
 
 

Predicting mortality in SARS-COV-2 (COVID-19) positive patients in the inpatient 
setting using a Novel Deep Neural Network. 

Maleeha Naseem1, Hajra Arshad2, Syeda Amrah Hashimi2, Furqan Irfan3, Fahad Shabbir 
Ahmed4, 5, 6  
1 Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan 74900. 
2 Medical College, Aga Khan University, Karachi, Pakistan 74900. 

3 College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824. 

4 Clinicaro Machine Learning Group, New Haven, CT, 06510. 

5 Department of Pathology, Wayne State University, Detroit, MI 48201. 

6 Corresponding author 

Email Address: Fahad Shabbir Ahmed, fahadshabbirahmed@gmail.com  

Corresponding author: Fahad Shabbir Ahmed, Lead Scientist, Clinicaro Machine Learning 
group; Department of Pathology, Wayne State University / Detroit Medical Center. Harper 
Professional Building, 4160 John R St, Detroit, MI 48201. Phone: 631-644-3981; Email; 
fahadshabbirahmed@gmail.com. 
 
Conflict of Interest: None. 
 
Disclosures: None 
 
Abstract words count: 389 
 
Manuscript word count: 2870 
  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 16, 2021. ; https://doi.org/10.1101/2020.12.13.20247254doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.12.13.20247254


 
 

ABSTRACT 

Background  

The second wave of COVID-19 pandemic is anticipated to be worse than the initial one and 

will strain the healthcare systems even more during the winter months. Our aim was to 

develop a machine learning-based model to predict mortality using the deep learning Neo-V 

framework. We hypothesized this novel machine learning approach could be applied to 

COVID-19 patients to predict mortality successfully with high accuracy. 

Methods  

The current Deep-Neo-V model is built on our previously statistically rigorous machine 

learning framework [Fahad-Liaqat-Ahmad Intensive Machine (FLAIM) framework] that  

evaluated statistically significant risk factors, generated new combined variables and then 

supply these risk factors to deep neural network to predict mortality in RT-PCR positive 

COVID-19 patients in the inpatient setting. We analyzed adult patients (≥18 years) admitted 

to the Aga Khan University Hospital, Pakistan with a working diagnosis of COVID-19 

infection (n=1228). We excluded patients that were negative on COVID-19 on RT-PCR, had 

incomplete or missing health records. The first phase selection of risk factor was done using 

Cox-regression univariate and multivariate analyses. In the second phase, we generated new 

variables and tested those statistically significant for mortality and in the third and final phase 

we applied deep neural networks and other traditional machine learning models like Decision 

Tree Model, k-nearest neighbor models and others. 

Results  

A total of 1228 cases were diagnosed as COVID-19 infection, we excluded 14 patients after 

the exclusion criteria and (n=)1214 patients were analyzed. We observed that several clinical 

and laboratory-based variables were statistically significant for both univariate and 

multivariate analyses while others were not. With most significant being septic shock (hazard 
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ratio [HR], 4.30; 95% confidence interval [CI], 2.91-6.37), supportive treatment (HR, 3.51; 

95% CI, 2.01-6.14), abnormal international normalized ratio (INR) (HR, 3.24; 95% CI, 2.28-

4.63), admission to the intensive care unit (ICU) (HR, 3.24; 95% CI, 2.22-4.74), treatment 

with invasive ventilation (HR, 3.21; 95% CI, 2.15-4.79) and laboratory lymphocytic 

derangement (HR, 2.79; 95% CI, 1.6-4.86). Machine learning results showed our DNN (Neo-

V) model outperformed all conventional machine learning models with test set accuracy of 

99.53%, sensitivity of 89.87%, and specificity of 95.63%; positive predictive value, 50.00%; 

negative predictive value, 91.05%; and area under the curve of the receiver-operator curve of 

88.5. 

Conclusion  

Our novel Deep-Neo-V model outperformed all other machine learning models. The model is 

easy to implement, user friendly and with high accuracy. 

Keywords: COVID-19, deep learning, mortality prediction, Neo-V Framework 
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INTRODUCTION 

Severe acute respiratory syndrome coronavirus 2 (SARS-COV 2) has caused 60 million 

infections and 1.4 million deaths worldwide (1) and 800, 000 deaths in the United States (2) . 

Despite strict measures being deployed and special instructions given to the mass public, the 

second wave is anticipated to be far worse than the first one (3). Some countries have started 

to ease those earlier restrictions because of economic implications from the initial lockdown, 

which may create a further deepening of the current crisis, as cases continue to rise. This could 

overwhelm the already strained healthcare systems across the United States and the world. 

