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Abbreviations: 

ADA: adaptive boosting 

AUC: area under curve 

ChaCo: change in connectivity 

EDSS: extended disability status score 

GM: gray matter 

QSM: quantitative susceptibility mapping  

LST: lesion segmentation tool 

MS: multiple sclerosis 

NeMo: network modification 

pwMS: people with multiple sclerosis 

WM: white matter 
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Abstract  

Background: Multiple Sclerosis (MS) is a disease characterized by inflammation, demyelination, 

and/or axonal loss that disrupts white matter pathways that constitute the brain’s structural 

connectivity network. Individual disease burden and disability in patients with MS (pwMS) varies 

widely across the population, possibly due to heterogeneity of lesion location, size and subsequent 

disruption of the structural connectome. Chronic active MS lesions, which have a hyperintense rim 

(rim+) on Quantitative Susceptibility Mapping (QSM) and a rim of iron-laden inflammatory cells, 

have been shown to be particularly detrimental to tissue concentration causing greater myelin 

damage compared to chronic silent MS lesions. How these rim+ lesions differentially impact 

structural connectivity and subsequently influence disability has not yet been explored.  

Objective: We characterize differences in the spatial location and structural disconnectivity 

patterns of rim+ lesions compared to rim- lesions. We test the hypothesis that rim+ lesions’ 

disruption to the structural connectome are more predictive of disability compared to rim- lesions’ 

disruption to the structural connectome. Finally, we quantify the most important regional structural 

connectome disruptions for disability prediction in pwMS.    

Methods: Ninety-six pwMS were included in our study (age: 40.25 ± 10.14, 67% female). 

Disability was assessed using Extended Disability Status Score (EDSS); thirty-seven pwMS had 

disability (EDSS ³ 2). Regional structural disconnectivity patterns due to rim- and rim+ lesions 

were estimated using the Network Modification (NeMo) Tool. For each gray matter region, the 

NeMo Tool calculates a Change in Connectivity (ChaCo) score, i.e. the percent of connecting 

streamlines also passing through a lesion. Adaptive Boosting (ADA) classifiers were constructed 

based on demographics and the two sets of ChaCo scores (from rim+ and rim- lesions); 

performance was compared across the two models using the area under ROC curve (AUC). 
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Finally, the importance of structural disconnectivity in each brain region in the disability prediction 

models was determined. 

Results: Rim+ lesions were much larger and tended to be more periventricular than rim- lesions. 

The model based on rim+ lesion structural disconnectivity measures had better disability 

classification performance (AUC = 0.67) than the model based on rim- lesion structural 

disconnectivity (AUC = 0.63). Structural disconnectivity, from both rim+ and rim- lesions, in the 

left thalamus and left cerebellum were most important for classifying pwMS into disability 

categories.  

Conclusion: Our findings suggest that, independent of the evidence that they have more damaging 

pathology, rim+ lesions also may be more influential on disability through their disruptions to the 

structural connectome. Furthermore, lesions of any type in the left cerebellum and left thalamus 

were especially important in classifying disability in pwMS. This analysis provides a deeper 

understanding of how lesion location/size and resulting disruption to the structural connectome 

can contribute to MS-related disability. 

Keywords (up to 7): multiple sclerosis, machine learning, structural disconnectivity, quantitative 

susceptibility mapping, imaging biomarker 
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INTRODUCTION 

 

Multiple Sclerosis (MS) is a chronic disease characterized by inflammatory and demyelinating 

plaques within the central nervous system (CNS) (Weinshenker et al., 1991).  Disability evolution 

is highly heterogeneous between people with MS (pwMS), making future prediction of disability 

progression very difficult (Barkhof, 2002; Pérez-Miralles et al., 2013). Conventional magnetic 

resonance imaging (MRI) techniques are highly sensitive in detecting white matter lesions in 

pwMS, however, the correlation between lesion load measured with T2 imaging and clinical 

impairment is still modest. This mismatch between traditional imaging biomarkers and clinical 

symptoms is known as the clinico-radiological paradox in MS (Barkhof, 2002; D. K. B. Li et al., 

