gene and two types of plasmids, the ratio of sequencing depth of each gene to those of the 204 205 chromosome were calculated.

206 Phylogeny

P. aeruginosa genome drafts from NCBI Genbank database were 207 download. The MLST type was detected by mlst v.2.19.0 [34]. Isolates 208 209 with undefined sequencing type were submitted to PubMLST database 210 [35] for new ST profiles. Orthofinder v.2.4.0 [27] with default options 211 was used to cluster genes into orthologous groups. Sequences of single 212 copy orthologues were aligned by mafft v.7.471 [36] with options (--maxiterate 1000 --localpair). Aligned genes of each strain were 213 214 concatenated by a custom script to finish the multiple sequence alignment. 215 The best nucleotide substitution models, GTR+I+G4, were selected by

ModelTest-NG v.0.1.6 [37] with option (-t ml). The maximum likelihood phylogenetic tree was generated by RAxML-NG v. 1.0.1 [38] with 100 tree searches (50 random and 50 parsimony-based starting trees) and bootstrap replicates (autoMRE criterion). TreeCollapseCL4 [39] was used to collapse branches with <50% bootstrap support into polytomies. A circular tree layout with associated matrix was constructed by the R package *ggtree* v.2.2.4 [40].

Acquired antimicrobial resistance genes and mutation-derived antibiotic resistance mechanism

Acquired antimicrobial resistance (AMR) genes were annotated by Abricate v.1.0.1 [41], using NCBI AMRFinderPlus database (April 29,2020 updated) [42]. Only antibiotic genes with coverage greater than 90% were included. Pseudomonas-derived cephalosporinase (PDC) and OXA-class β -lactamases were reexamined by BLASTX against amino acid sequences in NCBI AMRFinderPlus database.

To determine mutation-derived antibiotic resistance, a collection of 164 antibiotic-resistance-related genes derived from a previous study was selected as candidates to investigate [43]. Most of previous studies treated model species *P. aeruginosa* PAO1 as the reference. However, natural variations were common among different sequence types. To minimize the false positive results, we chose strains from a previous study as the

It is made available under a CC-BY-NC-ND 4.0 International license .

237 references for each ST. A published dataset containing both genome 238 sequences and antibiotic susceptibility results was treated as reference 239 [44]. One strain of each ST was selected from meropenem-susceptible 240 group in this dataset and our samples to compose an unduplicated set. According to the accessory genes content analyzed by roary v.3.13.0 [45], 241 242 each representative strain of each ST in our sample paired with the most 243 similar strain in the meropenem-susceptible group for variant calling. 244 Variants were called by snippy v.4.6.0 [46], and only those in the 164 245 AMR gene regions were selected. Variants were filtered according to base quality (Phred score) greater than 20 and minimum read depth greater 246 247 than 20. For *oprD* gene, signal peptide was predicted by SignalP v.5.0 248 portable version [47]. The oprD gene was inferred as nonfunctional if 249 signal peptide is absent or an early stopped mutation occurred.

250 **Statistical analysis**

All statistical analysis were performed using R v.4.0.0-v.4.0.2 and Rstudio v.1.2.5001. Normality were detected by *shapiro.test* function in stats package v.4.0.0. Gene copy number comparisons among different MIC groups were done by *dunn.test* function in dunn.test package v.1.3.5, between different plasmid type groups were performed by *wilcox.test* function in stats package v.4.0.0. Correlation was calculated and tested by *cor, cor.test* functions in stats package v.4.0.0, respectively.

It is made available under a CC-BY-NC-ND 4.0 International license .

258 **Results**

259 Geographic Distribution and Antimicrobial susceptibility

260	A total of 374 CRPA clinical isolates were collected from seven						
261	hospitals in China, those were SRRSH (n=86), FAHZU (n=71), WTJH						
262	(n=50), PUMCH (n=50), NDTH (n=44), ZPPH (n=35) and QZPH (n=35).						
263	151 strains were bla_{KPC} -positive based on PCR screens. All bla_{KPC} genes						
264	were bla_{KPC-2} . bla_{KPC-2} gene were detected in CRPA isolates from all						
265	hospitals except PUMCH. The percentage of bla_{KPC-2} -positive strains in						
266	CRPA varied among hospitals from 11.4% (NDTH) to 92.1% (ZPPH)						
267	(Figure 1). The antimicrobial susceptibility test on the 151 KPC-PA						
268	isolates showed high-level (>90%) resistance to fluoroquinolones and all						
269	β -lactams except to CAZ-AVI (Table 1). 93.4% (141/151) of isolates met						
270	the criteria of DTR. Half of isolates (76/151) were susceptible to						
271	CAZ-AVI. MIC _{50/90} of CAZ-AVI were 16/4 and 32/4 mg/L, respectively.						
272	The aminoglycosides resistance rates ranged from 4.0% to 8.6%. No						
273	strain was resistant to colistin. Three strains from NDTH were						
274	colistin-only-susceptible. Full AST results was shown in Supplementary						
275	Table 1.						

276 Molecular epidemiology

277 Making use of Illumina sequencing data available for 151 KPC-PA, we

It is made available under a CC-BY-NC-ND 4.0 International license .

found that the multi-locus sequence type (MLST) detection indicated three main KPC-PA sequence types, ST463 (n=107), ST485 (n=14) and ST1212 (n=12), dominating in different geographic regions (Figure 1). ST463 was mainly found in cities in East China (Nanjing (5/5), Hangzhou (85/113) and Quzhou (17/19)), while ST485 (14/14) is the main KPC-PA of Wuhan in Central China (Figure 1).

Identification of KPC-encoding plasmids

Making use of sequence alignments, we categorized putative plasmid contigs in each genome draft into three plasmid types. 118 and 19 strains contained Type 1 and 2 plasmids, respectively. One strain, ZPPH8, contained both. No Type 3 plasmid was detected in our samples (Table 2 and Figure 2). The other 15 strains did not contain any of these three plasmid types.

291 Molecular characteristics of Type 1 plasmid

A representative of the Type 1 plasmid was pSRRSH1002-KPC. This plasmid was 49,370 bp in length and had a GC content of 58%. Encoded on pSRRSH1002-KPC was a putative repA, a maintenance system and an incomplete type IV secretion system (T4SS) which indicated that this plasmid was not conjugative *per se*. To visualize the structure variation of this plasmid type, we performed a gene synteny analysis which clustered

It is made available under a CC-BY-NC-ND 4.0 International license .

298 genes of the same orthologs and highlighted the variant part comparing to 299 the reference pSRRSH1002-KPC. From the gene synteny plot, we 300 observed two major variations. One variation we observed was that some 301 members of the Type 1 plasmid kept an intact T4SS. Another group was 302 formed that characterized by gene deletions and inversions in the 303 accessory region (Figure 3A).

Noticeably, pSRRSH1002-KPC harbored two bla_{KPC-2} gene copies. The two bla_{KPC-2} adjacent regions laid in an inversed repeated pattern, bounded by IS26. Each segment was identical to that on pKP048, the most common prototype of bla_{KPC-2} adjacent region in China (Figure 3B) [48]. Most often, the flanking insertion sequence was that of IS26- Δ Tn6296. Tn6296 consisted of a core bla_{KPC-2} platform, $\Delta repB$ -orf1-klcA-orf2-korC- $\Delta kfrC$ - Δ ISKpn6- bla_{KPC-2} -ISKpn27-Tn2

311 $tnpR-\Delta Tn2$ tnpA, which inserted into Tn1722 [16]. The Tn2 tnpA gene 312 was truncated at the 2,456 bp site. Furthermore, an IS26 intramolecular 313 replicative transposition in *trans* truncated the Tn2 *tnpA* at the 81 bp site 314 and inverted a 6,922-bp segment as verified by an 8-bp target site 315 duplication (TSD, CGATATTT). Interestingly, different to other 316 IS26-franked tandem repeat arrays, both repeated segments were 317 separated by a Δ IS26 and an intact IS26. The first 294 bp of Δ IS26 was 318 deleted.

