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ABSTRACT 
We introduce a deep learning framework that can detect 
COVID-19 pneumonia in thoracic radiographs, as well as 
differentiate it from bacterial pneumonia infection. Deep 
classification models, such as convolutional neural networks 
(CNNs), require large-scale datasets in order to be trained and 
perform properly. Since the number of X-ray samples related to 
COVID-19 is limited, transfer learning (TL) appears as the go-to 
method to alleviate the demand for training data and develop 
accurate automated diagnosis models. In this context, networks 
are able to gain knowledge from pretrained networks on large-
scale image datasets or alternative data-rich sources (i.e. 
bacterial and viral pneumonia radiographs). The experimental 
results indicate that the TL approach outperforms the 
performance obtained without TL, for the COVID-19 
classification task in chest X-ray images. 
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1 INTRODUCTION 
The first human cases of COVID-19 were reported in Wuhan, 

China, in December 2019. Given its rapid spread, a month later, 
the World Health Organization (WHO) declared novel 

coronavirus (2019-nCoV) a public health emergency of 
international concern [1] and a pandemic on 11 March 2020 [2]. 
The COVID-19 pandemic, as of September 27, 2020, has resulted 
in over 33 million confirmed cases and over 1 million deaths 
worldwide [3], causing significant socio-economic repercussions 
on people's livelihoods [4]. Just for the sake of comparison, the 
SARS outbreak in 2002-2003 caused 774 deaths in 26 countries, 
with a total of 8,098 infected people [5], [6]. 

Although the COVID-19 disease can cause multi-organ 
damages [7], the lungs are the most affected organs of the 
human body, due to their abundance of angiotensin-converting 
enzyme 2 (ACE2), which is a receptor that acts as the door, 
through which the virus is able to enter the host cells [8]. 
Therefore, the lungs are the focal point of the human body, for 
the COVID-19 implications detection. 

On this basis, the role of chest radiography in the diagnosis of 
COVID-19 disease is crucial. In particular, like other types of 
pneumonia (e.g. bacterial pneumonia), on thoracic Χ-rays of 
patients with COVID-19 pneumonia, is observed an increased 
(whiter) density of lungs. Usually, the more severe the disease, 
the more intense the whiteness on the chest X-rays. In the 
typical case, ground-glass opacity occurs, with possible 
simultaneous existence of linear opacities (e.g. peripheral 
horizontal white lines), resulting in slightly obscured lung 
markings (Figure 1a). It is underlined that in severe cases the 
lung markings become invisible due to the dense whiteness, a 
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phenomenon known as consolidation (Figure 1b) [9]. Hence, 
utilizing chest radiography, or combining it with laboratory and 
clinical assessment, can be an efficient tool for the early and 
accurate diagnosis of COVID-19 pneumonia. 

 

 
(a) Ground glass opacity 

(yellow arrow) 

 
(b) Consolidation 

(red arrows) 

Figure 1: Increased whiteness in the lungs, because of 
COVID-19 pneumonia. [10] 

During the last few years, the use of deep learning 
applications in medical imaging analysis has received much 
attention from the scientific community, surpassing in many 
cases the performance of medical professionals [11]. The 
pneumonia detection task on chest radiography can be 
interpreted as a computer vision classification problem, where 
the input is a thoracic X-ray image and the output indicates the 
existence or the absence of the infection. In this context, several 
studies have proven that convolutional neural networks (CNNs) 
show great performance on various image classification tasks, 
such as the one investigated in this paper [12], [13]. 

However, the main problem that arises in such techniques is 
the requirement  for large-scale datasets in order to train and 
evaluate the classifiers [14]–[16]. At the time of writing this 
paper, the number of X-ray samples related to COVID-19 is 
extremely limited, hence transfer learning is a preferable method 
in order to train efficiently the deep CNNs [17]. More 
specifically, with transfer learning, we are able to avoid the 
training of the deep models from scratch and also the lack of 
training data, by taking advantage of the extraction of 
knowledge from other alternative tasks. 

