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Abstract
We study the transition of an epidemic from growth phase to decay of the active infections in a pop-
ulation when lockdown measures are introduced to reduce the probability of disease transmission.
While in the case of uniform lockdown a simple compartmental model would indicate instantaneous
transition to decay of the epidemic, this is not the case when partially isolated active clusters re-
main with the potential to create a series of small outbreaks. We model this using a connected set
of stochastic susceptible-infected-removed/recovered (SIR) models representing the locked-down
majority population (where the reproduction number is less than one) weakly coupled to a large
set of small clusters where the infection may propagate. We find that the presence of such active
clusters can lead to slower than expected decay of the epidemic and significantly delayed onset
of the decay phase. We study the relative contributions of these changes to the additional total
infections caused by the active clusters within the locked-down population. We also demonstrate
that limiting the size of the inevitable active clusters can be efficient in reducing their impact on
the overall size of the epidemic outbreak.

Statement of Significance
Restricting movement and interaction of individuals has been widely used in trying to limit the
spread of COVID-19, however, there is limited understanding of the efficiency of these measures
as it is difficult to predict how and when they lead to the decay of an epidemic. In this article,
we develop a mathematical framework to investigate the transition to the decay phase of the
epidemic taking into account that after lockdown a large number of active groups remain with the
potential to produce localised outbreaks affecting the overall decay of infections in the population.
Better understanding of the mechanism of transition to the decay of the epidemic can contribute
to improving the implementation of public health control strategies.

1 Introduction
Quantitative epidemiological models are being used as a tool to inform public health decisions
about infectious disease outbreaks, like recently during the COVID-19 pandemic. Simpler mathe-
matical models were useful to introduce concepts such as, the basic reproduction number R0 [1],
while more complex agent based models were used to estimate hospital occupancy, or the effect
of planned social distancing measures [2–4]. Arguably the simplest and most influential epidemic
model operates with the susceptible, infected and removed/recovered subpopulations and hence
referred to as the SIR model [5]. The corresponding system of nonlinear ordinary differential equa-
tions exhibits an initial exponential spread of an epidemic, followed by saturation as the susceptible
proportion of the population decreases. Eventually, as the immune sub-population reaches a criti-
cal threshold, often referred to as herd-immunity threshold, the infected subpopulation decays to
zero.

The simplest SIR model assumes that the epidemic parameters (e.g., the probability of transmission
from an infected to a susceptible individual) remain constant during the outbreak, and the whole
population is perfectly mixed: any two individuals have the same chance for disease transmission.
However, in the COVID-19 pandemic a range of public health measures were introduced with the
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goal of reducing transmission efficiency. Accordingly, the initial exponential growth phase of the
infectious fraction of the population was followed by an exponential decay after the introduction
of social distancing measures, primarily reflecting the reduced transmission rate well before a sig-
nificant fraction of immune population would have accumulated [6].

Detailed analysis of epidemic and mobility data from various European countries during the first
wave of the COVID-19 pandemic has revealed that after the introduction of social distancing mea-
sures the transition from growth to decay phase may involve a fairly long, and country-specific
delay [6]. The 4-5 days long incubation period of the disease [7, 8], as well as the average survival
time of patients with fatal COVID-19 illness are expected to introduce a certain delay between
the alteration of social behavior and its observable effect in epidemic data such as the daily new
infections and death rate. However, in most countries the delay between the introduction of control
measures to the peak of the epidemic was significantly longer, usually lasting for several weeks.
The same study also revealed that the delay was longer in countries where the control measures
were less strict [6].

Within the context of an SIR model a substantial sudden reduction of the infection transmission
rate due to social distancing efforts should flip the exponential growth into exponential decay
instantaneously. In this paper we demonstrate that the delay τ between the introduction of social
distancing measures and the onset of the decaying phase of an epidemic can arise when control
measures affect various groups of society highly selectively. For example, under official lockdown
orders transmission can be reduced for the majority of the population, while the disease remains
able to spread among various distinct clusters – like workers in warehouses, meat processing plants
or among prison inmates. To study this effect we propose a generalization of the SIR model to take
into account the heterogeneity of the population with respect to epidemic control measures. We
consider a dual population structure where most of the population has a strongly reduced rate of
transmission, while the transmission rate remains high within distinct clusters of a certain size. By
stochastic simulations we explore how the delay τ , the decay rate and the total number of infected
people are influenced by the size of the non-restricted sub-population as well as the typical size of
the clusters within the non-restricted population.