2006). Therefore, advanced imaging techniques like Quantitative Susceptibility Mapping (QSM) 

(De Rochefort et al., 2010; Deh et al., 2015) may provide more information about lesion pathology 

(Wisnieff et al., 2015), that, in turn, may improve the understanding of the clinical implications of 

MS lesions (Chen et al., 2014; Kaunzner et al., 2019; Yao et al., 2018; Zhang et al., 2019).  

QSM has been found to be more sensitive than conventional T2, T2*, and R2* in the 

detection of iron accumulation in both gray and white matter regions in the brain (Cronin et al., 

2016; Deistung et al., 2013; Langkammer et al., 2013; Stüber et al., 2016). Iron concentration in 

deep gray matter structures (thalamus and globus pallidus) (Zivadinov et al., 2018) has been shown 

to be significantly correlated with disability in pwMS; iron accumulation has also been identified 

in some white matter lesions in pwMS (Zhang et al., 2019). Furthermore, white matter lesions with 

a hyperintense rim appearance on QSM (QSM rim+ lesions) have increased inflammation on 

PK11195-PET, a finding which was histopathologically confirmed by the presence of 

inflammatory cells in the rim, as well as larger volume and more myelin damage compared to 
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QSM rim- lesions (Kaunzner et al., 2019; Yao et al., 2018). Greater myelin damage in rim+ lesions 

has been shown (Gillen, Mubarak, Nguyen, & Pitt, 2018), and, furthermore, paramagnetic rim 

lesions as identified on susceptibility-based MRI have been cross-sectionally associated with 

worse disability (Absinta et al., 2019). However, there is no larger study to date that has 

demonstrated the relationship of disability with rim lesions that are identified with QSM in MS. 

In addition to the differential pathology of the lesion, the clinical impact of a lesion is also 

related to its size and location and subsequent impact on the wider structural and functional 

connectivity networks. In the past decades, structural and functional connectome disruptions have 

been related to motor and cognitive dysfunction and depression in pwMS (Ceccarelli et al., 2010; 

Dineen et al., 2009; He et al., 2009; A. Kuceyeski et al., 2018; Y. Li et al., 2013; Llufriu et al., 

2012; Nigro et al., 2015; Pagani et al., 2019). One way to investigate structural network disruptions 

of lesions is with the Network Modification (NeMo) Tool (A. Kuceyeski, Maruta, Relkin, & Raj, 

2013). The NeMo Tool uses a database of healthy tractograms on which the MS-related lesion 

masks are super-imposed to estimate the resulting regional disconnectivity pattern. This approach 

has been used by our group and others to relate lesion-related structural disconnectivity patterns 

to impairments, outcomes, functional connectivity disruptions, rehabilitation response and gray 

matter pathology in pwMS (T. A. Fuchs et al., 2018; Tom A. Fuchs et al., 2018, 2020; A. F. 

Kuceyeski et al., 2015; A. Kuceyeski et al., 2018).   

 In this paper, we aim to characterize the differential impact of QSM rim- and rim+ lesions 

on the structural connectome, and, furthermore to test the hypothesis that rim+ lesions’ disruption 

to the structural connectome are more predictive of disability. To do this, we compared prediction 

accuracies of models classifying pwMS into disability categories using estimates of regional 

structural (white matter) connectome disruption due to rim- and rim+ lesions. If rim+ lesions are 
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more impactful in terms of clinical disability through their disruption of the structural connectome, 

then models based on these measures should perform better than the rim- lesions’ structural 

connectome disruption patterns. A secondary aim of this work was to identify which brain regions’ 

structural disconnections are most important in the classification of pwMS into disability 

categories. It must be noted that this type of approach doesn’t consider the pathology type or 

severity of tissue damage within the lesion that may vary with lesion type – it only considers the 

lesion size and location and subsequent disruption of the structural connectivity network. If we can 

better understand how different lesion types can impact clinical outcomes through their disruption 

of the structural network, we may be able to better identify those patients at risk of disability and 

adjust treatments to minimize the burden of MS. 
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MATERIAL AND METHODS 