Machine learning has been extensively used in the automotive, defense and fin-tech industry 

over the past couple of years with great success. The use of these systems to predict health 

outcomes have been limited. Epidemic Renormalization Group (eRG) has used a machine 

learning framework to predict the time evolution of the first and second wave based on the data 

from the first wave in Europe (4). We have previously developed algorithms that predict 

mortality in the clinical setting and performed better than most clinical scales utilized currently 

to predict mortality (5-7) During the current COVID-19 pandemic crisis, the aim was to 

develop a mortality prediction tool that can predict death in COVID-19 patients at admission. 

This would help the already strained healthcare systems and physicians around the world in 

crucial clinical decision making, resource management and family-counselling. We 

hypothesize that machine learning, specifically deep-learning could be applied to COVID-19 

patients with high accuracy. Using deep-learning to predict mortality in these patients may 

assist in clinical decision making, risk stratification and planning strategies in future for such 

pandemics at a larger scale. Not much work has been done in mortality prediction in COVID-

19 patients in with lower socio-economic countries (LMIC) or developed countries. Our 

hypothesis is that machine learning could be applied to COVID-19 patients with high accuracy. 

Hence, predicting mortality and clinical outcomes using ML algorithms may assist in clinical 
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decision making, risk stratification and planning strategies in future for such pandemics at a 

larger scale. 

 

METHODS 

Clinical setting and dataset  

Clinical data was conducted at the Aga Khan University Hospital (AKUH). All patients’ 

records were completely anonymous, and the data collected has received Institutional Review 

Board/Ethical Review Committee (IRB/ERC) approval from Aga Khan University Hospital 

(AKUH), Pakistan. The dataset was de-identified and our study complied with the ethical 

principles recommended by Helsinki declaration (1964) and its amendments. We 

retrospectively collected data from AKUH – electronic medical record (EMR) that were 

admitted with a primary diagnosis of COVID-19 infection to the hospital between February 

2020 and September 2020. 

Patient data collection and selection criteria.  

We included adult patients (>18 years of age) that were admitted to the hospital with a 

diagnosis of COVID-19 or were tested positive during their admission on reverse‐transcriptase 

polymerase chain reaction (RT-PCR) based on Center for Disease Control and Prevention 

(CDC) and College of American Pathologist (CAP) guidelines (8, 9). Data was collected on 

demographics, and comorbidities at admission, the first 24-hours of laboratory investigations 

(hematological and blood biochemistry, (Table 1.), imaging and complete clinical 

characteristics (history, examination, treatment, hospital course and outcomes). We excluded 

all patients that had RT-PCR negative tests for COVID-19 and incomplete records or inaccurate 

medical record information.  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 16, 2021. ; https://doi.org/10.1101/2020.12.13.20247254doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.13.20247254


 
 

The Neo-V Framework 

Neo-V is a tri-phase bio-statically rigorous machine learning that builds on our previous 

framework that had better accuracy then the currently used clinical scoring systems in 

predicting mortality in the intensive care unit (ICU) patients(5, 6).  

Phase I: Also known as the statistical-phase; in which data was analyzed by univariate and 

multivariate Cox-regression analysis (X) using IBM SPSS (version 24.0.0.0) (X) for outcome 

assessment with hazard ratio and confidence intervals. A p-value of <0.05 was considered 

statistically significant. We also did demographic data frequency analysis. Statistical analysis 

was carried out on all the variables included in Table 1.  

Phase II: In contrast to our previously published model we created new variables for the 

existing dataset called neo-variables. These variables included a combination of two clinically 

relevant labs that were significant in both the univariate and the multivariate analysis (Table 

1.). These variables also underwent univariate and multivariate analysis for outcome 

assessment with hazard ratio and confidence intervals   

Phase III: Biological datasets are highly imbalanced with respect to the outcomes (i.e. more 

people were survived, then those who didn’t) and machine learning models are very sensitive 

to imbalanced data and can produce variable and non-reproducible results. To address this, we 

optimized the dataset using Synthetic Minority Over-sampling Technique (SMOTE) algorithm 

during the training process (10). In the machine learning phase, we used all variables that were 

statistically significant in phase I and II in both the univariate and multivariate analysis (non-

significant risk factors were excluded). The final dataset was randomized and divided into a 

training and testing set with a 70/30 percent split respectively (30% data left out to test the 

models). After partitioning the data, we allocated feature vectors of the training instances by 

X_train with corresponding outcome label as Y_train. Similarly, for the test set we allocated 
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X_test and Y_test as testing vector instances and corresponding outcomes, respectively. The 

models trained on X_train and Y_train. The models tried to learn the behavior/distribution of 

the data and generate a hypothesis/fitting function. Once the training is concluded the model 

will then test the X_test and produce an output (prediction) called Y_pred. A comparison is 

done between Y_pred and Y_test. We had previously discussed that reduction of the number 

of irrelevant risk factors can produce better performances and significantly improve 

classifications. In this study we used conventional machine learning models including Random 

Trees (CART), K-Nearest Neighbor (KNN), Support Vector Classifier - Radial Basis Function 

(SVC - RBF), Ada-Boost-Classifier (ABC) and Quadratic Discriminant Analysis (QDA) and 

a deep neural network (DNN). 