2 The Model
To model the spread of the epidemic in a population we use the standard SIR epidemic model,
defined by the following system of ODEs [5, 9]:

dI

dt
= kSI − γI, dS

dt
= −kSI, dR

dt
= γI, (1)

where I, S, and R denote the infected, susceptible, and recovered fractions of the population, re-
spectively, i.e., S+I+R = 1. Here, k is the rate of transmission from I to S per infected individual,
while γ represents the rate of recovery from I to R, either through acquired immunity or death.
The behavior of the model is determined by a single non-dimensional parameter, the reproduction
number R0 = k/γ, which gives the number of new infections caused by a single infected person
within a fully susceptible population. The condition for an epidemic outbreak is R0 > 1, while for
R0 < 1 the epidemic dies out.

In the initial phase of an epidemic described by the SIR model most of the population is suscepti-
ble and the number of infected individuals grows exponentially. We are interested in the epidemic
dynamics within a population under social distancing measures that have been implemented suffi-
ciently early (i.e., I,R� 1 and S ≈ 1) and are efficient enough to reduce the reproduction number
below one. In this regime, Equation (1) simplifies to dI/dt = kI − γI and yields:

I ∼ e(R0i
−1)γt, (2)

where parameters R01 > 1 and R02 < 1 characterise the initial growth and post-intervention decay
phases of I, respectively.

To model the heterogeneity of the population with respect to epidemic control measures, we divide
the total population of size T into sub-populations: (i) the locked-down population fraction of

2

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.14.20248154doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.14.20248154
http://creativecommons.org/licenses/by-nd/4.0/


size 0 < L < 1, where the social distancing measures are effective and the infection transmission
rate reduces (R0 < 1), and (ii) the rest of the population (e.g., nursing home inhabitants, prison
inmates, essential service providers) are sorted into partially isolated clusters, and within the clus-
ters the infection transmission rate remains unaffected (R0 > 1). For simplicity, we assume that
each cluster has the same size, M , a model parameter that reflects both the organization of social
institutions as well as potential efforts to control the epidemic. The number of such clusters is N ,
and thus the size of the non-socially distancing sub-population is NM = (1− L)T .

Figure 1: Susceptible-infected-removed/recovered (SIR) model. (A) SIR networks in the locked-
down (green) and not socially distancing (red) sub-populations. The latter is composed of N
clusters, each has its own SIR dynamics. S, I, and R are proportions of susceptible, infected, and
recovered individuals, respectively. Dashed curves: infections transmitted by infected individuals
to the susceptible individuals. (B) The total number of infected individuals versus time calculated
using the Gillespie stochastic simulation algorithm. Solid lines: five example runs of the algorithm
(in different colours) for N = 100 and M = 10. Black dashed line: Itot(t), average of 10 runs of
the algorithm. Other simulation parameters are in Table 1.

The locked-down sub-population and each cluster has its own SIR dynamics, which are also cou-
pled as depicted in Fig. 1(A). Specifically, we define the transmission rates as follows. Within the
locked-down sub-population (L), we define kL→L = R02γ. Thus, in this sub-population, in the
absence of external interactions the number of infections would decay exponentially. In contrast,
for each cluster j = 1, .., N , we assume that the infection transmission rate within the cluster
remains unchanged, i.e., kj→j = R01γ. Transmission rates are also reduced between clusters and
the locked-down sub-population: kL→j = kj→L = R02γ. Finally, we also assume that there is no
direct transmission of infection between different clusters.