319 We sequenced other two more plasmids, pSRRSH1101 and

It is made available under a CC-BY-NC-ND 4.0 International license .

pSRRSH1408-KPC. pSRRSH1101 was 29,640-bp in size. It had the identical backbone of pSRRSH1002-KPC. However, in pSRRSH1101, the insertion region that contained bla_{KPC-2} gene was deleted (Figure 3C). pSRRSH1408-KPC was identical with pSRRSH1002-KPC with the exception of an IS26 -mediated deletion of one bla_{KPC-2} gene (Figure 3C).

325 Molecular characteristics of Type 2 plasmid

pNDTH10366-KPC and pWTJH12-KPC belonged to a megaplasmid 326 327 family[49, 50], referred as Type 2 plasmid here. As with other family 328 members, these two plasmids carried a ParB-related ThiF-related cassette 329 (PRTRC system), a chemotaxis operon, a partition system, a type II 330 secretion system, a radical SAM operon, a tellurite resistance operon and a T4SS on its backbone. The gene synteny plot illustrated the backbone 331 332 was stable and variable region was composed of different mobile genetic 333 elements containing multiple AMR genes including β -lactamases 334 $bla_{\text{KPC-2}}$, bla_{AFM} and $bla_{\text{OXA-246}}$ (Figure 4).

335 IS6100-related composite transposon mediated bla_{KPC-2} gene 336 transmission

pWTJH12-KPC contained one bla_{KPC-2} gene. The genetic context adjacent to bla_{KPC-2} was identical to that on the Type 1 plasmid with p14057-KPC as a representative; in both plasmids the gene is embedded

340 in IS6100- Δ Tn6296-Tn1403 [16]. This suggested that this mobile genetic 341 element (MGE) carrying bla_{KPC-2} might be able to transfer between two 342 plasmid types, especially in case of ZPPH8 which contained both 343 plasmids. The Type 2 plasmid containing the genetic context in which the $bla_{\text{KPC-2}}$ was embedded, had been recently reported in Tianjin, China [18]. 344 345 Interestingly, a sequence alignment showed that plasmid pNK546-KPC 346 underwent large segment inversion next to the bla_{KPC-2} region (Figure 5). 347 The similarities within the genetic contexts indicated frequent exchange 348 events and transmission of bla_{KPC-2} -containing genome segments among 349 the strains we investigated, despite of their different sequence types.

350 **Comparison of two KPC-encoding plasmid types**

Since most of the bla_{KPC-2} gene were located on plasmids, we 351 352 hypothesized that plasmid types and plasmid copy numbers might 353 contribute to the bla_{KPC-2} gene multiple copy in each strain. To verify our 354 hypothesis, Illumina sequencing depths of all sequenced isolates were 355 measured. Compared to Type 2 plasmid, Type 1 plasmid exhibited 1.2 more copies per cell (2.36 vs. 1.20, $p=1.5\times10^{-10}$, see Table 3). Strains 356 357 containing Type 1 plasmid harbored 1.4 more $bla_{\text{KPC}-2}$ gene on average than those containing Type 2 plasmid (2.56 vs. 1.15, $p=1.07\times10^{-7}$, see 358 359 Table 3).

It is made available under a CC-BY-NC-ND 4.0 International license .

$bla_{\rm KPC-2}$ gene on chromosome

361	Although most bla_{KPC-2} genes were located on plasmids, we identified					
362	two KPC-PA strains harbored bla_{KPC-2} gene on the chromosome.					
363	In the <i>P. aeruginosa</i> strain NDTH10366, a bla_{KPC-2} gene array was					
364	found on the chromosome which consisted of three IS26-mediated					
365	tandem-repeat bla_{KPC-2} adjacent segments. Strains from SRRSH that					
366	belonged to ST244, also contained a chromosome-embedded $bla_{\rm KPC-2}$					
367	gene. The genome of a representative strain SRRSH15 consisted of a					
368	single circular 6.7-Mb-long contig. An IS6100-flanked composite					
369	transposon with a size of 17,797 bp inserted into the chromosome at the					
370	site of a putative hydrolase gene, leaving 8-bp TSD (GGCAAGCC)					
371	(Figure 5). These findings indicated intracellular transposition occurred in					
372	P. aeruginosa and participated in shaping P. aeruginosa genomes.					

The effect of the *bla*_{KPC-2} copy number and other AMR genes on CAZ-AVI susceptibility

In our samples, all strains exhibited high-level resistance to carbapenems while the susceptibility to CAZ-AVI varied in a large range (2-512mg/L). We further investigated the correlation between CAZ-AVI MIC values and multiple $bla_{\rm KPC-2}$ gene copies mediated by both plasmid multiple copies and IS26 or IS6100 duplicative transposition. We excluded two strains containing MBLs (NDTH7329 and NDTH10366)

It is made available under a CC-BY-NC-ND 4.0 International license .

381	when analyzing the effect of the bla_{KPC-2} copy number on CAZ-AVI					
382	susceptibility. The bla_{KPC-2} gene copy number correlated with the					
383	CAZ-AVI MIC values (Pearson coefficient 0.326, 95% CI 0.174-0.463,					
384	p<0.0001). Significant differences of the bla_{KPC-2} gene copy number were					
385	observed among CAZ-AVI MIC groups (2-32mg/L, Figure 6A). However,					
386	when values of the high-level resistance(≥ 64 mg/L) were observed, the					
387	relationship was less obvious, possibly due to the comparably fewer					
388	number of strains exhibiting high-level resistance to CAZ-AVI (n=6).					

389 Besides the acquisition of bla_{KPC-2} gene, other chromosomal mutations also contributed to carbapenem and CAZ-AVI resistance. The oprD gene 390 encoded the outer membrane porin D which allowed the diffusion of 391 392 carbapenems into *P. aeruginosa*. In this study, all oprD genes could be 393 classified into 18 types based on amino acid sequences similarity. 394 124/151(82.1%) strains were presumed to contain a nonfunctional oprD 395 gene, mediating reduced sensitivity to carbapenems. The majority of 396 nonfunctional oprD genes were found in ST463, ST244 and ST1212 397 strains. All oprD genes in the clinical isolates from WTJH and NDTH exhibit no mutations, indicating the expression of functional proteins 398 399 (Figure 2 and Supplementary Table 2).

Carbapenem and CAZ-AVI resistance could also be mediated by the F533L mutation in the *ftsI* gene which encoded penicillin-binding protein 3 (PBP3) (Figure 2 and Supplementary Table 2). In 107 isolates that

It is made available under a CC-BY-NC-ND 4.0 International license .

belonged to ST463 strains, we found almost all of them (n=105) contained a T1597C nucleotide mutation in the *ftsI* gene, which lead to the F533L substitution in PBP3. All twelve ST1212 isolates displayed a so far uncharacterized mutation in the *ftsI* gene (A271G) and correspondingly T91A amino acid substitution in PBP3 which has not yet been studied regarding potential carbapenem or CAZ-AVI resistance mechanisms.