Deep-FLAIM 

FLAIM framework only has phase I and III and we used it to compare it with Neo-V 

Framework. The Deep-FLAIM model is a 4 layered model and details have been reported 

previously(5). 

Performance, Primary and Secondary Outcomes Analyses. 

Performance of all models was evaluated by comparing their accuracies and area under the 

receiver-operator curves (AUROC). Primary outcomes included sensitivity and specificity, 

while secondary outcomes included positive predictive values (PPV) and negative predictive 

values (NPV). 

  

RESULTS 

From a total of 1228 patients we selected 1214 patients that were adult patients with complete 

data and RT-PCR proven COVID-19 infections. Demographics of this population showed a 
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median age of 55 years (range 19-96 years), around 28% (n=336) of the admitted population 

being elderly (>65 years of age). Median length of stay 5 days (range 1-54 days), most patients 

admissions were male (61.5%).   

The clinical characteristics of these patients included hypertension (43%, n=521) and diabetes 

(36%, n=441) being the most common comorbid. Presenting symptoms ranged widely from 

being asymptomatic to shortness. The most significant clinical risk factors for death during the 

hospital admission included chronic kidney disease (n=71, HR=2.74, 95%CI=1.63-4.61), 

ischemic heart disease (n=158, HR=1.80, 95%CI=1.19-2.73), other comorbidities (n=571, 

HR=1.72, 95%CI=1.21-2.45), shortness of breath (n=570, HR=1.96, 95%CI=1.35-2.86), other 

symptoms (non-respiratory and non-gastrointestinal symptoms, n=321, HR=1.66, 

95%CI=1.16-2.38), acute kidney injury (n=179, HR=2.47, 95%CI=1.74-3.51), acute 

respiratory distress syndrome / respiratory failure  (n=147, HR=2.53, 95%CI=1.77-3.63), 

septic shock  (n=49, HR=4.30, 95%CI=2.91-6.37), intensive care unit (ICU) admission (n=106, 

HR=3.24, 95%CI=2.22-4.74), number of ICU admissions during current hospitalization 

(range=0-2, HR=2.01, 95%CI=1.49-2.87), invasive ventilation  (n=74, HR=3.21, 

95%CI=2.15-4.79), non-invasive ventilation (BiPAP/CPAP) (n=243, HR=1.87, 95%CI=1.32-

2.67), supportive treatment (n=617, HR=1.87, 95%CI=1.32-2.67) and blood group AB+ (n=48, 

HR=2.48, 95%CI=1.26-4.93); while the utilization of systemic steroids (n=430, HR=0.66, 

95%CI=0.45-0.97) and presence of fever (n=768, HR=0.57, 95%CI=0.40-0.81) were 

associated with better overall all survival.  The most significant (statistical association with 

mortality) laboratory abnormalities for these patients included white cell count (n=455, 

HR=2.09, 95%CI=1.47-2.59), lymphocyte counts(n=378, HR=2.79, 95%CI=1.60-4.86), 

neutrophil count (n=1044, HR=2.67, 95%CI=1.24-5.70), platelets count (n=363, HR=1.41, 

95%CI=1.00-2.01), hematocrit  (n=505, HR=1.81 , 95%CI=1.26-2.61), hemoglobin (n=879, 

HR=1.63, 95%CI=1.05-2.55), blood urea nitrogen (BUN, n=382, HR=2.78, 95%CI=1.94-
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4.01), creatinine (n=373, HR=2.73, 95%CI=1.90-3.94),  international normalized ratio (INR, 

n=198, HR=3.24, 95%CI=2.28-4.63), prothrombin time (PT, n=378, HR=1.79, 95%CI=1.24-

2.59). There were some risk factors that were significant for mortality but had too few patients 

including; shock liver (n=3, HR=11.47, 95%CI=2.77-47.68), blood group AB- (n=6, HR=7.63, 

95%CI=2.39-24.48), Rhinorrhea (n=7, HR=0.001 , 95%CI=0.01-1.7e200), treatment with 

intravenous IgG (n=6, HR=3.95, 95%CI=1.25-12.49) and pneumothorax (clinical or 

radiological, n=22, HR=2.01 , 95%CI=1.18-3.46) . Table 1. shows results from univariate and 

multivariate analysis (hazard ratios, confidence intervals and p-values) of all the clinical and 

laboratory data. 