Subjects 

This is a retrospective study of a cohort of 96 pwMS (age: 40.2 ± 10.1, 67% females) with a 

diagnosis of CIS/MS (CIS = 8, RRMS = 87, PPMS = 1). Demographic data was collected (age, 

sex, race, treatment duration and disease duration), subjects underwent an MRI scan and Extended 

Disability Status Score (EDSS) was used to quantify disability. PwMS were categorized into two 

groups: those with no disability (EDSS < 2) or those with disability (EDSS ³ 2). This classification 

is based on EDSS values of 0-1.5 representing some abnormal signs but no functional disability 

appreciated. All studies were approved by an ethical standards committee on human 

experimentation, and written informed consent was obtained from all patients.  

 

MRI data acquisition and Processing 

MRIs were acquired using a 3T GE scanner (Hdxt 16.0) with an 8-channel phased-array coil. 

Anatomical T1-weighted sagittal 3D-BRAVO (1.2x1.2x1.2mm), T2 (0.5x0.5x3mm), T2-FLAIR 

(1.2x0.6x0.6mm) sequences were acquired. A QSM image was reconstructed from complex GRE 

images (TR = 57 ms, first TE = 4.3 ms, echo spacing = 4.8 ms, echo train length = 11, axial FOV 

= 24 cm, phase FOV factor = 0.8, acquisition matrix = 416x320 interpolated to 512x512, slice 

thickness = 3 mm, flip angle = 20°, bandwidth = 244 kHz, number of signal averages = 0.75, 

readout bandwidth = ±62.5 kHz) using a fully automated Morphology Enabled Dipole Inversion 

(MEDI+0) method zero-referenced to the ventricular cerebrospinal fluid (Liu, Spincemaille, Yao, 

Zhang, & Wang, 2018; Spincemaille et al., 2019).  

The conventional images (T1w, T2w, T2w FLAIR) was co-registered to the GRE 

magnitude images using the FMRIB’s Linear Image Registration Tool algorithm (Jenkinson, 
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Bannister, Brady, & Smith, 2002); automated brain segmentation was performed using FreeSurfer 

(Fischl, Sereno, & Dale, 1999). White matter (WM) and gray matter (GM) masks were manually 

edited for misclassification due to WM T1-hypointensities associated with lesions. The WM 

hyperintensity lesion masks were created from the T2 FLAIR images by categorizing the tissue 

type based on the image intensities within the Lesion Segmentation Tool (LST) and were further 

edited if necessary. Next, the T2FLAIR lesions masks were coregistered to the QSM images and 

further edited (if needed) to better match the lesion geometry on QSM. The presence of a 

hyperintense QSM rim was determined by trained neurologist (U.K.) and neuroradiologist (W.H.). 

In the case of disagreement of two reviewers, an independent third neurologist (S.G.) decided on 

the presence of a positive hyperintense rim. Once the rim+ lesions were identified, they were 

removed from the T2FLAIR lesion masks to obtain a rim- lesion mask. 

QSM rim+ lesion masks were transformed to the individual’s T1 native space using the 

inverse of the T1 to GRE transform and nearest neighbor interpolation. Individual T1 images were 

then normalized to MNI space using FSL’s linear (FLIRT) and non-linear (FNIRT) transformation 

tools (http://www.fmrib.ox.ac.uk/fsl/index.html); transformations with nearest neighbor 

interpolation were then applied to transform both native anatomical space lesion masks to MNI 

space. Lesions were manually inspected after the transformation to MNI space to verify accuracy. 