The purpose of this paper is to demonstrate the efficacy of 
the state-of-the-art deep CNNs, trained through transfer 
learning, in giving accurate pneumonia diagnosis from frontal-
view chest X-rays. The proposed models will be evaluated 
according to their performance in detecting traces of COVID-19 
infection in the patients’ thoracic X-ray images, in conjunction 
with their ability to differentiate the specific patients from those 
infected with bacterial pneumonia. 

The remainder of this paper is organized as follows. Section 2 
briefly presents related work on applications of deep learning 
frameworks in medical imaging. Section 3 outlines the proposed 
computer vision methods for pneumonia classification, and 

Section 4 discusses the experimental results obtained from the 
deep models. Finally, Section 5 concludes the paper with a 
summary of findings. 

2 RELATED WORK 
Recent developments in deep learning applications, 

availability of large datasets and advances in the computing 
power have led algorithms to be a powerful auxiliary tool in the 
hands of medical professionals. Several studies have been carried 
out, emphasizing the high performance of deep models in a wide 
variety of medical imaging applications, such as, for instance, 
detection of diabetic retinopathy [18], identification of 
arrhythmia [19], early prognostication of Alzheimer’s disease 
dementia [20], diagnosis of brain hemorrhage [21], and 
classification of various types of cancer (e.g. breast [22], skin 
[23], brain [24], and prostate [25]). 

Automated diagnosis of various chest diseases using 
radiographs has been gaining momentum, due to the latest 
breakthrough of artificial intelligence (AI) systems and the 
dramatic increase in available public thoracic X-ray datasets [26]. 
In detail, deep learning algorithms are increasingly set to become 
a key factor in pediatric pneumonia diagnosis [27] and 
classification of pulmonary tuberculosis [28]. Moreover, in the 
work of [29], the authors developed a deep model, based on the 
DenseNet-121 architecture, which is able to accurately detect the 
presence of 14 different thoracic pathologies, using chest 
radiographs. It is noted that their analysis has found that the 
deep learning algorithm has reached or even surpassed the 
performance level of clinical assessment by human radiologists, 
on 11 out of the 14 pathologies. 

 

 
(a) Normal 

 
(b) Bacterial Pneumonia 

 
(c) Viral Pneumonia 

 
(d) COVID-19 Pneumonia 

Figure 2: Examples of frontal-view chest X-Ray images 
from the datasets. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.14.20248158doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.14.20248158
http://creativecommons.org/licenses/by-nd/4.0/


Transfer Learning for COVID-19 Pneumonia Detection and 

Classification in Chest X-ray Images 
I. Katsamenis et al. 

 

 

2.1 Our Contribution 
Inspired by the above research work, in this paper, we 

introduce a deep learning framework that can detect COVID-19 
pneumonia in thoracic X-rays. Considering the pandemic 
outbreak, the proposed framework aims to fill the gap between 
the limited number of highly skilled radiologists and the growing 
need for chest X-ray interpretation. 

3 PROBLEM FORMULATION AND PROPOSED 
METHODOLOGY 

3.1 Problem Formulation 
Automated pneumonia diagnosis, based on chest X-ray 

images, is a computer vision problem that can be addressed as a 
(i) classification [11], [13], [35], (ii) object detection [36], [37], or 
(iii) semantic segmentation task [38], [39]. In the first procedure, 
the output of the deep learning model indicates the existence or 
the absence of the infection, in a given X-ray image. In the 
second method, the algorithm provides bounding boxes that 
indicate the location and the dimensions of the infected areas, in 
the patient's lung. The latter approach involves pixel-based 
classification methods (e.g. Fully Convolutional Networks (FCN) 
[40], U-Nets [41], and Mask R-CNN [42]), thus defining precisely 
the shape of the symptomatic areas. 

In this paper, we address the problem of pneumonia detection 
as a multi-class classification task. The input 𝑋 ∈ ℝ𝑤×ℎ×3 of the 
problem is an RGB frontal-view thoracic X-ray image, with 
dimensions 𝑤 × ℎ , and the output 𝑦 ∈ {0, 1, 2}  denotes 
respectively the absence of pneumonia, the bacterial pneumonia 
infection, or the COVID-19 pneumonia infection. 

3.2 Dataset Description 
In this paper, we are using two different datasets, consisted of 

exclusively frontal-view chest X-ray images of various 
resolutions, ranging from 220×206 to 5623×4757. 