In phase II (new variable phase) we created 11 new variables that included; total number of 

comorbidities (range 0-6, HR=1.30, 95%CI=1.14-1.49) , more than 2 comorbidities (n=499, 

HR=1.79, 95%CI=1.23-2.61), total number of symptoms(range 0-6, HR=1.07, 95%CI=0.91-

1.26), total types of treatments received (range 0-6, HR=1.27, 95%CI=1.11-1.46), abnormal 

labs: creatinine or blood urea nitrogen (CR or BUN, (n=517, HR=0.36, 95%CI=0.36-0.89)), 

hemoglobin or hematocrit (HB or HCT, (n=883, HR=0.56, 95%CI=0.36-0.89)), platelets or 

INR (PLT or INR, (n=460, HR=2.09, 95%CI=1.47-2.98)), PT or INR (PT or INR, (n=502, 

HR=0.414, 95%CI=)), total leukocyte counts of lymphocytes (TLC or LYMP, (n=0.19, HR=, 

95%CI=0.09-0.43)), total leukocyte counts or neutrophils (TLC or NEU, (n=1085, HR=0.18, 

95%CI=0.06-0.57)), total number of abnormal labs(range 0-17, HR=1.22, 95%CI=1.15-1.30), 

univariate and multivariate statistical analysis can be seen in Table 2. The new variables in 

phase II referred to as ‘neo-variables’ were statistically significant in the uni and the 

multivariate analysis except the total number of symptoms. 

The performance of our previously designed Deep-FLAIM model was compared to the Neo-V 

framework (including Deep-Neo-V and other conventional machine learning algorithms) see 

Table  3. Performance results show Deep-FLAIM (training accuracy = 86.7%, testing accuracy 
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= 84.7%, sensitivity = 68.9, specificity = 86.9, PPV = 42.5, NPV = 95.2, FPR =13.1 and 

AUROC = 86.9); while conventional machine learning show: Random Forest (RF, training 

accuracy = 94.9%, testing accuracy = 85.8%, sensitivity = 28.9, specificity = 93.4, PPV = 32.4, 

NPV = 90.4, FPR = 6.25 and AUROC = 69.5), k- Nearest Neighbors (k-NN, training accuracy 

= 92.3%, testing accuracy = 77.8%, sensitivity = 42.2, specificity = 82.8, PPV = 25.7, NPV = 

91.1, FPR = 17.2 and AUROC = 66.5), Simple Vector  Classifier – Radial Basis Function (SVC 

– RBF, training accuracy = 69.0%, testing accuracy = 65.8%, sensitivity = 75.6, specificity = 

64.4, PPV = 23.0, NPV = 94.9, FPR = 35.6 and AUROC = 80.8), Decision Trees (DT, training 

accuracy = 98.9%, testing accuracy = 85.2%, sensitivity = 42.2, specificity = 91.3, PPV = 40.4, 

NPV = 91.8, FPR = 8.8 and AUROC = 66.7), Adaptive Boosted Classifier (ABC, training 

accuracy = 90.1%, testing accuracy = 85.5%, sensitivity = 48.9, specificity = 90.6, PPV = 42.3, 

NPV = 82.7, FPR = 9.4 and AUROC = 77.65) and Quadratic discriminant analysis (QDA, 

training accuracy = 94.6%, testing accuracy = 87.4%, sensitivity = 60.0, specificity = 91.3, 

PPV = 49.1, NPV = 94.2, FPR = 8.74  and AUROC = 80.84). While our best model was a deep 

neural network (Deep-Neo-V) with training accuracy = 98.7%, testing accuracy = 87.7%, 

sensitivity = 33.3, specificity = 95.3, PPV = 50.0, NPV = 91.1, FPR = 4.69 and AUROC = 

88.5. All receiver operator curves are shown in Supplemental Figure X. 

 

DISCUSSION 

As the second wave of COVID-19 has started to unfold the already stained healthcare systems 

globally are being pushed to the limit with hospital and intensive care unit (ICU) beds reaching 

full-capacity. Impact of the virus has been global with developed countries even struggling 

with infection rates and hospitalization (11). The second wave is anticipated to be much tougher 

than the first one (12). With new vaccines on the horizon infection rates in the United states 
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have skyrocketed to 1.34 million cases being diagnosed in the second week of December 2020 

and more than 1100 deaths (13). The vaccines have just received FDA approval for widespread 

use of the vaccine for prevention of the disease while the actual  logistics and distribution plans 

are still unknown (14).  However, there is a need for the existence of clinical biomarkers and 

predictive models for mortality in these patients. machine learning has been used to predict 

mortality in cancer(15), cardiac disease (16); while our own work on mortality prediction has 

been on trauma patients, postoperative ileus cases in the ICU (5, 6) and diverticulitis in the 

inpatient setting (17) with good accuracies. A lot of epidemiological studies reporting clinical, 

laboratory and mortality outcomes have been done worldwide including developed and 

developing countries, but very few actually reported or developed a machine learning model 

for predicting the outcomes with a set accuracy.  