The MNI space rim- and rim+ lesion masks were processed through the newest version of the 

Network Modification (NeMo) Tool (Amy Kuceyeski, Maruta, Relkin, & Raj, 2013), NeMo Tool 

2.0, that estimates the resulting pattern of structural disconnectivity due to a given lesion mask. 

NeMo Tool 2.0 calculates the Change in Connectivity (ChaCo) score for each of 86 cortical, 

subcortical and cerebellar regions, which is defined as the percent of tractography streamlines 

connecting to that region that also pass through the lesion mask. The newest version of the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.20244939doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.10.20244939
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

tractography database consists of structural connectomes from 420 unrelated healthy controls (206 

female, 214 male, 28.7 ± 3.7 years), see Supplemental Information for details on the creation of 

the tractography database. ChaCo scores were extracted separately from rim- and rim+ lesion 

masks. The ChaCo scores from the rim- lesion mask were computed across all subjects, while the 

ChaCo scores from rim+ lesion masks were computed only for the subjects who had at least one 

rim+ lesion (N=56). The ChaCo scores for the subjects without rim+ lesions were 0, since there 

was no structural disconnectivity due to rim+ lesions for these subjects. To test for differences in 

the regional disconnectivity patterns of rim+ and rim- lesions, a Wilcoxon rank-sum test was 

performed on the regional ChaCo scores from the rim- and the rim+ lesion masks over the 56 

pwMS that had at least one rim+ lesion. A Wilcoxon rank-sum test was used to test for differences 

in regional structural disconnectivity between disability groups for both rim+ and rim- lesion 

ChaCo scores. Regions were considered significantly different if p<0.05, after Benjamini-

Hochberg (Benjamini & Hochberg, 1995) correction for multiple comparisons.  

 

Modeling and statistical analysis 

Classification was performed using the ADA method, a boosting algorithm of decision trees 

(Alfaro, Gáamez, & García, 2013), see Supplementary Material for details. For the classification 

task into disability and no disability groups, three models were created based on 

demographic/clinical variables (age, sex, race, disease duration and treatment duration) and i) 

ChaCo scores from rim- lesions (Model I), ii) ChaCo scores from the rim+ lesions (Model II), iii) 

both sets of ChaCo scores from rim- and rim+ lesions (Model III).  

The ADA model was trained with two cross-validation loops to optimize the hyperparameters 

and build the model (5-fold inner) and test the performance on hold-out data (5-fold outer), see 
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Figure 1. The inner loop performed grid-search to find the set of hyperparameters that maximized 

area under the Receiver Operating Characteristics curve (AUC) in the validation set. Synthetic 

Majority Over-sampling Technique (SMOTE) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) was 

used to obtain a class-balanced training dataset to improve the prediction accuracy for the minority 

class. SMOTE compensates for imbalanced classes by creating synthetic examples using nearest 

neighbor information instead of creating copies from the minority class, and has been shown to be 

among the most robust and accurate methods with which to control for imbalanced data (Santos, 

Soares, Abreu, Araujo, & Santos, 2018). The inputs are standardized in the inner loop and in the 

outer loop to avoid data-leakage. A final model built using the entire training dataset with the 

optimal hyperparameters and assessed on the hold-out test set from the outer loop. The outer loop 

was repeated using 100 different random partitions of the data. The average of AUC (over all 5 

folds x 100 iterations = 500 test sets) were calculated to assess the performance of the models. 