We can now establish the dynamics for each of the SIR subsystems. For each cluster j, new
infections occur at the rate given by:

Qj =MIjβjkj→jSj + LTIL
M

T
kL→jSj . (3)

where Ij and Sj are the proportions of infected and susceptible in the cluster, the first term
represents new infections transmitted within the cluster, and the second term describes infections
introduced from the locked-down population. The parameter 0 < βj < 1 represents the probability
that an individual in a cluster j interacts with others within her own cluster (we use βj = 0.9). In
the second term, the factor M/T captures the probability that an individual of the locked-down
sub-population interacts with a member of cluster j.

Likewise, in the locked-down sub-population, the total rate of new infections is given by:

QL = LTILLkL→LSL +
N∑
j=1

MIjβLkj→LSL, (4)

where βL = 1− βj = 0.1 represents the probability of interaction between individuals of cluster j
and the locked-down sub-population.
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Now, the dynamics of the proportion of infected individuals in the locked-down sub-population
(IL) and in the active clusters (Ij) are determined by the normalised rates of new infections com-
bined with the rate of recovery, QL/LT − γIL and Qj/M − γIj , respectively. Note, while the
SIR dynamics is the same for each cluster j, the temporal dynamics differs as the first in-cluster
infection transmission could be initiated at various time points.

In the case of the standard SIR model it is natural to use a deterministic description, since in a
large population the fluctuation of individual discrete events can be neglected and the overall dy-
namics is well approximated by continuous variables following mass action type kinetics. However,
in our model, while the total population is still assumed to be large (for concreteness, we consider
a city with total population T = 106), after implementing lockdown strategies, the size of partially
isolated clusters (where the infection is still able to propagate) are relatively small; we will assume
typically values in the range M = 20 − 150. Thus, a single new infected person in a cluster can
increase Ij by a much larger extent than a similar infection in the larger population increases IL.
Therefore, the discreteness of the population and the stochastic nature of the epidemic dynamics
is important, especially at the initiation of epidemic outbreaks within the clusters, triggered by a
single random infection event.

We implemented the time evolution of the interacting system of sub-populations as a series of
discrete events in continuous time, by using the Gillespie stochastic simulation algorithm [10–12].
The parameter values used in the simulations are summarised in Table 1. We used R01 = 3 and
R02 = 0.6 since the estimations of R01 and R02 are in the ranges 2−3.5 [13–15] and 0.36−0.82 [6],
respectively. Although the exact value of γ for COVID-19 is uncertain [16, 17], we used γ = 0.1
(day−1) as a reasonable estimate for this parameter [18]. Yet, our analysis of the epidemic dynamics
is rather general and does not rely on the values of the model parameters. Stochastic trajectories
of the total number of infected individuals are shown in Fig. 1(B). The typical time course of the
epidemic (Itot) was obtained as an average over 10 runs of the algorithm for each set of parameters
N and M ; see Fig. 1(B).

Table 1: Model parameters.

Parameter Value
Total population size, T 1,000,000
Initial reproductive number, R01 3
Reproductive number after lockdown, R02 0.6
Recovery rate, γ 0.1 (day−1)
Initial ratio of infected individuals, I01 667× 10−6

Time of lockdown, tLD 10 (days)

3 Results
We first explore how the time course of the total number of infected individuals in the whole
population, Itot(t), is affected by the number and size of the clusters which remain active after
the lock-down. We find that raising the number N and size M of these clusters can lead to a
dramatic increase in the number of infections in comparison to the reference case when the whole
population is locked down; dashed green line in Fig. 2(A-I). This difference is caused by a series of
small outbreaks happening randomly when infection is transmitted into some of the active clusters
while the overall level of infection decays in the rest of the population. The aggregate effect of the
isolated outbreaks can be a delayed transition to the decaying phase of the epidemic relative to the
time when the lockdown is implemented, in addition to a slower decay compared to what would be
predicted based on the reproductive number R02 of the locked down population. Results in Fig.
2(A, D, G) also show that increasing the number of the active clusters has a negligible effect when
the size of the clusters is small. These results suggest that dividing the active sub-population into
groups with smaller sizes, independent of the number of groups, can reduce the total number of
infected individuals in the population.
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Figure 2: Total number of infected individuals (Itot(t)) versus time for different numbers (N) and
sizes (M) of active clusters in the not socially distancing sub-population. Circles: Itot(t) calculated
using the Gillespie algorithm after averaging over 10 repeated simulations. Solid red line is obtained
by fitting I02e