In the current study we developed a new method of machine learning (Neo-V Framework) that 

uses a smaller amount of cases to train a deep neural network to give better predictions. This 

model is different from our previous FLAIM Framework (two-phase) and has a tri-phase 

structure (Figure 1.) Clinically we used just 1214 hospitalized patients for mortality prediction 

in RT-PCR positive COVID-19 cases using only data from the first 24-hours after admission. 

Clinical data analysis showed that with increasing age the patients’ mortality also increases. 

There are number of clinical risk factors that were associated with worse outcomes and 

documented in the clinical literature like chronic obstructive lung disease [COPD](18), chronic 

kidney disease [CKD](19), ischemic heart disease [IHD](20),  pneumothorax (radiological or 

clinical diagnosis)(21), acute respiratory syndrome [ARDS](22), septic shock(23), shortness of 

breath(24), ICU admission(25), AB+ Blood group(26) and recurrent admission to the ICU. 

Hematological labs that were associated with mortality (previously presented in the results) 

were also seen in other studies(27). Biochemical laboratory abnormalities like creatinine, blood 

urea nitrogen(28), INR and PT(29) were also associated with mortality. Patients managed with 
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invasive ventilation(30) and non-invasive ventilation (31) which actually signifies that the 

patients that were not able to maintain normal respiratory physiology had worse outcomes. 

Having fever(32) and the use of systemic steroids(33) as an early symptom of COVID-19 had 

better prognosis in our patient population.   

Machine learning has been used to predict mortality in the inpatient and the ICU setting in a 

number of different clinical conditions including our prior papers. The methods need to 

continue to evolve to have better outcome predictions, previously we developed the FLAIM-

Framework approach, which was an attempt to build a workflow pipeline to produce more 

accurate results. The Neo-V Framework builds on our previous work and has the statistical 

power of FLAIM, but it can be used to apply deep learning to smaller datasets. We call this 

technique “horizontal expansion” of the dataset in which we horizontally expand the data by 

combining two or more variables to create new-variables (Neo-V). The combination was 

conditional that the variables were clinically relevant e.g. BUN and creatinine. In contrast, 

vertical expansion of the dataset is adding new patients.  

We wanted to do a complete and thorough analysis of the Deep-Neo-V algorithm, so we 

compared it to other deep-learning models out there on COVID-19 mortality prediction 

currently available in medical literature(34). Our Deep-Neo-V model outperforms all our 

conventional models and our Deep-FLAIM model. It also outperformed the currently available 

Deep-learning model by Zhu J.S. et al in terms of training set accuracy, testing set accuracy, 

AUROC, Precision, specificity and positive predictive value(34).  However, the Deep-Neo-V 

model underperformed in terms of sensitivity and slightly with negative predictive value. The 

Deep-Neo-V will continue to improve and develop and will potentially be replaced by a model 

with better performance parameters (accuracy, PPV and NPV).  This model in its current 

configuration can be used to predict mortality after day-1 (considers labs and clinical 

characteristics in the first 24 hours) of hospital admission and can help in stratification of 
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patients. It can help clinicians answer a number of questions and aid in decision-making like 

triaging patients, should an elderly patient receive aggressive treatment, or a younger patient 

receive life supportive management. These are tough questions and the model will give 

clinicians clarity about the course and plan for the patient.  This model can also help clinicians 

with family counselling, appropriate decision making, limit excessive intervention or 

aggressive treatments and effective resource management. Like most digital tools this current 

algorithm is user friendly, can provide results instantaneously and easy to use. After further 

validation this model can be incorporated into hospital patient management systems and ready 

for clinical use. 

The Deep-Neo-V model has some limitations in terms of the available dataset, retrospective 

nature of the dataset and data form a single hospital, analyzed at admission and day-one data, 

other observational study confounders may exist and are unaccounted for. In the immediate 

future we actively look to validate these findings in an external dataset. In the longer term we 

will continue to develop an algorithm built on the Neo-V Framework approach that has the 

potential to be implemented, initially in future pandemics because of its ability to accurately 

predict outcomes using smaller datasets. 