410 Since these variables such as mutations in PBP3 or porin D might 411 contribute to the observed resistance values besides the acquisition of $bla_{\text{KPC}-2}$ gene. In order to analyze the contribution of each variable to 412 413 CAZ-AVI resistance, we analyzed the impact of $bla_{\rm KPC-2}$ gene copy 414 number in a more homogenous genetic background. We selected a subset 415 which consisted of 100 ST463 strains with the F533L substitution in 416 PBP3 and nonfunctional porin D, while harboring the Type 1 plasmid. In 417 this subset, significant difference was only detected between 8 and 418 16mg/L groups (p=0.002, Figure 6B). Again, it might be explained by 419 fewer samples in other groups.

We also investigated the effect of multiple $bla_{\text{KPC-2}}$ genes copies on a single plasmid to CAZ-AVI susceptibility. We used the ratio of $bla_{\text{KPC-2}}$ gene sequence depth to the *repA* gene sequence depth as the relative $bla_{\text{KPC-2}}$ gene copies per plasmid. We defined the ratio less than 1.5 as single $bla_{\text{KPC-2}}$ gene per plasmid (Single) and that greater than 1.5 as

It is made available under a CC-BY-NC-ND 4.0 International license .

425 multiple bla_{KPC-2} gene copies per plasmid (Multi) (Figure 6C and 6D). In 426 134 strains containing Type 1 or Type 2 plasmid, the CAZ-AVI MIC 427 values were significantly different between the Single and the Multi 428 groups (p=1.6e-7, see Table 4). This result was still hold in the ST463 subset mentioned above (p=5.8e-5, see Table 5). In both subsets, the 429 430 plasmid copy numbers were not significantly different. Of note, the Multi 431 group showed a right-shifting tendency of the CAZ-AVI MIC distribution 432 compared to the Single group (Figure 6E and 6F). These results indicated 433 that multiple $bla_{\text{KPC-2}}$ gene copies caused by insertion-sequence-mediated duplication contributed to CAZ-AVI MIC elevation. 434

Other carbapenem or CAZ-AVI resistance related genes including 435 436 *Pseudomonas*-derived cephalosporinase (PDC) and efflux pumps 437 especially the MexAB-OprM. PDC was a constitutional β -lactamase in P. 438 *aeruginosa* that was able to hydrolyze cephalosporins. PDCs were found 439 to correlate with the sequence types. The bla_{PDC-8} , bla_{PDC-6} , bla_{PDC-3} genes 440 were identified in three main STs, ST463, ST485 and ST1616, respectively. No amino acid substitutions which might contribute to 441 CAZ-AVI resistance were detected in our samples. No so far 442 443 known-of-function mutations in efflux pump genes was detected. In 444 addition to $bla_{\text{KPC-2}}$, acquired β -lactamases observed in individual strains 445 were bla_{CARB-2} , bla_{OXA-10} family β -lactamase $bla_{OXA-246}$ and a novel MBL bla_{AFM} . 446

It is made available under a CC-BY-NC-ND 4.0 International license .

447 Comprehensive AMR-related mutations or acquired AMR genes were448 listed in Supplementary Table 2.

449 **Discussion**

450 In this study, we focused on a specific subpopulation of CRPA, that 451 was KPC-PA. At the point of time when the bacteria were isolated, the KPC-PA strains showed moderate susceptibility to CAZ-AVI. The MICs 452 453 of approximately 70% of the strains were at the margin of breakpoint 454 (8/4-16/4 mg/L). In our samples, we identified two main KPC-related plasmids. Type 1 plasmid was predominant; however, most were found in 455 456 ST463 strains and their distribution was limited in Eastern China. In contrast to this, Type 2 plasmid was spread more widely and existed in 457 458 many diverse sequence types. Deploying Nanopore long-read sequencing, we deciphered bla_{KPC-2} genetic characteristics in this work. We found that 459 460 the bla_{KPC-2} copy number variation was caused by mobile genetic elements, in particular by IS26, mediating transposition. Our results also 461 462 revealed that multiple copies of the bla_{KPC-2} gene correlated with elevated 463 CAZ-AVI MIC values.

464 Previous epidemiological surveillance studies had focused on CRPA.

465 One of the largest studies performed in China reported a resistance rate of

466 CRPA to CAZ-AVI was 34.3% in 2017 [51] and 35.7% in 2018 [52].

467 The strains investigated in our study were collected around the same time

468	(2017-2018). The isolated KPC-PA strains exhibited a higher CAZ-AVI
469	resistance rate than all the CRPA. In the previous studies, no screening
470	was performed regarding the $bla_{\rm KPC-2}$ gene, which in retrospect showed
471	the unawareness of which important role this AMR gene played in <i>P</i> .
472	<i>aeruginosa</i> . As for the origin of bla_{KPC-2} gene in <i>P. aeruginosa</i> , it was fair
473	to infer that the gene was introduced into P. aeruginosa by interspecies
474	transmission since the genomic environment of the $bla_{\rm KPC-2}$ gene was near
475	identical and closely related to the gene that has first been described in K .
476	pneumoniae. Data from the above-mentioned study [53] indicated that
477	~65 % carbapenem-resistant K. pneumoniae in China carried the bla_{KPC-2}
478	gene, which made it the most prevalent carbapenemase in this species.
479	Interestingly, 100% of bla_{KPC-2} -carrying <i>Enterobacteriaceae</i> were
480	susceptible to CAZ-AVI [53], which stood in contrast to 50%
481	susceptibility in KPC-PA which we observed in this study. It suggested
482	that the acquisition of bla_{KPC-2} impacted the CAZ-AVI susceptibility in <i>P</i> .
483	aeruginosa in more substantial extent than in Enterobacteriaceae. In
484	general, it becomes clear that screening for bla_{KPC} in CRPA was
485	important.
486	Our study also investigated the impact of bla_{KPC-2} copy number
487	variation. It was reasonable to assume that there was a correlation
488	between the bla_{KPC-2} copy number and CAZ-AVI resistance. Previous
489	studies had demonstrated β -lactamase gene amplification correlated with

It is made available under a CC-BY-NC-ND 4.0 International license .

490	the susceptibility to β -lactam/ β -lactamase inhibitor combination agents
491	[54-56]. Our results supported these conclusions. An important
492	mechanism of AMR gene amplification was insertion-sequence
493	(IS)-mediated duplication. In our study, bla_{KPC-2} was located on two
494	mobile genetic elements, IS26- Δ Tn6296 and IS6100- Δ Tn6296-Tn1403.
495	IS26-mediated module appeared to promote genetic element transposition,
496	for example tandem or inversed repeats and from plasmid to chromosome.
497	IS26 was strongly linked to horizontal AMR gene transfer [57]. Two
498	mechanisms of IS26 movements had been demonstrated previously, that
499	was the replicative transition and the conserved targeted transition [57,
500	58]. The characteristic 8-bp TSD can help to trace IS26 transposition.
501	From our data, we could conclude that the bla_{KPC-2} copy number variation
502	among strains harboring Type 1 plasmid was mediated by the conserved
503	targeted transition. In later statistical study, we found that IS-mediated
504	gene amplification contributed to CAZ-AVI MIC elevation. It caveated
505	that the antimicrobial susceptibility test was necessary to surveil during
506	the treatment course, since the MIC might fluctuate due to IS-mediated
507	copy number variation.
508	Five <i>P. aeruginosa</i> plasmids carrying bla_{KPC-2} reported in China had

Five *P. aeruginosa* plasmids carrying bla_{KPC-2} reported in China had been identified on the NCBI database (Table 2). Type 1 plasmid defined in this study was reported first by Shi et al [16] and later by Hu et al [17]. In this work, we provide high-precision sequencing data of three more