−αt to the simulation data points highlighted by orange using the Mathematica
routine NonlinearModelFit. To perform the fitting with minimal effects of the stochasticity, in most
cases, the fitting range is set to start at a time after lockdown time tLD where 100 < Itot(t) < 3000

(see Table S1 for the fit parameters I02 and α). Dashed green line: ILD e
γ(R02−1)(t−tLD) that passes

through ILD = Itot(tLD), where tLD is the time of lockdown. Black dashed line: tLD. Blue line:
I01e

γ(R01
−1)t. Other simulation parameters are in Table 1.

The significant differences observed in Fig. 2(A-I) in the number of infected individuals with vary-
ing the numbers and sizes of the active clusters in the population persuade us to further examine
the transition to the decay of the epidemic. We characterise the transition by three properties: the
decay rate of the number of infected individuals (α), the delay in the decay phase caused by the
presence of the active clusters (τ), and the additional number of infected individuals (Iextra) due
to the slower and delayed decay of the epidemic.

The decay rate is calculated by fitting Itot(t) ' I02e
−αt to the simulation data (averaged over 10

repeated realisations) within a selected range where there is a well defined exponential decay; see
Fig. 2(A-I) and Fig. 3(A), orange circles. Then, the fit parameter α represents the decay rate
(slope on the log-linear plot) of the number of infected individuals in the population. Least-squares
fitting was performed using Mathematica (version 11, Wolfram Research, Inc.) routine Nonlinear-
ModelFit.
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Next, the delay τ of the onset of the exponential decay phase, caused by the not locked-down
clusters, is calculated as the time-shift relative to decay with the same rate α passing through
ILD = Itot(tLD) ≈ 5000; see Fig. 3(A). This decay follows I02e−α(t+τ) (illustrated using dotted
brown line in Fig. 3(A)). Therefore, ILD = I02e

−α(tLD+τ) results in:

τ = − 1

α
ln

(
ILD

I02

)
− tLD. (5)

Finally, the number of new additional infected individuals, caused by the presence of not locked-
down clusters, is calculated as:

Iextra = γ

∫ ∞
tLD

Itot(t) dt− γ
∫ ∞
tLD

ILD e
γ(R02

−1)(t−tLD) dt (6)

which corresponds to the area of the yellow shaded region in Fig. 3(A), multiplied by γ. Note
that the second integral, representing the area under the dashed green line in Fig. 3(A), gives
the number of individuals infected during the lockdown (t > tLD) if a complete lockdown was
implemented with no active clusters (N = 0). This can be calculated explicitly and has the value
ILD/(1 − R02), which we use as a reference value for the extra infections. Thus the effect of the
clusters in the incomplete lockdown N > 0 can be characterised by the relative increase of total
infections:

µ = Iextra(1−R02)/ILD. (7)

Results in Fig. 3(B) show that as the number and size of the active clusters increases the number
of infected individuals decays slower than the value expected for a uniformly locked-down SIR
model: α0 = γ(1−R02) = 0.04 (day−1). For the range of values considered in the simulations we
find that when the locked-down fraction decreases to around L = 0.8 the characteristic decay time
of the epidemic, α−1, increases from the reference value of 25 days (for L = 1) to around 50 days,
i.e., α ≈ 0.02 (day−1).