Performance metrics for the three models were compared with the Kruskal-Wallis and Wilcoxon 

rank sum test. The models were considered significantly different when p < 0.05 (after Benjamini-

Hochberg correction for multiple comparisons). The relative importance of the input variables in 

the final ADA models was calculated using the weight of the tree and gain of the Gini Index, which 

is given by a variable in a tree (Alfaro et al., 2013). The software R (https:/www.r-project.org) 

version 3.4.4 and Matlab version R.2020a were used for all statistical analyses and graphs. 
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RESULTS 

 

Characteristics of pwMS 

Table 1 displays subject demographics, clinical information and the number of rim- and rim+ 

lesions. PwMS that had no disability (N = 59) were significantly younger, had lower disease 

duration and significantly fewer rim- lesions than those with disability (N = 37). A higher percent 

of those pwMS with at least one rim+ lesion had disability (45%) compared to the percent of 

pwMS with no rim+ lesions and disability (30%), see Supplementary Table 1. While rim+ lesions 

were less frequent across the population and less numerous within an individual, they were much 

larger in volume (mean 484 cc, IQR: [173, 572]) than rim- lesions (mean 141 cc, IQR: [69, 145]). 

Heat maps of lesion masks for the two lesion types are shown in Figure 2, where it can be 

appreciated that rim+ lesions tended to cluster in periventricular white matter, compared to rim- 

lesions that are more widespread throughout the white matter. 

 

Structural disconnectivity from rim- and rim+ lesions 

Regional ChaCo scores of structural disconnectivity based on the rim- and rim+ lesion masks are 

visualized in Figure 3. Median ChaCo scores from rim+ lesion masks were computed only for the 

subjects who had rim+ lesions (N=56), while the median ChaCo scores from the rim- lesion mask 

was computed across all subjects. Note the scale differences in the two modalities – this is mostly 

due to the fact that there were far fewer rim+ lesions than rim- lesions. Left paracentral, left 

precuneus, and bilateral precentral (primary motor) regions had high disconnectivity in both the 

rim- and rim+ lesion masks. Right and left putamen also had relatively high disconnectivity from 

the rim- and rim+ lesion masks, respectively. ChaCo scores from rim- lesion masks were 
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significantly higher than those from rim+ lesion mask for all regions (p<0.05, corrected), 

particularly in right primary motor and right paracentral gyrus. 

 

Structural disconnectivity differences across disability subgroups 

Figure 4 illustrates the median Chaco scores for each subgroup of categories, i.e., no disability vs 

with disability for the two lesion types. The ChaCo scores based on rim- lesion masks were 

significantly larger in 22 regions, most prominently in the left frontal areas, in the pwMS with 

disability compared to those without disability (p<0.05, corrected), see Supplementary Figure 1. 

There were no significant differences between the disability subgroups for the ChaCo scores based 

on rim+ lesion masks.  

 

Classification results 

Figure 5 depicts the three models’ distributions of AUC over the 100 outer loops and 5 test datasets 

for each outer loop for the disability classification task. Model II, which included 

demographics/clinical variables and ChaCo scores from the rim+ lesions, had significantly higher 

AUC than the other two models. Supplementary Figure 2 illustrates balanced accuracy, sensitivity, 

and specificity for the three models for comparison to previous findings. 

 

Variable Importance 

Figure 6 shows the feature importance of the structural disconnectivity measures (ChaCo scores) 

and demographics/clinical variables for Models I and II in classifying disability. The third quartiles 

of the feature importance scores were visualized since the data was highly skewed. Structural 

disconnection in the left cerebellum and left thalamus due to both rim- and rim+ lesions were the 
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most important variables in classifying disability. Race and disease duration were the most 

important demographics/clinical variables in Model I and II, respectively.  
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DISCUSSION 

 

In this study, we investigated the patterns of structural connectome disruption arising from two 

types of lesions that occur in pwMS, namely those with a hyperintense rim on QSM (rim+) and 

those without. We compared the classification accuracy of models using the structural 

disconnectivity of the two lesion types to predict disability categories in pwMS. Our main findings 

were that 1) pwMS had high structural disconnectivity in motor regions (precentral and paracentral 

gyri) resulting from both types of lesions, 2) rim+ lesions were larger than rim- lesions, tended to 

more frequently occur in periventricular areas and thus impact structural connectivity 

disproportionately in periventricular regions, 3) structural disconnectivity from rim+ lesions better 

classified pwMS into disability categories than structural disconnectivity from rim- lesions, and 4) 

structural disconnectivity in left cerebellum and left thalamus resulting from both lesion types were 

among the most important features in the disability classification. 