512	Type 1 plasmids with different bla_{KPC-2} gene copy numbers. Type 2					
513	plasmids belonged to a megaplasmid family which had been reviewed					
514	recently [49, 50]. Members of this family displayed a size of 300-500 Kb					
515	and several AMR genes. However, those carrying bla_{KPC-2} genes were					
516	only reported in China [18, 59]. The current study showed that this					
517	megaplasmid spread widely around the country as we identified the					
518	plasmid in Eastern and Central China. The third plasmid type, reported in					
519	other publications, was not detected in this study, indicating that this					
520	plasmid type might be not prevalent in regions we sampled. However,					
521	two previously reported cases of the third plasmid type were found in					
522	China in two different regions of the country [59], which suggested that					
523	the third plasmid type was not rare. Fifteen strains in the current study					
524	had undefined bla_{KPC-2} gene location (chromosome or plasmid). The					
525	previously published data and our current work illustrates that a more					
526	comprehensive surveillance study was required in the future to elucidate					
527	the epidemiology of KPC-PA in China.					
528	The two main plasmid types exhibited different geographical					
529	distributions. This might be explained by the time that has passed since					
530	the plasmids were incorporated by P. aeruginosa strains. Type 1 plasmids					
531	had been found in <i>P. aeruginosa</i> for approximately one decade [13],					
532	while the earliest strain harboring Type 2 plasmid could be traced back to					
533	the 1980s [50]. In addition, the host range of Type 1 plasmid was					

534	comparatively small, while the Type 2 plasmid family had been found in
535	other Pseudomonal and non-Pseudomonal genera [50]. This might be
536	explained by the fact that the conjugal ability of Type 2 plasmid has been
537	demonstrated experimentally [18], in contrast to Type 1 plasmids.
538	However, the high pressure of carbapenem usage in clinics might
539	accelerate the occurrence of <i>P. aeruginosa</i> harboring bla_{KPC-2} genes and
540	retain such strains in the nosocomial environment, leading to dominant
541	clones such as ST463.
542	The limited sampling locations of the strains, which originated mainly
543	from Eastern China, presents a limitation of our study, as the real
544	prevalence of KPC-PA over the whole country remained uncertain. As
545	discussed above, our investigation could be seen as a pilot study and thus
546	we highly recommended to screen for $bla_{\rm KPC}$ genes in nationwide
547	antimicrobial surveillance studies, or those being undertaking by other
548	nations. Another potential limitation was that we determined plasmids in
549	each strain by mapping sequencing reads to representative plasmids. We
550	understood that this approach did not guarantee to identify correctly on
551	which replicon the bla_{KPC-2} gene was located. However, we believed that
552	it was reasonable to assume that strains of the same ST were highly
553	similar in the genetic background to the representative strains that we
554	sequenced completely. Indeed, this approach had also been implemented
555	in a recent large-scale carbapenemase-harboring plasmid analysis [60].

It is made available under a CC-BY-NC-ND 4.0 International license .

556

557 Conclusions

558	In summary,	our study clea	rly shows that	t KPC-PA strains	represent a
-----	-------------	----------------	----------------	------------------	-------------

- threat to the healthcare system in China. Therefore, we propose to screen
- 560 *bla*_{KPC} genes in *P. aeruginosa* isolates in nationwide surveillance projects.
- 561 As this issue is not only affecting China but is of global concern, further
- studies investigating the same topic on a global scale would help to
- understand the epidemiology of KPC-PA strains in the entire human
- 564 population. We believe such studies might be able to guide therapeutic

deploying CAZ-AVI for the treatment of KPC-PA infections.

566

567 **Declarations**

568 Ethics approval and consent to participate

Approval was obtained from the Ethics Committee of Sir Run Run Shaw Hospital (approval/reference number: 20201118-49). This study was not considered as a human research. Therefore, no informed consent to participate was required. This study conformed to the principles of the Helsinki Declaration.

- 574 **Consent for publication**
- 575 Not applicable
- 576 Availability of data and material

577	All the sequence data were deposited at DDBJ/ENA/GenBank under
578	the BioProject accession number PRJNA672835.
579	Competing interests
580	The authors declare that they have no competing interests.
581	Funding
582	This study is supported by the National Natural Science Foundation of
583	China (grant no. 81830069).
584	Authors' contributions
585	Y.Y conceived, designed, and coordinated this study. Y.Z. and J.C.
586	performed the microbiological cultures of the isolates and antimicrobial
587	susceptibility tests. Y.Z and X.H. analyzed the genome sequencing data.
588	H.S., Z.C., Q.Y., J.Z., X.L, Q.Y. and F.Z. collected the isolates from
589	respective hospitals. J.J., H.C., Y.L. and L.Z. provided help to extract
590	genome DNA and perform genome sequencing. Y.Z. wrote the initial
591	version of the manuscript. X.H., S.L. and Y.Y. revised the manuscript. All
592	authors read and approved the final manuscript.
593	Acknowledgments
594	Not applicable
595	
596	
597	References:

- Tacconelli E *et al.* Discovery, research, and development of new antibiotics: the WHO priority list
 of antibiotic-resistant bacteria and tuberculosis. *Lancet Infect Dis* 2018, 18(3):318-327.
- 600 2. Papp-Wallace KM, Mack AR, Taracila MA, Bonomo RA. Resistance to Novel β-Lactam-β

601	-Lactamase Inhibitor Combinations. Infect Dis Clin NAm 2020, 34(4):773-819.
602	3. van Duin D, Bonomo RA. Ceftazidime/Avibactam and Ceftolozane/Tazobactam:
603	Second-generation β -Lactam/ β -Lactamase Inhibitor Combinations. Clin Infect Dis 2016,
604	63(2):234-241.
605	4. Karlowsky JA et al. In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of
606	Enterobacteriaceae and Pseudomonas aeruginosa Collected in Latin American Countries: Results
607	from the INFORM Global Surveillance Program, 2012 to 2015. Antimicrob Agents Chemother 2019,
608	63(4):e1814-e1818.
609	5. Karlowsky JA et al. In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of
610	Enterobacteriaceae and Pseudomonas aeruginosa Collected in Asia-Pacific Countries: Results from
611	the INFORM Global Surveillance Program, 2012 to 2015. Antimicrob Agents Chemother 2018,
612	62(7):e2517-e2569.
613	6. Kazmierczak KM, de Jonge B, Stone GG, Sahm DF. In Vitro Activity of Ceftazidime/Avibactam
614	against Isolates of Pseudomonas aeruginosa Collected in European Countries: INFORM Global
615	Surveillance 2012-15. J Antimicrob Chemother 2018, 73(10):2777-2781.
616	7. Villegas MV et al. First identification of Pseudomonas aeruginosa isolates producing a KPC-type
617	carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother 2007, 51(4):1553-1555.
618	8. Naas T et al. Genetic structures at the origin of acquisition of the beta-lactamase bla _{KPC} gene.
619	Antimicrob Agents Chemother 2008, 52(4):1257-1263.
620	9. Poirel L, Nordmann P, Lagrutta E, Cleary T, Munoz-Price LS. Emergence of KPC-producing
621	Pseudomonas aeruginosa in the United States. Antimicrob Agents Chemother 2010, 54(7):3072.
622	10. Castanheira M, Mills JC, Farrell DJ, Jones RN. Mutation-Driven β -Lactam Resistance
623	Mechanisms among Contemporary Ceftazidime-Nonsusceptible Pseudomonas aeruginosa Isolates
624	from U.S. Hospitals. Antimicrob Agents Chemother 2014, 58(11):6844-6850.
625	11. Hagemann JB, Pfennigwerth N, Gatermann SG, von Baum H, Essig A. KPC-2
626	carbapenemase-producing Pseudomonas aeruginosa reaching Germany. J Antimicrob Chemother 2018,
627	73(7):1812-1814.
628	12. Galetti R, Andrade LN, Varani AM, Darini ALC. A Phage-Like Plasmid Carrying bla _{KPC-2} Gene
629	in Carbapenem-Resistant Pseudomonas aeruginosa. Front Microbiol 2019, 10:572.
630	13. Ge C et al. Identification of KPC-2-producing Pseudomonas aeruginosa isolates in China. J
631	Antimicrob Chemother 2011, 66(5):1184-1186.
632	14. Hu Y, Gu D, Cai J, Zhou H, Zhang R. Emergence of KPC-2-Producing Pseudomonas aeruginosa
633	Sequence Type 463 Isolates in Hangzhou, China. Antimicrob Agents Chemother 2015,
634	59(5):2914-2917.
635	15. Naas T, Bonnin RA, Cuzon G, Villegas MV, Nordmann P. Complete sequence of two
636	KPC-harbouring plasmids from Pseudomonas aeruginosa. J Antimicrob Chemoth 2013,
637	68(8):1757-1762.
638	16. Shi L et al. Coexistence of two novel resistance plasmids, blaKPC-2-carrying p14057A and
639	tetA(A) -carrying p14057B, in Pseudomonas aeruginosa. Virulence 2018, 9(1):306-311.
640	17. Hu Y, Wang Q, Sun Q, Chen G, Zhang R. A novel plasmid carrying carbapenem-resistant gene
641	bla _{KPC-2} in Pseudomonas aeruginosa. Infect Drug Resist 2019, Volume 12:1285-1288.
642	18. Li Z et al. Molecular genetic analysis of an XDR Pseudomonas aeruginosa ST664 clone carrying