Figure 3(C) shows that the delay of the decay phase, τ , can increase substantially in the range
of tens to hundred days when the locked-down fraction is reduced to 80-90%. Also we find again
that for a certain locked-down fraction, the delay can be much longer when the active population
is composed of larger clusters. The relative increase of the total infections during the lockdown
due to the active clusters (µ) shows a similar behavior (see Fig. 3(D)) indicating up to more than
10-fold increase when the active proportion is increased to around 10% of the population.
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Figure 3: Analysis of the decay phase of an epidemic. (A) A sketch illustrating three proprieties of
the decay phase (for example, with N = 2000 and M = 70). The decay rate α corresponds to the
slope of the fit I02e−αt (red solid line). The delay τ in the epidemic decay, due to the presence of
the active clusters, is the time-shift relative to an exponential decay with the same slope (α) that
passes through the lockdown point (tLD, ILD) (brown dotted line); see Equation (5). Finally, the
number of extra infected individuals Iextra, calculated using Equation (6), is represented by the area
of the yellow shaded region. (B-D) decay rate α, delay τ , and relative increase of total infections
µ versus the active population ratio not locked-down, 1−L. Dashed line in (B): α0 = γ(R02 − 1).
Other simulation parameters are in Table 1.

To further illustrate the differential impact of the number and size of the active clusters on the
extra infections during the decay phase of the epidemic, we generate a heat-map representing
Iextra(M,N); see Fig. 4(A, B). Using a logarithmic scale for both variables N and M , the linear
iso-contours in Fig. 4(B) suggest to approximate the dependence on these variables by a power
law of the form:

Iextra ∼ NaM b. (8)

We find that this functional form leads to a good fit for the scaling of the data from the stochastic
simulations (Fig. 4(C, D)) resulting in a ≈ 1 and b ≈ 1.8. This confirms our earlier prediction that
increasing the size of the clusters (M) has a stronger impact on the total infections than increasing
the number of clusters (N) by the same proportion.
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Figure 4: Analysis of the extra number of infected individuals, Iextra calculated using Equation (6).
(A, B) Iextra versus N and M . (C, D) Dashed lines: fits kNaM b to Iextra(N ;M) simulation data
points, where a = 1.08± 0.02, b = 1.86± 0.02, and k = 0.01± 0.001. Parameter values correspond
to mean ± standard error (SE). Dotted lines: represent the reference value of total infected from
the start of lockdown in a population without active clusters (N = 0), i.e., the area under the
dashed green curve in Fig. 3(A).

We further examine how the rate and delay of the decay phase contribute to the extra infections
in the population. This relationship can be quantitatively expressed as:

Iextra ≈ ILD

(
1

α
− 1

α0

)
+ ILDτ (9)

where the two terms represent the contributions due to slower and later decay, respectively. The
approximation is based on replacing the transition region to a constant segment I(t) = ILD until
the onset of the decay phase (see S1(A)). Although this formula slightly underestimates the total
infections in some cases, it provides a very simple representation of the two components.

We find a good agreement between the analytical and numerical calculations of the extra number
of infected individuals; see Fig. S1(B), and the increase of infected individuals appears to be
mainly due to the delay (τ) in the decay phase, rather than the rate (α) of the decay; compare Fig.
S1(C, D). These results provide an explanation for our earlier prediction, that dividing the active
sub-population into smaller clusters reduces the total number of infected individuals, mainly due
to faster transition from growth phase to decay phase when the size of the outbreaks in infected
clusters is smaller.
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4 Discussion
We studied the effect of a large number of small active clusters within a locked-down majority
population on the transition to the decay phase of an epidemic. We have shown that the active
clusters can lead to delayed onset of the decay of the number of infected in the population and
a slower decay rate of the epidemic. In our representative example simulations, considering a
COVID-19-like epidemic in a city of one million inhabitants, we find that the delay can be in the
range of several weeks to a few months while the characteristic time of the exponential decay,
assumed to be around 3 weeks for the locked-down population, may double. This could lead to
up to tenfold increase in the total number of infections occurring from the start of the lockdown
relative to the case of a complete uniform lockdown. We found that the size of the clusters has a
much stronger impact on the total extra infections in the incomplete lockdown than the number of
these clusters, and the extra infections can be approximated with a double power law expression
of the form: Iextra ∼ N ·M1.8. We also identified that the dominant factor leading to the extra
infections is the delayed transition to the decay phase which has an approximately 5-fold larger
contribution than the slower than expected decay.