 

CONCLUSION 

Deep-Neo-V is a statistically robust machine learning model that is developed for clinical use 

to predict mortality risk in patients admitted with RT-PCR proven COVID-19 infection. The 

mortality prediction was modeled based on clinically relevant variables (patient associated risk 

factors and the first 24-hours labs. Our experimental results show that with a high accuracy and 

specificity it has the potential to develop as a test of choice for predicting mortality in COVID-

19 patients. These findings need further external validation. 
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 Table 1. Demographics with Univariate and multivariate analysis of clinical variables as part of Phase I of the Neo-V and FLAIM machine learning 
frameworks. 
    Univariate    Multivariate  

  

n = 1214 
(n, effected) and 

Ranges p-value HR 95%CI p-value HR 95%CI 
Demographics AGE range (19-96 years) <0.001* 1.04 1.03-1.06 - - - 

 Age >50 years 755 <0.001* 3.15 1.81-5.50 - - - 
 Age >65 years 336 <0.001* 2.43 1.72-3.44 - - - 
 Female 467 0.489 0.88 0.61-1.27 - - - 

 Readmission 46 0.147 0.05 0.01-2.95 0.951 0.001 
0.01-

3.40E+164 
 Mortality 130 (10.7%) - - - - - - 

Blood Grouping A-  6 0.289 2.91 0.41-20.90 0.553 1.822 0.26-13.18 
 A+  132 0.642 0.88 0.51-1.51 0.561 0.852 0.5-1.47 
 B-  19 0.332 1.64 0.60-4.45 0.858 1.098 0.4-3.02 
 B+  233 <0.05* 1.5 1.03-2.18 0.051 1.459 1-2.13 

 O-  13 0.27 0.04 0.00-11.71 0.947 0.001 
0.01-

2.07E+130 
 O+  183 0.224 1.28 0.86-1.90 0.25 1.262 0.85-1.88 
 AB-  6 <0.05* 3.88 1.23-12.27 <0.001* 7.634 2.39-24.48 
 AB+  48 <0.05* 2.55 1.29-5.04 <0.001* 2.483 1.26-4.93 

Comorbidities Chronic kidney disease 71 <0.001* 3.45 2.08-5.72 <0.001* 2.737 1.63-4.61 
 Chronic liver disease  13 0.15 2.32 0.74-7.33 0.125 2.467 0.78-7.82 

 
Chronic obstructive lung 
disease 14 <0.05* 2.93 1.19-7.21 0.163 1.918 0.77-4.79 

 Diabetes 441 <0.05* 1.45 1.03-2.05 0.261 1.224 0.87-1.74 
 Hypertension 521 0.58 1.41 0.99-2.01 0.493 1.137 0.79-1.64 
 Ischemic heart disease 158 <0.001* 2.24 1.62-3.62 <0.05* 1.801 1.19-2.73 
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 Other Comorbidities  571 <0.05* 1.76 1.24-2.48 <0.05* 1.721 1.21-2.45 
Symptoms Asymptomatic  87 0.177 0.38 0.12-1.27 0.269 0.497 0.15-1.72 

 Chest pain (non-cardiac) 56 0.252 1.63 0.71-3.71 0.434 1.395 0.61-3.21 
 Cough 522 0.110 0.76 0.54-1.07 0.28 0.823 0.58-1.18 
 Fatigue / lethargy 52 0.793 1.15 0.42-3.12 0.63 0.78 0.29-2.14 
 Fever 768 <0.001* 0.56 0.39-0.79 <0.05* 0.568 0.4-0.81 
 Gastrointestinal symptoms 93 0.875 0.94 0.42-2.14 0.626 0.813 0.36-1.88 

 Headache 16 0.367 0.05 0.01-34.53 0.953 0.001 
0.01-

4.24E+150 

 Hemoptysis 9 0.609 0.05 
0.01-

5037.35 0.961 0 
0-

1.48E+166 
 Malaise 83 0.976 0.99 0.41-2.43 0.537 0.752 0.31-1.87 
 More than 2 symptoms 901 0.975 1.01 0.66-1.56 0.817 0.95 0.62-1.47 
 Myalgia 28 0.284 1.88 0.6-5.94 0.221 2.06 0.65-6.54 

 Nasal obstruction 2 0.788 0.05 

0.01-
157108055

.1 0.969 0.001 
0.01-

4.22E+198 
 Other symptoms 321 <0.001* 1.97 1.38-2.8 <0.05* 1.66 1.16-2.38 

 
Pneumothorax (clinical / 
radiological) 22 <0.05* 2.00 1.17-3.43 <0.05* 2.014 1.18-3.46 