- 643 multiple conjugal plasmids. J Antimicrob Chemother 2020, 75(6):1443-1452. 644 19. Abril D *et al.* Genome plasticity favours double chromosomal Tn4401b-bla_{KPC-2} transposon 645 insertion in the Pseudomonas aeruginosa ST235 clone. Bmc Microbiol 2019, 19(1):45. 646 20. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial 647 Susceptibility Testing CLSI supplement M100. In., 30th edn. Wayne, PA, USA: Clinical and 648 Laboratory Standards Institute; 2020. 649 21. Tamma PD et al. Infectious Diseases Society of America Guidance on the Treatment of 650 Antimicrobial Resistant Gram-Negative Infections. Clin Infect Dis 2020, ciaa1478. 651 22. Seemann T. https://github.com/tseemann/shovill 652 23. Bankevich A et al. SPAdes: a new genome assembly algorithm and its applications to single-cell 653 sequencing. J Comput Biol 2012, 19(5):455-477. 654 24. Heng L. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 655 2013:1303-3997. 656 25. Marcais G et al. MUMmer4: A fast and versatile genome alignment system. Plos Comput Biol 657 2018, 14(1):e1005944. 658 26. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 2014, 659 30(14):2068-2069. 660 27. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. 661 Genome Biol 2019, 20(1):238. 662 28. Shannon P et al. Cytoscape: a software environment for integrated models of biomolecular 663 interaction networks. Genome Res 2003, 13(11):2498-2504. 664 29. Weisberg AJ et al. Unexpected conservation and global transmission of agrobacterial virulence 665 plasmids. Science 2020, 368(6495). 666 30. Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File 667 Manipulation. Plos One 2016, 11(10):e163962. 668 31. Heng L. https://github.com/lh3/seqtk 669 32. Li H et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 670 25(16):2078-2079. 671 33. Seppey M, Manni M, Zdobnov EM. BUSCO: Assessing Genome Assembly and Annotation 672 Completeness. Methods Mol Biol 2019, 1962:227-245. 673 34. Seemann T. https://github.com/tseemann/mlst 674 35. Jolley KA, Bray JE, Maiden M. Open-access bacterial population genomics: BIGSdb software, 675 the PubMLST.org website and their applications. Wellcome Open Res 2018, 3:124. 676 36. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements 677 in performance and usability. Mol Biol Evol 2013, 30(4):772-780. 678 37. Darriba D et al. ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein 679 Evolutionary Models. Mol Biol Evol 2020, 37(1):291-294. 680 38. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and 681 user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 682 35(21):4453-4455. 683 39. Hodcroft E. http://emmahodcroft.com/TreeCollapseCL.html 684 40. Yu G, Smith DK, Zhu H, Guan Y, Lam TT. GGTREE: an R package for visualization and 685 annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol
- 686 2017, 8(1):28-36.

It is made available under a CC-BY-NC-ND 4.0 International license .

- 687 41. Seemann T. https://github.com/tseemann/abricate
- 688 42. Feldgarden M et al. Validating the AMRFinder Tool and Resistance Gene Database by Using
- Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. *Antimicrob Agents Chemother* 2019, 63(11):e419-e483.
- 43. Del BE *et al.* Genomics and Susceptibility Profiles of Extensively Drug-Resistant Pseudomonas
 aeruginosa Isolates from Spain. *Antimicrob Agents Chemother* 2017, 61(11).
- 44. Kos VN *et al.* The Resistome of Pseudomonas aeruginosa in Relationship to Phenotypic
 Susceptibility. *Antimicrob Agents Ch* 2014, 59(1):427-436.
- 45. Page AJ *et al.* Roary: rapid large-scale prokaryote pan genome analysis. *Bioinformatics* 2015, 31(22):3691-3693.
- 697 46. Seemann T. https://github.com/tseemann/snippy
- 47. Almagro AJ *et al.* SignalP 5.0 improves signal peptide predictions using deep neural networks. *Nat Biotechnol* 2019, 37(4):420-423.

48. Shen P *et al.* Novel Genetic Environment of the Carbapenem-Hydrolyzing-Lactamase KPC-2
among Enterobacteriaceae in China. *Antimicrob Agents Ch* 2009, 53(10):4333-4338.

- 49. Jiang X et al. Plasmids of novel incompatibility group Inc_{pRBL16} from *Pseudomonas* species. J
 Antimicrob Chemoth 2020, 75(8):2093-2100.
- 50. Cazares A *et al.* A megaplasmid family driving dissemination of multidrug resistance in
 Pseudomonas. Nat Commun 2020, 11(1):1370.
- Yin D *et al.* Results from the China Antimicrobial Surveillance Network (CHINET) in 2017 of
 the In Vitro Activities of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Clinical
 Isolates of *Enterobacteriaceae* and *Pseudomonas aeruginosa. Antimicrob Agents Chemother* 2019,
- 709 63(4):e2418-e2431.
- 52. Yang Y *et al.* In Vitro Activity of Cefepime-Zidebactam, Ceftazidime-Avibactam and Other
 Comparators against Clinical Isolates of *Enterobacterales*, *Pseudomonas aeruginosa* and *Acinetobacter baumannii*: Results from China Antimicrobial Surveillance Network (CHINET) in 2018.
- 713 Antimicrob Agents Chemother 2020:e1720-e1726.
- 714 53. Han R et al. Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among
- Carbapenem-Resistant *Enterobacteriaceae* Isolated From Adult and Children Patients in China. *Front Cell Infect Mi* 2020, 10:314.
- 54. Sun D, Rubio-Aparicio D, Nelson K, Dudley MN, Lomovskaya O. Meropenem-Vaborbactam
- 718 Resistance Selection, Resistance Prevention, and Molecular Mechanisms in Mutants of KPC-Producing

719 *Klebsiella pneumoniae. Antimicrob Agents Chemother* 2017, 61(12):e409-e420.