The above results are based on a series of simplifying assumptions which allow us to keep a fairly
simple general mathematical framework and efficient computer simulations while capturing the
important impact of small minority groups in disease transmission, which is completely missed in
standard ODE based compartmental epidemic models. This is particularly relevant in the con-
text of the current COVID-19 pandemic, where unexpected strong over-representation of certain
affected subgroups in the population become evident (e.g., very high proportion of nursing home
deaths, or frequent outbreaks in meat factories, livestock plants, and prisons) [19–22]. Our model
of course gives a very crude representation of these subgroups, considering a single average size of
the clusters and assuming that the reproductive ratio remains the same as in the initial uncon-
trolled epidemic. Also, for simplicity, we assumed that the outbreaks occurring within the clusters
are only stopped by the development of natural herd immunity within the cluster. In reality these
outbreaks may be detected before they reach herd immunity and can be controlled through quaran-
tine measures. This could be implemented quite easily in the model and would likely be equivalent
to considering a smaller effective cluster size in the current model.

We also note, that the disproportionate impact of small sub-populations in epidemic models have
also been observed in various other contexts. For example, in social contact network based epidemic
models, it was shown that a very small fraction of highly connected individuals can have a large
effect on the spread of infections in the population [23]. In the case of COVID-19, it was suggested
that certain super-spreading events may play an essential role in the epidemic dynamics [24]. These
examples also demonstrate potential limitations of mean field type models restricted to representing
the average properties and behavior of the interacting components.
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Supplemental Information
H. Khataee, J. Kibble, I. Scheuring, A. Czirok, Z. Neufeld

Table S1: Fit parameters I02 and α are approximated by fitting I02e−αt to the calculations of the
average total number of infected individuals (highlighted by orange in Fig. 2). Parameter values
correspond to mean ± standard error (SE).

N M I02 α
20 7515.69± 11.18 0.0392± 4× 10−5

40 7647.35± 40.603 0.0388± 1× 10−4

100 70 7709.89± 66.02 0.0342± 2× 10−4

100 11372.40± 107.75 0.0344± 1× 10−4

150 16005.40± 198.84 0.0350± 2× 10−4

20 7399.74± 20.67 0.0383± 1× 10−4

40 8017.22± 96.69 0.0330± 3× 10−4

485 70 18067.30± 187.33 0.0340± 2× 10−4

110 24456.10± 167.05 0.0294± 1× 10−4

150 36150.50± 476.94 0.0279± 1× 10−4

20 8131.21± 40.50 0.0367± 1× 10−4

40 12148.10± 81.04 0.0335± 1× 10−4

1067 70 23506.30± 125.86 0.0293± 1× 10−4

110 34340.60± 329.14 0.0237± 1× 10−4

150 61851.60± 953.33 0.0227± 1× 10−4

20 9045.05± 69.96 0.0378± 2× 10−4

40 14236.90± 111.06 0.0332± 1× 10−4

1464 70 23540.00± 119.12 0.0263± 1× 10−4

110 42360.90± 541.74 0.0213± 1× 10−4

150 103621.00± 1571.04 0.0219± 1× 10−4

20 9252.42± 77.52 0.0367± 2× 10−4

40 16975.60± 65.60 0.0320± 1× 10−4

2000 70 24625.70± 141.07 0.0227± 1× 10−4

110 47621.70± 402.27 0.0178± 4× 10−5

150 94487.40± 821.26 0.0181± 1× 10−4
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Figure S1: Contributions to the extra infected individuals, Iextra due to slower vs delayed decay of
the epidemic. (A) A sketch illustrating areas associated with Iextra, for example with N = 2000 and
M = 70. Area A1 (blue shaded region) represents extra infected due to the slower rate of decay of
the infections; first term in Equation (9). Area A2 (green shaded region) represents an estimate of
the extra infected caused by the delay in the decay phase; second term in Equation (9). For clarity,
the values for the x and y axes are not shown. (B) Comparison of the estimated extra infections
(Îextra) calculated from Equation (9) and the numerically calculated Iextra. Contributions to the
extra infections due to slower decay (C) and delayed transition to the decay phase (D). Dotted line
in (B-D) shows the total infections after the start of the lockdown if there were no active clusters
(N = 0), i.e., the area under the dashed green curve in (A).
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