 

Structural disconnectivity from MS lesions is highest in motor regions and rim+ lesions are 

more periventricular than rim- lesions 

The regions with the highest structural disconnection scores from both types of lesions were mostly 

motor-related, including paracentral, precentral and putamen. It appears from Figure 2 and 3 that, 

in addition to the rim- lesions being more numerous and thus having larger disconnectivity 

measures, the two lesion types tend to have slightly different spatial locations and regional patterns 

of structural disconnectivity. The rim- lesions appear distributed widely throughout the white 

matter while the rim+ lesions tend to cluster around the ventricles. The ChaCo scores reflect this 

in that most of the regions with disconnection from the rim+ lesions are indeed periventricular and 
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the remainder of the brain is relatively spared; this stands in contrast to the ChaCo scores from 

rim- lesions that are more widespread across the brain.  

 

Structural disconnectivity from rim+ lesions better predicts disability in pwMS 

Previous cross-sectional studies classifying pwMS into disability categories based on imaging 

biomarkers, including connectome measures, have shown similar prediction performance with an 

accuracy and AUC between 0.50 and 0.67 (Zhong et al., 2017; Zurita et al., 2018). The relationship 

between connectome disruption due to T2FLAIR lesions and cross-sectional and longitudinal 

disability change, such as processing speed deficits, has been previously assessed (A. F. Kuceyeski 

et al., 2015; A. Kuceyeski et al., 2018). Our findings suggest that, independent of evidence they 

have more damaging pathology, rim+ lesions also may be more influential on disability through 

their disruptions to the structural connectome. We conjecture that structural disconnectivity due to 

rim+ lesions may be more detrimental due to their 1) much larger volume, as seen in this and other 

work (Zhang et al., 2019), and 2) periventricular location, which may result in damage to white 

matter that is more central in the brain and thus more disruptive to the overall network structure. 

It must be emphasized that only the structural disconnectivity due to the lesion, which is influenced 

by its size and location, was used in our classification models of disability. No information about 

the pathology, type or severity of tissue damage within the lesion (such as iron concentration, 

demyelination, axonal loss, presence of inflammation, edema, etc.) was captured in our study. 

Therefore, if rim+ lesions have more severe pathologies and thus more severe damage to structural 

connections, for example, we would not be capturing that in our ChaCo scores. Thus, our current 

results show that, independent of lesion pathology, rim+ lesion size/location and subsequent 

structural disconnection may have a greater impact on disability than rim- lesions in pwMS.  
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PwMS with disability had significantly more rim- lesions than those without disability, 

while there were no differences in the number of rim+ lesions between the disability groups. 

However, the model based on structural disconnection from rim+ lesions better predicted disability 

than the one based on structural disconnection from rim- lesions. This result supports the notion 

that disability does not directly track with the number of rim+ lesions, but rather, more likely, the 

size and/or location of the lesions and how they can disrupt structural connectivity networks.  

 

Disconnection in the left thalamus and left cerebellum are central to accurate disability 

classification 

Examination of the feature importance values from the classification models revealed the central 

role of structural disconnectivity in the left thalamus and left cerebellum. Interestingly, these same 

regions were important regardless of the lesion type (rim+ or rim-) causing disconnectivity. The 

thalamus plays an important role in a wide range of functions such as cognition, memory, executive 

function, and motor ability (Alexander, DeLong, & Strick, 1986; Batista et al., 2012; Henry et al., 

2008) and is known to be among the most affected regions in pwMS (Vercellino et al., 2009). 