- 55. Schechter LM *et al.* Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam
 Resistance in Escherichia coli. *Mbio* 2018, 9(2):e518-e583.
- 56. Coppi M et al. Ceftazidime-Avibactam Resistance Associated with Increased bla_{KPC-3} Gene Copy
- Number Mediated by pKpQIL Plasmid Derivatives in Sequence Type 258 *Klebsiella pneumoniae*.
 Antimicrob Agents Chemother 2020, 64(4):e1816-e1819.
- 725 57. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with
 726 Antimicrobial Resistance. *Clin Microbiol Rev* 2018, 31(4):e17-e88.
- 58. He S *et al.* Insertion Sequence IS26 Reorganizes Plasmids in Clinically Isolated
 Multidrug-Resistant Bacteria by Replicative Transposition. *Mbio* 2015, 6(3):e762.
- 729 59. Dai X et al. The IncP-6 Plasmid p10265-KPC from Pseudomonas aeruginosa Carries a Novel Δ

It is made available under a CC-BY-NC-ND 4.0 International license .

- 730 ISEc33-Associated *bla*_{KPC-2} Gene Cluster. Front Microbiol 2016, 7:310.
- 731 60. David S et al. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of
- 732 carbapenemase gene spread among Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2020,
- 733 117(40):25043-25054.

734

735

It is made available under a CC-BY-NC-ND 4.0 International license .

736

737 Table 1 In vitro Antimicrobial Susceptibility Tests of KPC-producing P. aeruginosa from 6 Hospitals

738 in China

		MIC (mg/l	-)	
Antibiotics	MIC ₅₀	MIC ₉₀	MIC range	percentage resistance
piperacillin/tazobactam	>256	>256	4->256	99.34
ceftazidime	128	256	4->256	100.00
cefepime	>256	>256	2->256	99.34
imipenem	>128	>128	8->128	100.00
meropenem	>128	>128	1->128	100.00
aztreonam	>128	>128	4->128	100.00
ceftazidime/avibactam	16	32	1->64	50.33
amikacin	4	16	1->64	3.97
gentamycin	4	8	0.25->64	8.61
tobramycin	1	2	0.25->64	3.97
ciprofloxacin	>16	>16	0.12->16	94.04
levofloxacin	>32	>32	025->32	93.38
colistin	0.5	0.5	<0.03-2	0.00

739

740 Table 2 Three main types of KPC-encoding plasmids in *P. aeruginosa* from China

Plasmid Type defined	No. in this study	Inc type	Plasmid	names	(accession
in this study			numbers i	n NCBI data	base)
Type 1	118	Undefined	p14057-Kl	PC(KY29609	5)
			p1011-KP0	C2(MH7343	34)
Type 2	19	IncP-3-like	pNK546-K	PC(MN4334	157)
Туре 3	0	IncP-6	p10265-KI	PC(KU57831	.4)
			p1(CP0400	685)	

No. numbers; Inc: incompatibility

741

742 Table 3 Comparison between strains containing Type 1 and Type 2 plasmids

	Type 1 (n=117)	Type 2 (n=17)	p value
plasmid copy	2.36 (1.93-2.98)	1.2 (1.15-1.29)	1.45E-10
<i>bla</i> _{KPC-2} gene copy	2.56 (2.03-3.49)	1.15 (1.06-1.30)	1.07E-07

The medians are shown. In brackets indicate interquartile ranges. p values are calculated by Wilcox test.

743

Table 4 Comparison between single and multiple *bla*_{KPC-2} gene copies per plasmid groups in 134

745 strains containing Type 1 or 2 plasmids

	Single (n=102)	Multi (n=32)	p value
log ₂ (CAZ-AVI MIC)	3 (3-4)	4 (4-5)	1.63E-07

It is made available under a CC-BY-NC-ND 4.0 International license .

plasmid copy	2.32 (1.72-2.90)	2.07 (1.75-2.45)	3.60E-01
--------------	------------------	------------------	----------

The medians are shown. In brackets indicate interquartile ranges. p values are calculated by Wilcox test.

746

747

Table 5 Comparison between single and multiple bla_{KPC-2} gene copies per plasmid groups in 100 ST463 strains

	Single (n=70)	Multi (n=30)	p value
log ₂ (CAZ-AVI MIC)	4 (3-4)	4 (3-4)	5.80E-05
plasmid copy	2.39 (1.94-3.03)	2.09 (1.78-2.49)	0.1003

The medians are shown. In brackets indicate interquartile ranges. p values are calculated by Wilcox test.

750

751

752	Figure 1. Geographical distribution of strains in this study. The percentages in the figure
753	represent the percentage of KPC-PA in CRPA from each hospital. Each pie size indicates
754	sample size of each hospital. PUMCH: Peking Union Medical College Hospital; WTJH:
755	Wuhan Tongji Hospital; NDTH: Nanjing Drum Tower Hospital; FAHZU: the First Affiliated
756	Hospital of Zhejiang University; SRRSH: Sir Run Run Shaw Hospital; ZPPH: Provincial
757	People's Hospital of Zhejiang; QZPH: Quzhou People's Hospital.
758	
759	Figure 2. Core genome phylogenetic tree and carbapenem/CAZ-AVI resistance-related
759 760	Figure 2. Core genome phylogenetic tree and carbapenem/CAZ-AVI resistance-related genes. Innermost layer is a maximum-likelihood phylogenetic tree of KPC-PA. colors of tip
760	genes. Innermost layer is a maximum-likelihood phylogenetic tree of KPC-PA. colors of tip
760 761	genes. Innermost layer is a maximum-likelihood phylogenetic tree of KPC-PA. colors of tip labels indicate sequence type (ST), and shapes indicate plasmid types in each strain. The
760 761 762	genes . Innermost layer is a maximum-likelihood phylogenetic tree of KPC-PA. colors of tip labels indicate sequence type (ST), and shapes indicate plasmid types in each strain. The unknown plasmid type suggests strain does not contain Type 1 or 2 plasmid and bla_{KPC-2}

It is made available under a CC-BY-NC-ND 4.0 International license .

766 seventh ring represents F533L mutation in PBP3. The eighth ring indicates estimated

- 767 *bla*_{KPC-2} gene copy number. The stars in the outmost ring indicate novel MBL *bla*_{AFM}.
- 768

769	Figure 3. Type 1 plasmid schematic plot and sequence alignment. A. pSRRSH1002-KPC
770	structure and Type 1 plasmid gene synteny. The innermost layer indicates gene synteny
771	of Type 1 plasmids. The arrows in second ring from the innermost indicate genes on
772	SRRSH1002, which are in accordant with points of the gene synteny layers. Orange
773	indicate transposase, red indicates <i>bla</i> KPC-2 gene, light-orange indicates genes in the
774	insertion region, green indicates conjugal elements, light-purple indicates repA gene. The
775	third ring shows backbone(grey) and insertion region(black) of the plasmid. The forth ring
776	represent GC skew, where yellow means skew to A and T and blue means skew to G and
777	C. The outmost ring represents GC content, where light-green represent GC% greater
778	than the median and dark-pink represents GC% less than the median (sliding window of
779	500bp). B. Alignment of insertion regions on SRRSH1002-KPC and pKP048. Arrows
780	denoted to genes or truncated genes. Alignment identity ranges from 97% to 100%.
781	GenBank accession: pRA3 (DQ401103), pKP048 (FJ628167), Tn4401 from pCOL-1
782	(KC609323), Tn2 (AY123253). C. IS26-mediated bla _{KPC-2} gene copy number variation in
783	Type 1 plasmid. Firstly, start from Precursor plasmid contained an IS26-flanked blaKPC-2
784	region. An intramolecular replicative transposition in trans inversed the segment between
785	the 81th bp site on the $\Delta Tn2$ tnpA gene and an IS26 and duplicated an IS26 in opposite
786	orientation (precursor 2). Intramolecular replicative translocation in <i>cis</i> created a
787	translocatable unit (TU). The TU inserted into precursor 2 by conservative targeted

