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Abstract 
Nearly all diseases can be caused by different combinations of exposures. Yet, most epidemiological studies focus 

on the causal effect of a single exposure on an outcome. We present the Causes of Outcome Learning (CoOL) 

approach, which seeks to identify combinations of exposures (which can be interpreted causally if all causal 

assumptions are met) that could be responsible for an increased risk of a health outcome in population sub-

groups. The approach allows for exposures acting alone and in synergy with others. It involves (a) a pre-

computational phase that proposes a causal model; (b) a computational phase with three steps, namely (i) 

analytically fitting a non-negative additive model, (ii) decomposing risk contributions, and (iii) clustering 

individuals based on the risk contributions into sub-groups based on the predefined causal model; and (c) a post-

computational phase on hypothesis development and validation by triangulation on new data before eventually 

updating the causal model. The computational phase uses a tailored neural network for the non-negative additive 

model and Layer-wise Relevance Propagation for the risk decomposition through this model. We demonstrate 

the approach on simulated and real-life data using the R package ‘CoOL’. The presentation is focused on binary 

exposures and outcomes but can be extended to other measurement types. This approach encourages and 

enables epidemiologists to identify combinations of pre-outcome exposures as potential causes of the health 

outcome of interest. Expanding our ability to discover complex causes could eventually result in more effective, 

targeted, and informed interventions prioritized for their public health impact. 

Introduction 
Many diseases may be caused by several different combinations of exposures. As putative causes, such exposures 

may act together and lead to a combined effect that exceeds the sum of the individual effects, also called 

synergism. A common example of synergism is how the combined effect of smoking and asbestos on lung cancer 

exceeds the sum of their individual effects.[1] The most established theoretical framework for studying 

synergistic effects of multiple causes in epidemiology is the sufficient cause model,[2]. Assessment of synergism 

between causes may provide etiological insight into how to prevent and treat disease.  It may also help to identify 

and quantify the disease burden in high-risk sub-groups. Thus, understanding the spectra of exposures rather 

than single exposures for effective preventive strategies has been highlighted as essential for decades. Rose for 

example says “… risk assessment must consider all relevant factors together rather than confine attention to a single 

test, for nearly all diseases are multifactorial” when discussing effective policy decisions.[3] 

Despite the policy relevance, few epidemiological studies have analytically tried to identify combination of 

causes for specific outcomes. We suspect that the apparent lack of epidemiological studies for questions about 

causes of outcomes is due to frequently taught frameworks for epidemiologists that warn against type 1 errors 

from multiple testing (false positive findings),[4] various confounding structures for each exposure,[5] the 

overwhelming number of combinations between exposures that can be created,[6] and lack of established 

theoretically founded approaches for applied data analysis,[6,7] though some do exist.[8–10] 
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We introduce a machine learning- and causal inference-based approach called the Causes of Outcome Learning 

(CoOL) approach that attempts to generate insights into questions like “Given a particular health outcome, what 

are the most common combinations of exposures, which might have been its causes?”. We present the approach 

assisted by a simple simulated example. A step-by-step tutorial is included in Supplementary simulations 1-6, 

robustness checks in Supplementary simulations 7-9, and a real-life application in Supplementary real life data 

analysis. Terms that may need additional explanation are marked with * and explained in the Supplementary 

Table 1. 

Motivating example 

We use a simple simulation setting to motivate the CoOL approach. We generate a study population of 10,000 

individuals, of whom 50% are men and 50% are women, 20% are exposed to drug A, and 20% are exposed to 

drug B. Sex, drug A, and drug B are independent. All individuals have a baseline risk of disease Y of 5% throughout 

follow up, men who are exposed to drug A have a 15% increased risk of disease Y, and so do women who are 

exposed to drug B. If we were using a real-life dataset instead of a simulated one, we would need methods that 

could help us to identify the different risks associated with the measured exposures and population 

characteristics in order to eventually prevent disease Y. We will show how the CoOL approach can help direct us 

towards sets of exposures which might have caused our health outcome of interest in this example and in more 

complex simulations (see Supplementary material). 

The Causes of Outcome Learning approach 
The CoOL approach is enabled by three major new developments in the fields of machine learning* and causal 

inference*. Firstly, advances in computing and machine learning allow for identification of complex structures in 

large datasets. Secondly, there has been a recent breakthrough in understanding why machine learning models 

produce the results they do (explainable AI such as Layer-Wise Relevance Propagation [LRP] [11–13]). Lastly, 

by assuming a causal structure of data, models may be interpreted as structural causal models, which allows for 

causal interpretation.[14] The CoOL approach follows 3 phases (a-c) to ensure the embeddedness in an 

inductive-deductive scientific process, of which our contribution is specifically related to the computational 

phase (Figure 1). 

a) Pre-computational phase: Propose a causal model using a Directed Acyclic Graph (DAG) of the exposures 

and the outcome based on prior domain expertise of selected actionable exposures and contextual 

factors. 

b) Computational phase (We provide the R package ‘CoOL’, see Supplementary information 1 for 

installation): 

o On a training dataset: 

i. Fit a non-negative additive model* based on the features from the assumed causal model  

ii. Decompose the risk contributions. 
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iii. Cluster individuals based on the risk contributions. 

o On an internal validation dataset: 

iv. Ensure the robustness of the findings in an internal validation dataset. 

c) Post-computational phase: Based on the new learnings from the computational phase and existing 

knowledge, develop hypotheses to be assessed in further (intervention) studies on new data. Our 

approach focuses on common sub-groups with high risks, and thus the presentation of the results can 

direct the researchers towards insight with potential large public health impact.  The scientific process 

will continue in an inductive-deductive continuum towards inference to the best explanation. 