Functional connectivity changes and structural changes in the thalamus, observed with anatomical 

and diffusion MRI, have been related to cognitive and motor impairment (Henry et al., 2008; 

Schoonheim et al., 2015; Tovar-Moll et al., 2009). Previous work has shown the thalamus to be 

one of the only regions exhibiting a significant relationship between atrophy and structural 

disconnection in pwMS, which indicates this region may be particularly vulnerable to increased 

atrophy when lesions occur in its connecting white matter (A. F. Kuceyeski et al., 2015). In 

addition, it has been shown that more thalamic atrophy was significantly related to increased EDSS 

in pwMS (Tao et al., 2009; Tovar-Moll et al., 2009) and that pwMS with disability had 
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significantly lower thalamic volume compared to healthy controls, while no differences were 

found between non-impaired pwMS and controls (Zhong et al., 2017). Taken together, these 

studies indicate the central role of the thalamus in the development of disability in pwMS. 

Many studies have shown relationships between cerebellar pathology and impairments in motor 

control and cognition (D’Ambrosio et al., 2017; Weier et al., 2014). The presence of cerebellum-

related symptoms at the onset of MS such as coordination issues or tremor were i) shown to be 

associated with shorter time to an EDSS of 6 (Weinshenker et al., 1991) and ii) related to earlier 

onset of progressive disease diagnosis (Novotna et al., 2015). Atrophy in anterior cerebellum was 

associated with motor dysfunction (D’Ambrosio et al., 2017) and reduced total cerebellar volume 

was related to worse cognitive test performance (Weier et al., 2014) in pwMS.  

 

Race and sex play a potentially important role in disability classification 

Race was one of the most important demographic predictors in the rim- model. It has been shown 

that African Americans (which make up the largest non-Caucasian group in our study) generally 

have larger T1 and T2 lesion volumes, more severe disability at diagnosis and more severe disease 

progression (Cipriani & Klein, 2019; B. Weinstock-Guttman et al., 2010; Bianca Weinstock-

Guttman et al., 2003). Sex also appeared to be an important predictor in the rim- lesion model for 

disability classification; specifically, being male was associated with higher probability of being 

in the disability group. It has been shown previously that male patients tend to have more severe 

disease onset with accelerated clinical progression in MS (Bove et al., 2012; Debouverie, Pittion-

Vouyovitch, Louis, & Guillemin, 2008; Gholipour, Healy, Baruch, Weiner, & Chitnis, 2011). 

Disease duration was also an important feature in the rim+ ChaCo model; this is unsurprising as 

EDSS generally increases over the course of the disease. 
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Limitations 

The main limitation of our study is sample size; classifiers are always more robust and when they 

are trained and tested on larger datasets, particularly when dealing with such a heterogenous 

disease as MS. Another drawback was the use of the NeMo tool, which estimates a lesion’s 

structural disconnectivity based on a database of healthy controls that may not perfectly reflect the 

particular individual’s structural connectivity network. However, MS lesions do disrupt diffusion 

MRI signals and can add noise to tractography results, so the NeMo Tool may be a good alternative 

with which to estimate structural disconnection. Another limitation is that the models used in our 

study considered only the lesion size and location and their subsequent regional structural 

disconnection. A future study may consider the impact of the severity and type of tissue damage 

within the different lesions on structural disconnectivity and subsequent disability. Finally, this 

work only explored cross-sectional relationships; future work should work to predict probability 

of disease progression over time for use in clinical care decisions.  

 

Conclusions 

This work represents, to the best of our knowledge, the first to quantify and examine the differential 

impact of rim+ and rim- lesions on the structural connectome and, furthermore, to use these 

measures of disconnectivity to classify pwMS into disability categories. Structural disconnectivity 

associated with rim+ lesions on QSM was more related to disability than structural disconnectivity 

associated with rim- lesions. Damage the structural connections of the left cerebellum and 

thalamus from either lesion type were especially impactful on disability. This analysis provides a 

deeper understanding of how different lesion types can disrupt the structural connectome and 
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contribute to MS-related disability. Deeper understanding of the role of the connectome in MS is 

needed if we are to gain a comprehensive view of the disease to ultimately improve clinical 

outcomes in pwMS.  
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Tables 

  

Table 1. Clinical, demographic and imaging characteristics for all 96 pwMS (first column) and 

split into disability categories (second column). Values are presented as median [1st quartile, 3rd 

quartile] for the continuous variables, p-values are corrected for multiple comparisons. Age, 

disease and treatment duration were measured in years. *indicates corrected p < 0.05. 