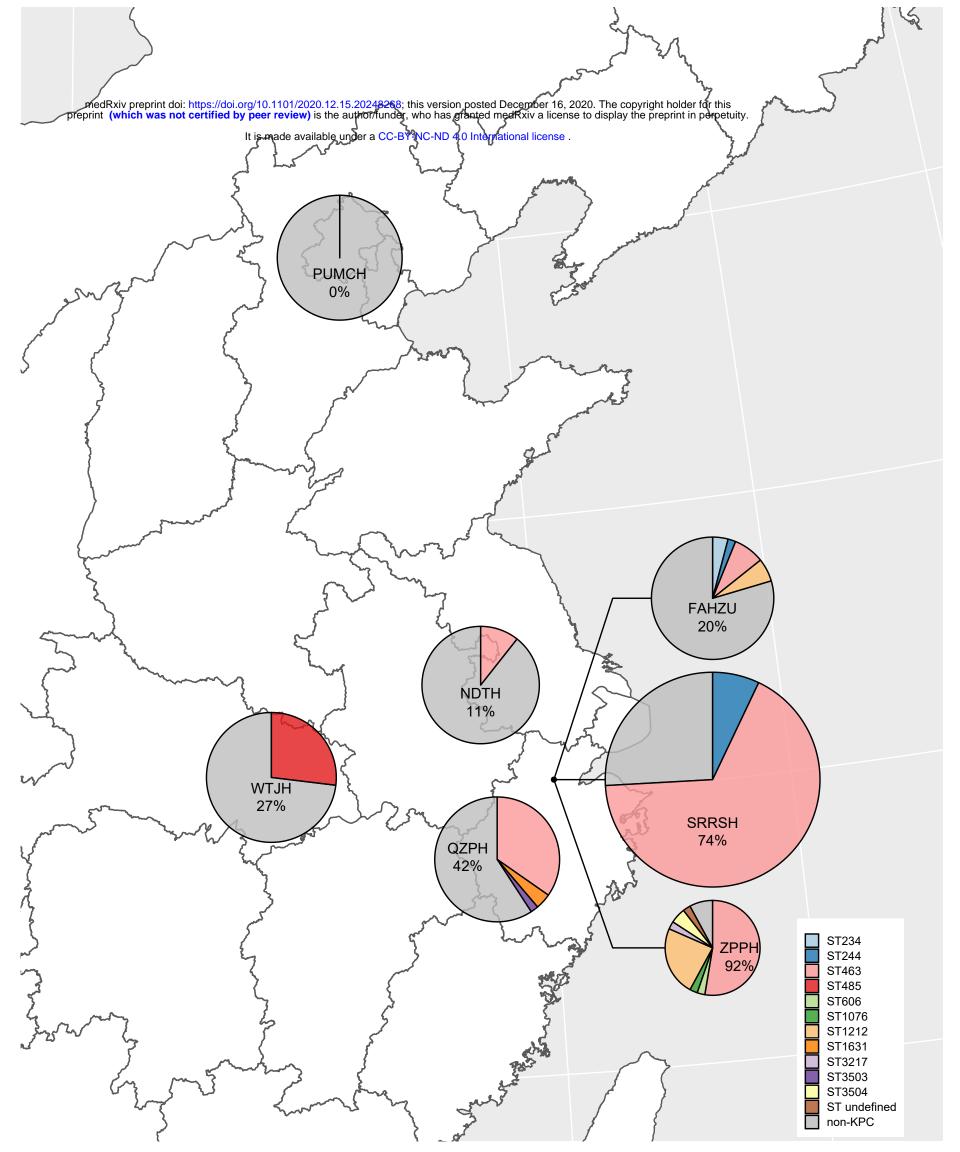
transposition to form pSRRSH1002-KPC. pSRRSH1002-KPC excised TU containing the repeated genetic segments and the $\Delta Tn2$ *tnpA* gene to form pSRRSH1101. Another plasmid precursor 3 excised a TU containing a *bla*_{KPC-2} gene by intramolecular replicative translocation in *cis* to form pSRRSH1408-KPC.

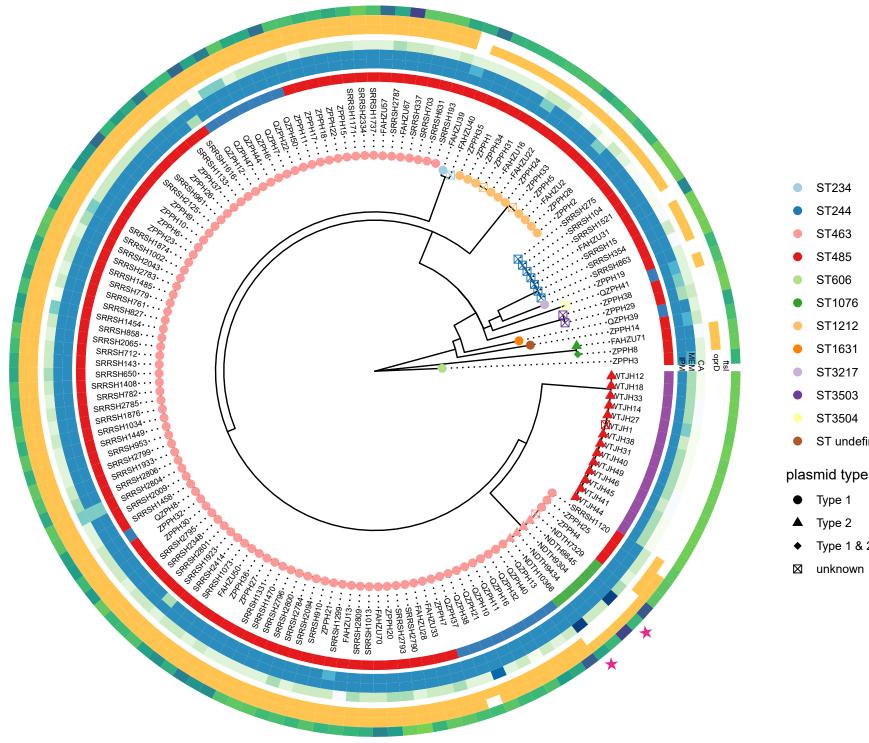
792

793 Figure 4. pWTJH12-KPC plasmid structure and gene syntemy. The innermost layer 794 indicates gene synteny of Type 2 plasmids. The second ring represent GC skew, where 795 yellow means skew to A and T and blue means skew to G and C. The third ring represents 796 GC content, where light-green represent GC% greater than the median and dark-pink 797 represents GC% less than the median (sliding window of 2000 bp). The forth ring shows 798 backbone (grey) and accessory region (black) of the plasmid. The arrows in outermost 799 ring indicates genes on pWTJH12-KPC, which are in accordant with points of the gene 800 synteny layers. PRTRC: ParB-related ThiF-related cassette; SAM: S-adenosylmethionine; 801 T2SS: Type II secretion system. 802

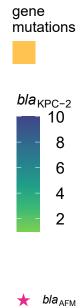
Figure 5. Alignment of IS*6100*-ΔTn*6296*-Tn*1403* structure from multiple strains. Arrows
denoted to genes or truncated genes. Alignment identity ranges from 99% to 100%.
GenBank accession: p14057-KPC(KY296095), pNK546a (MN433457).