The first dataset, referred as Dataset_0, comes from the work 
of Kermnay et al. [30] and includes 1,575 X-ray images of 
healthy patients (Figure 2a), 2,772 images of patients with 
bacterial pneumonia (Figure 2b) and 1,493 images of patients 
with viral pneumonia (Figure 2c). Dataset_0 was used for 
training a multi-class classification model, which will be 
targeting three classes: (i) normal healthy patients, (ii) patients 

with pneumonia caused by bacteria, (iii) patients with 
pneumonia caused by a virus. 

The second dataset, referred as Dataset_1, consists of thoracic 
X-ray images of confirmed COVID-19 cases (Figure 2d) that 
come from the COVID-19 image data collection of Cohen et al. 
[10], as well as a subset of the aforementioned Dataset_0. More 
specifically, Dataset_1 contains 544 images of healthy patients, 
500 images of patients with bacterial pneumonia and 456 images 
of patients with COVID-19. It is underlined that through the 
undersampling process of the normal and bacterial classes, we 
can avoid imbalanced data problems, since at the time of writing 
this paper the number of X-ray samples for the COVID-19 class 
is extremely limited. From the whole number of chest X-ray 
images in Dataset_1, 80% is used for training the deep learning 
multi-class classification models, while the rest 20% is used for 
testing. Among the training data, 87.5% of them were used for 
training and the remaining 12.5% for validation. 

3.3 Transfer Learning 
The idea of transfer learning lies in the fact that, in machine 

learning, we can utilize knowledge gained from one problem A 
and then apply it to another related problem B [31]. For instance, 
knowledge obtained while learning to detect cats can be 
transferred when trying to detect dogs. It is emphasized that, 
generally speaking, transfer learning is more effective when 
tasks A and B are relatively correlated, since then, they possess 
similar low-level image features (e.g. edges, lines, corners, and 
curves) [32]. 

Furthermore, through transfer learning, we are able to create 
accurate deep models on small datasets, by leveraging existing 
networks, already trained on large datasets. Thus, instead of 
training our network from scratch, we can utilize these 
pretrained models, the low-level features of which are pretty 
generic, and therefore can be used in any image classification 
task [14], [33]. 

Based on the above and given the limited data of COVID-19 
X-ray images, transfer learning is the preferred method, in order 
to develop accurate automated diagnosis models [17]. In this 
way, we are able to overcome the isolated learning paradigm of 
COVID-19 and utilize knowledge from other data-rich sources, 
such as the bacterial and viral pneumonia radiographs. 
Additionally, we leverage pretrained networks on large-scale 
image datasets, such as the ResNet-50 trained on ImageNet [34], 
and transfer their generic knowledge into our pneumonia 
classification problem. 

Figure 3: Architecture of the proposed CNN for pneumonia classification. 
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Figure 5: Performance metrics of the three deep models, in 
terms of accuracy and F1-score. 

3.4 Employed Network Architectures 
In order to detect pneumonia cases from chest X-ray images, 

we designed a simple CNN, the architecture of which is depicted 
in Figure 3. Initially, a CNN, referred as Model_0 and based on 
the specific architecture, was trained on Dataset_0. Model_0 is 
able to classify the following three classes: (i) normal, (ii) 
bacterial pneumonia, and (iii) viral pneumonia. Then, two CNNs, 
based on the same architecture, were trained on Dataset_1: the 
first model, referred as Model_1, was trained from scratch using 
random initial weights, whereas the second model, referred as 
Model_2, was trained using transfer learning from Model_0. 
Finally, a ResNet-50 network, referred as Model_3, was also 
trained on Dataset_1, initialized with weights pretrained on 
ImageNet [34]. It is noted that the last fully connected layer of 
the ResNet-50 is replaced by one that can identify three classes 
instead of 1000. The last three models are able to classify the 
following three classes: (i) normal, (ii) bacterial pneumonia, and 
(iii) COVID-19 pneumonia. 

4 EXPERIMENTAL EVALUATION 

4.1 Experimental Setup – Models Training 
All the deep models were developed in Python, using Keras 

and TensorFlow libraries. The networks were trained and 

evaluated using an NVIDIA Tesla K80 GPU, provided by Google 
Colab. 