 Rhinorrhea 7 0.502 0.05 
0.01-

327.09 0.964 0.001 
0.01-

1.70E+200 
 Sore throat 58 0.240 0.51 0.16-1.59 0.637 0.758 0.24-2.41 
 Sputum 29 0.070 2.03 0.95-4.35 0.247 1.576 0.73-3.41 

Clinical Acute Kidney Injury 179 <0.001* 2.95 2.08-4.18 <0.001* 2.465 1.74-3.51 
 ARDS / Respiratory failure  147 <0.001* 2.81 1.96-4.03 <0.001* 2.527 1.77-3.63 
 Septic Shock  49 <0.001* 5.05 3.43-7.43 <0.001* 4.299 2.91-6.37 
 Shock Liver 3 <0.001* 11.63 2.84-47.73 <0.001* 11.476 2.77-47.68 
 Shortness of breath 570 <0.001* 1.81 1.24-2.62 <0.001* 1.96 1.35-2.86 
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Point of Care Special care unit 308 0.355 1.18 0.84-1.68 0.577 1.106 0.78-1.58 
 Days spent in the ICU Range (0-20 days) 0.187 1.03 0.99-1.07 0.133 1.029 1-1.07 
 Intensive care unit (ICU) 106 <0.001* 2.71 1.88-3.92 <0.001* 3.241 2.22-4.74 

 
Number of admissions ICU 
during current hospitalization Range (0-2) <0.001* 1.78 1.3-2.43 <0.001* 2.066 1.49-2.87 

Radiology 
Bilateral chest X-ray 
abnormalities 753 0.484 1.14 0.8-1.64 0.34 1.195 0.83-1.72 

 
Unilateral chest X-ray 
abnormalities 131 0.911 0.97 0.56-1.7 0.997 0.999 0.58-1.75 

Day One labs 
Abnormal blood lymphocyte 
count 378 <0.001* 3.02 1.74-5.26 <0.001* 2.786 1.6-4.86 

 
Abnormal blood neutrophil 
count 1044 <0.05* 2.5 1.17-5.36 <0.05* 2.657 1.24-5.7 

 Abnormal platelets count 363 <0.05* 1.43 1.01-2.03 <0.05* 1.413 1-2.01 
 Abnormal serum albumin 49 0.296 1.45 0.73-2.87 0.207 1.552 0.79-3.07 
 Abnormal serum ALT 946 0.380 1.23 0.78-1.95 0.475 1.183 0.75-1.88 
 Abnormal serum APTT 347 0.217 1.26 0.88-1.81 0.137 1.32 0.92-1.9 
 Abnormal serum bilirubin 69 0.587 0.82 0.4-1.69 0.33 0.699 0.34-1.42 
 Abnormal serum BUN 382 <0.001* 3.15 2.19-4.52 <0.001* 2.784 1.94-4.01 
 Abnormal serum calcium 387 0.596 0.91 0.62-1.33 0.633 0.91 0.62-1.35 
 Abnormal serum creatinine 373 <0.001* 3.21 2.24-4.6 <0.001* 2.73 1.9-3.94 
 Abnormal serum hematocrit 505 <0.001* 1.87 1.33-2.65 <0.05* 1.808 1.26-2.61 
 Abnormal serum hemoglobin 879 <0.05* 1.67 1.08-2.58 <0.05* 1.63 1.05-2.55 
 Abnormal serum INR 198 <0.001* 3.38 2.38-4.8 <0.001* 3.243 2.28-4.63 
 Abnormal serum LDH 751 0.597 1.11 0.77-1.58 0.806 1.047 0.74-1.5 
 Abnormal serum magnesium 268 0.535 0.88 0.57-1.35 0.841 0.957 0.63-1.48 
 Abnormal serum phosphorus 32 0.893 1.08 0.4-2.91 0.58 0.752 0.28-2.07 
 Abnormal serum potassium 241 0.886 0.97 0.64-1.49 0.678 0.914 0.6-1.41 
 Abnormal serum procalcitonin 523 0.312 1.2 0.85-1.69 0.485 1.132 0.8-1.61 
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 Abnormal serum PT 378 <0.05* 1.5 1.05-2.15 <0.05* 1.787 1.24-2.59 
 Abnormal serum sodium 458 0.250 1.23 0.87-1.73 0.501 1.127 0.8-1.6 
 Abnormal white cell count 455 <0.001* 2.08 1.45-2.96 <0.001* 2.089 1.47-2.98 