 

  

 All (n=96) No disability (n=59) vs disability (n=37)  

Female% 67 68 vs 65 (p=0.94) 

Race % African American: 16 

Asian: 2 

Caucasian: 72 

Hispanic: 5 

Other: 5 

African American: 11 vs 24 

Asian: 1 vs 2 

Caucasian: 76 vs 64  

Hispanic: 5 vs 2 

Other: 5 vs 5 

(p=0.56) 

Age 38 [32, 48] 35 [30, 42] vs 47 [37, 51]* (p<0.05) 

Disease duration  4.6 [2.5, 11.2] 4.1 [2.2, 8.3] vs 7.9 [3.2, 15.9]* (p<0.05) 

Treatment duration  3.1 [1.5, 6.1] 2.4 [1.3, 4.4] vs 3.7 [2.3, 8.0] (p=0.06) 

EDSS  1 [0, 2] 0 [0, 1] vs 2.5 [2, 4]* (p<0.05) 

# of rim- lesions 22 [11, 57] 18 [8, 35] vs 42 [15, 62]*  (p<0.05) 

# of rim+ lesions 1 [0, 4] 1 [0, 3] vs 2 [0, 5] (p=0.15) 
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Figure 1: Overview of the analytic pipeline workflow, including (a) calculation of ChaCo scores 

from rim- (T2 FLAIR lesions without rim+ lesions) and rim+ lesion masks and ADA models, and 

(b) the cross-validation scheme for the training and testing of the ADA models. 
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Figure 2: Heatmap of the lesion masks extracted from rim- (T2 FLAIR lesions without rim+ 

lesions, first row) and rim+ (second row) images. Color indicates the number of individuals (out 

of 91) that had a lesion in that voxel. 
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Figure 3: Median of ChaCo scores extracted from (A) rim- lesion mask (T2 FLAIR lesions 

excluding rim+ lesions) across all pwMS (N=96) and (B) rim+ lesion masks, only for the pwMS 

who had at least one rim+ lesion (N=56). (C) Relative paired Wilcoxon rank-sum statistic 

indicating all regions had greater structural disconnection from rim- lesion masks than from rim+ 

lesion masks (considering only the 56 pwMS who had at least one rim+ lesion).  
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Figure 4: Median of ChaCo scores extracted from rim- (T2 FLAIR lesions excluding rim+ lesions) 

and rim+ lesion masks for pwMS (A) no disability vs (B) those with disability.  
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Figure 5: AUC results obtained with Model I (structural disconnectivity from rim- lesion masks), 

Model II (structural disconnectivity from rim+ lesion masks), and Model III (both rim- and rim+ 

lesion structural disconnectivity) for the classification task of disability vs no disability. *indicates 

significant differences in AUC, corrected p < 0.05. 
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Figure 6: Relative feature importance for the models that included demographics and regional 

structural disconnectivity (ChaCo scores) due to (A) Model I: rim- lesions (T2 FLAIR lesions 

excluding rim+ lesions) (left column) and (B) Model II: rim+ lesions (right column) for the 

classification of pwMS with disability vs those with no disability. Feature importance for the 

regional ChaCo scores are visualized via brain volumes and demographic variable importance by 

bar plots. Third quantiles of the feature importance distributions are visualized due to the 
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distribution skewness. Relative importance values for all figures were obtained by dividing that 

variable’s feature importance by the maximum importance value across both models.  
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