We trained the CNNs, using batches of size 20, for 500 
epochs, with early stopping criteria set to 10 epochs, to avoid 
overfitting. During data preprocessing, we resized input images 
to a resolution of 224 × 224 pixels.  

All the models were trained using Adam optimizer with the 
default parameters (𝛽1 = 0.9 and 𝛽2 = 0.999), with an initial 
learning rate of 0.001 that is reduced by a factor of 10 when 
there is no improvement in the validation loss, for five 
consecutive epochs. Regarding Model_2 and Molel_3, to which 
were applied transfer learning techniques, initially we tuned 
only the weights of the final dense layer and froze the rest of the 
networks. Then, we unfroze the whole Model_2 and the last 11 
layers of Model_3 and continued the training procedure in order 
to fine-tune the reused layers. It is highlighted that after 
unfreezing the reused layers, the learning rate was initially set to 
0.0001, in order to prevent damaging the reused weights. Lastly, 
during the models’ training process, we optimize the categorical 
cross-entropy loss  

𝐽𝐶𝐶𝐸 = −
1

𝑀
∑∑𝑦𝑘

(𝑖)

3

𝑘=1

𝑀

𝑖=1

log⁡(𝑃̂𝑘
(𝑖)
) 

where M is the number of training examples, yk
(i) is the target 

probability that the ith training instance belongs to the kth class, 

and 𝑃̂𝑘
(𝑖) is the scalar value in the models’ outputs.  
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Figure 4: Performance metrics of the three deep models, in 
terms of precision and recall. 
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Figure 6: Average computational time per image, of the 
three deep models. 

4.2 Results 
To test the proposed approaches, we consider four 

performance metrics, to evaluate the results of the deep models 
on the test set of Dataset_1: (i) prediction, which measures the 
correctness of positive predictions (ii) recall, which refers to the 
ratio of total relevant instances correctly classified by the 
network, (iii) accuracy, which shows the proportion of correct 
predictions to the total predictions made by the classifier, and 
(iv) F1-score, which is the harmonic mean of precision and recall. 

Figure 4 depicts the performance metrics in terms of 
precision and recall, for the test set of Dataset_1. More 
specifically, Model_1, which was trained from scratch performed 
reasonably well (93.03% precision and 92.17% recall) in the 
classification task. However, Model_2, which has a matching 
architecture with Model_1, but trained by utilizing transfer 
learning techniques, provides improved results, achieving 95.69% 
precision and 95.62% recall. Lastly, Model_3 (ResNet-50 
pretrained on ImageNet dataset) results in even better outcomes 
(97.73% precision and 97.67% recall), due to (i) its more complex 
architecture, and (ii) the transfer learning capabilities, enabled by 
the pretrained model. 

Figure 5 illustrates the performance metrics in terms of 
accuracy and F1-score, for the test set of Dataset_1. Similar to 
the above, Model_3 achieved the highest scores (97.66% accuracy 
and 97.61% F1-score). At the same time, Model_2 (95.65% 

accuracy and 95.49% F1-score) outperformed Model_1 (92.32% 
accuracy and 92.46% F1-score), by utilizing knowledge from 
other similar sources (i.e. viral pneumonia). This implies that 
through transfer learning the error rate of the deep learning 
model, which is demonstrated in Figure 3, was reduced to a 
factor of almost two. 

Finally, Figure 6 presents the requirements of the three 
classifiers, in terms of processing time. In particular, the average 
classification time, for an image in the test set of Dataset_1, 
ranges between 26.9 and 42.7 milliseconds. 

5 CONCLUSIONS 
In this paper, we have presented a deep learning-based 

approach for automated detection of COVID-19 pneumonia in 
thoracic X-ray images. In parallel, the proposed networks 
differentiate COVID-19 pneumonia from bacterial pneumonia. 
Bearing in mind that the number of chest radiographs related to 
COVID-19 is limited, transfer learning can contribute to 
effectively train the deep models, by transferring knowledge 
from other data-rich sources and pretrained networks. The 
results of this study indicate that the transfer learning approach 
outperforms the performance obtained without transfer learning, 
for the COVID-19 classification task. 
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