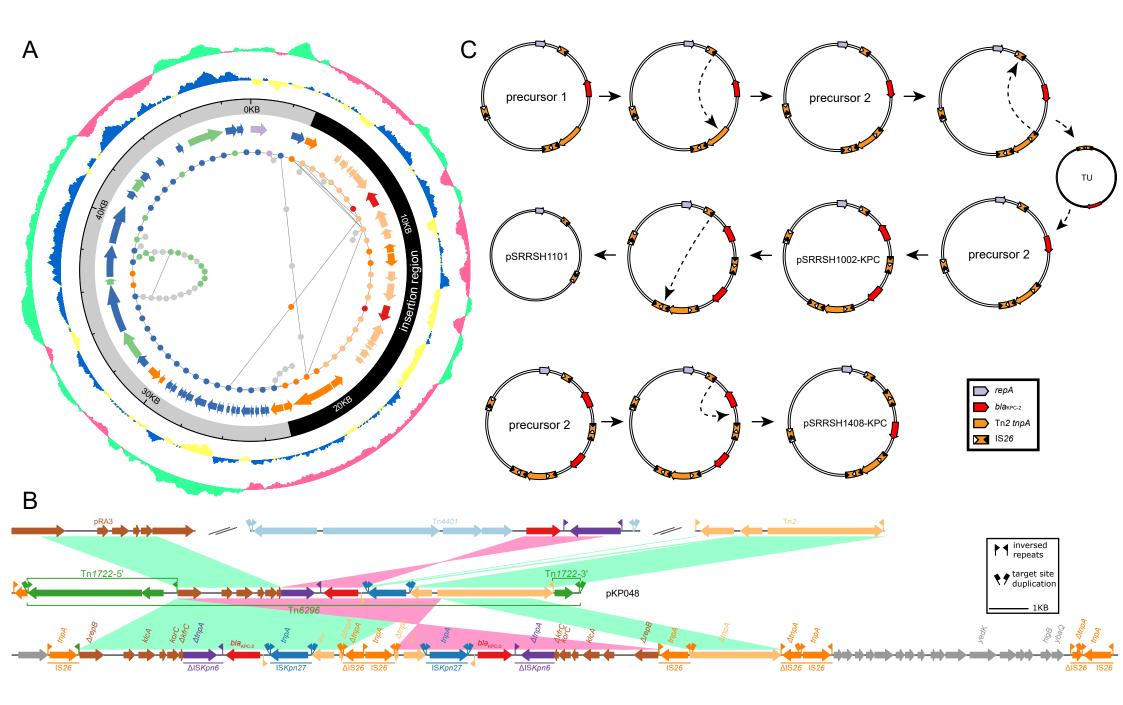
806

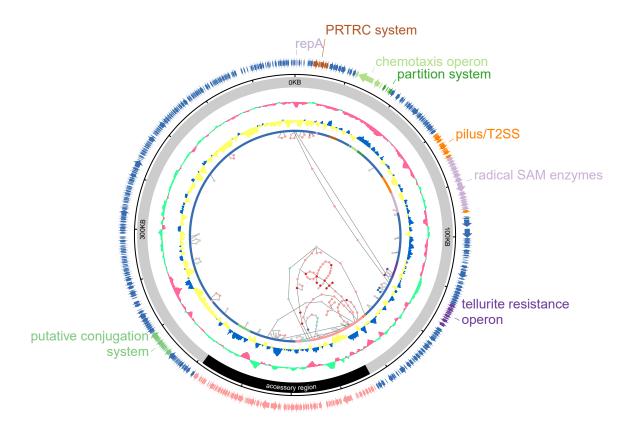

Figure 6. Statistical analysis of the correlation between *bla*_{KPC-2} gene and CAZ-AVI MIC. A.
 *bla*_{KPC-2} gene copy number comparison among strains (n=149) with different CAZ-AVI

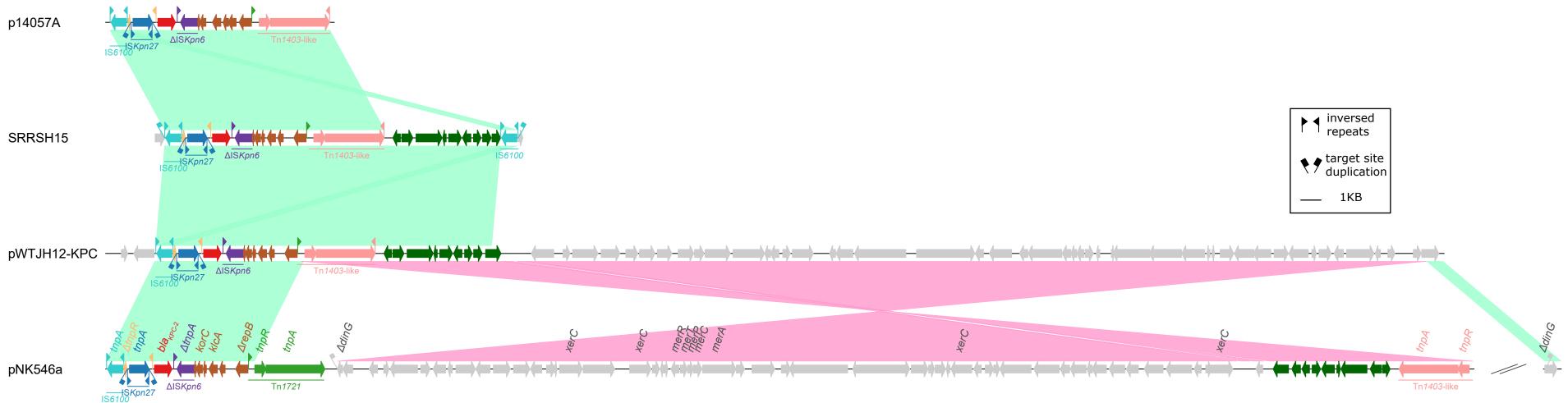

809 MIC groups. The asterisks, *, **, ***, represent adjusted p-values of Dunn test less than

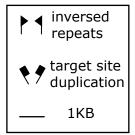
It is made available under a CC-BY-NC-ND 4.0 International license .


810	0.05, 0.01, 0.001, respectively. Two strains containing metallo- β -lactamase are not
811	involved. B. bla_{KPC-2} gene copy number comparison among ST463 strains (n=100) with
812	different CAZ-AVI MIC groups. The asterisk, **, represents adjusted p-values of Dunn test
813	less than 0.01. C. Correlation between bla_{KPC-2} gene copy number and plasmid copy
814	number in strains containing Type 1 or Type 2 plasmid (n=134). D. Correlation between
815	<i>bla</i> _{KPC-2} gene copy number and plasmid copy number in ST463 strains containing Type 1
816	plasmid (n=100). Each solid line indicates that points near it exhibit a bla_{KPC-2} gene to
817	plasmid copy number ratio as the slope (r). The red dashed line with a slope of 1.5
818	distinguishes single and multiple \textit{bla}_{KPC-2} gene copies per plasmid. E. The CAZ-AVI MIC
819	distributions of strains (n=134) containing single <i>bla</i> KPC-2 gene or multiple <i>bla</i> KPC-2 gene
820	copies per plasmid. Both types of plasmids are included. F. The CAZ-AVI MIC
821	distributions of strains (n=100) containing single <i>bla</i> KPC-2 gene or multiple <i>bla</i> KPC-2 gene
822	copies per Type 1 plasmid. Blue and red bars represent the Single and the Multi group,
823	respectively.


824






0.20.				
ST244				
ST463	(Citie	S	
ST485		Hang	gzhou	
ST606		Quzł	nou	
ST1076		Nanj	ing	
ST1212		Wuh	an	
ST1631				
ST3217				
ST3503	ß−I	acta	ms	
ST3504	MIC	; (m	g/L)	
ST undefined	2		64	
mid types	4		128	
-	8		>128	
Туре 1	16		512	
Туре 2	32		>2048	
Type 1 & 2	-			