Treatment Anti-malarial 2 0.385 2.4 0.34-17.27 0.587 1.73 0.24-12.51 
 Anti-viral drugs 99 0.715 0.9 0.51-1.6 0.538 0.835 0.47-1.49 
 CRRT 7 <0.05* 2.72 1.19-6.23 0.054 2.287 0.99-5.3 
 Hydroxychloroquine 77 0.230 0.61 0.27-1.38 0.336 0.667 0.3-1.53 
 Intravenous IgG 6 <0.05* 3.87 1.23-12.23 <0.05* 3.945 1.25-12.49 
 Invasive ventilation  74 <0.001* 2.79 1.89-4.1 <0.001* 3.208 2.15-4.79 

 Lopinavir/Ritonavir 1 0.616 0.05 
0.01-

6488.77 0.962 0.001 
0.01-

6.44E+175 

 
Non-invasive ventilation 
(BiPAP/CPAP) 243 <0.001* 1.96 1.38-2.8 <0.001* 1.872 1.32-2.67 

 Plasmapheresis  96 0.317 1.25 0.82-1.91 0.234 1.294 0.85-1.98 
 Supportive treatment 617 <0.001* 3.89 2.22-6.81 <0.001* 3.507 2.01-6.14 
 Symptomatic treatment 1056 <0.05* 0.6 0.36-0.98 0.058 0.613 0.37-1.02 
 Systemic steroids 430 0.238 0.8 0.55-1.17 <0.05* 0.657 0.45-0.97 
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Table 2. Derivative variables and there univariate and multivariate analysis with mortality during hospital stay. 
Derivatives for ML Total No. Comorbidities Range (0-6) <0.001* 1.44 1.27-1.64 <0.001* 1.301 1.14-1.49 

 More than 2 comorbidities 499 <0.001* 2.28 1.59-3.28 <0.001* 1.788 1.23-2.61 
 Total No. symptoms Range (0-6) 0.379 1.08 0.92-1.27 0.439 1.066 0.91-1.26 

 
Total No. Treatments 
received Range (0-6) <0.001* 1.31 1.14-1.51 <0.05* 1.268 1.11-1.46 

 CR or BUN 517 <0.001* 0.31 0.21-0.46 <0.001* 0.356 0.24-0.54 
 HB or HCT 883 <0.05* 0.55 0.35-0.87 <0.05* 0.562 0.36-0.89 
 PLT or INR 460 <0.001* 2.21 1.55-3.16 <0.001* 2.087 1.47-2.98 
 PT or INR 502 <0.001* 0.46 0.33-0.66 <0.001* 0.414 0.29-0.6 
 TLC or LYMP 882 <0.001* 0.18 0.08-0.4 <0.001* 0.186 0.09-0.43 
 TLC or NEU 1085 <0.05* 0.2 0.07-0.61 <0.05* 0.18 0.06-0.57 

 
Total No. laboratory 
abnormalities Range (0-17) <0.001* 1.22 1.16-1.3 <0.001* 1.216 1.15-1.3 
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Table 3. Primary and secondary outcomes machine learning results  
 FLAIM Framework  

Test set (n = 365)  Deep-FLAIM Deep-Neo-V 
RF (d=10, 

e=2) 
KNN 
(k=3) 

SVC - 
RBF DT (d=10) ABC QDA 

Test set accuracy 84.66 87.67 85.75 77.81 65.75 85.21 85.48 87.4 
Training set accuracy 86.69 98.70 94.94 92.34 69.02 98.94 90.11 94.58 
Precision 0.44 0.61 0.37 0.38 0.46 0.46 0.46 0.49 
Sensitivity 68.89 33.33 28.89 42.22 75.56 42.22 48.89 60 
Specificity 86.88 95.31 93.75 82.81 64.38 91.25 90.63 91.25 
Positive predictive value 42.47 50.00 39.40 25.68 22.97 40.43 42.31 49.09 
Negative predictive value 95.21 91.05 90.36 91.07 94.93 91.82 92.65 94.19 
Area Under Receiver-Operator 
Curve 86.90 88.50 69.50 66.50 80.80 66.74 77.65 80.84 
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Table 4.  Comparison of currently available Deep learning models for mortality in the inpatient setting. 

 Current Li X et al, 2020 
Sample Size (n) 1214 1108 
Clinical setting In-patient In-patient 
Training and Test (set) split 70/30 90/10 
Datapoint / Variables 47 15 
Testing accuracy 87.67 85.3 
Training accuracy 98.70 89.2 
AUROC 0.885 0.844 
Sensitivity 33.33 75 
Specificity 95.31 87.2 
PPV 50.00 52.2 
NPV 91.05 94.9 
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Figure 1. Experimental design of the Framework 
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Figure 2. Receiver Operating Curve for Deep-Neo-V with AUROC 
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Supplemental Figure 1. Receiver Operating Curve with AUROC for a) RF, b) kNN, c) SVC-RBF, d) DT, e) ABC , f) QDA and g) Deep-FLAIM  
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