Pre-computational phase on proposing a causal model 

Causal structures are commonly depicted with DAGs,[15] which allow for a causal interpretation of associations 

given a set of causal assumptions*: exchangeability, positivity, consistency, no measurement error, and no model 

misspecification.[6] 

The intuition behind the assumed causal model is to link exposures to unknown sufficient causes.[16] Figure 2A 

ideally shows unknown combinations of exposures that cause the health outcome. Figure 2C shows the 

theoretical DAG, where 𝑋𝑖 denotes exposures, 𝑆𝐶𝑗 denotes j unknown sets of sufficient causes for the outcome 

(inspired by the notation by VanderWeele and Robins [16]), and 𝑌 denotes the outcome. The USCi and U denotes 

different types of unmeasured (including unmeasurable and unknown) causes; USCi denotes the unmeasured 

component causes of SCj, while U denotes unmeasured causes of Y of which we assume all individuals are 

exposed to. This theoretical DAG avoids making assumptions of the lack of causal effects between exposures and 

sufficient causes, and the computational steps will aim at reducing these causal effects towards the minimal sets 

of component causes. The assumed causal model assists in the selection of exposures to include in the model: 

there are actionable exposures, i.e. those we can intervene on such as drug intake, and contextual factors, which 

help describe sub-groups in risk. It also helps to decide whether proximal non-actionable exposures should be 

left out of the model, as they may mediate effects of actionable exposures. Further, the assumed causal model is 

used for the interpretation of the results because only direct and joint effects are returned.[5] 

The model choice affects our causal interpretations,[17] and models for estimating synergistic effects assume 

positive monotonicity, i.e. exposures either have no effect or always act in the same direction on the 

outcome.[18,19] The proposed non-negative model (next section) relaxes the monotonicity assumption by 

letting us explore all directions of exposures on the outcome simultaneously for which effects act independently 

or synergistically with others (e.g. if there exists exposures that are especially harmful for men and other 

exposures that are especially harmful for women). 

To identify an elevated risk, we need to define a reference baseline risk, 𝑅𝑏+, of all unmeasured causes assumed 

to affect all individuals. Given the causal structure is correct, the average effect for being exposed to combination 

𝑧  of the exposures compared with the baseline risk is given by 𝑃(𝑌𝑋𝑧 = 1) − 𝑃(𝑌 = 1)𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , which can be 
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estimated as 𝑃(𝑌 = 1|𝑋 = 𝑥𝑧) − 𝑅𝑏+, and the average effect of removing one exposure, by setting Xi to 𝑥�̅�, can be 

estimated as 𝑃(𝑌 = 1|𝑋𝑖 = 𝑥�̅�, 𝑋!𝑖 = 𝑥𝑧) − 𝑃(𝑌 = 1|𝑋𝑖 = 𝑥𝑖 , 𝑋!𝑖 = 𝑥𝑧). 

As in all studies aiming at causal inference, appropriate adjustment of exposures causing confounding is of great 

concern.[6] In the CoOL approach, confounders* are of interest as they could be causes of the outcome and be 

additionally associated with the exposures or they could be causes of the exposures in addition to being 

associated with the outcome.[20] By including the factors responsible for confounding, we block spurious 

associations between exposures and the outcome, which they would otherwise introduce (the backdoor path 

criterion*) [14]. Researchers should also consider situations where, e.g. differences in disease definition or 

surveillance and changes in registrations of exposures are known to have happened over time.[21] Issues with 

selection or collider bias and measurement bias should equally well be considered. 

For our motivating example, we assume that sex, drug A, and drug B do not share a common cause. Ideally, we 

want to identify the sufficient causes shown in Figure 2B, and the DAG showing our scientific interest can be 

drawn as in Figure 2D. 

Computational phase 

Since the number of potential combinations of exposures is large, there is a risk of type 1 errors. To prevent the 

model from overfitting* to noise, data is split into a training dataset and a dataset for internal validation. We 

suggest training until the model converges based on the error function for the training dataset. The findings from 

the training dataset can be manually confirmed in the yet unseen internal validation dataset before developing 

hypotheses.  

1. Fitting a non-negative model  

Various non-negative models may be used - we suggest a non-negative* additive* single-hidden layer* neural 

network* (Figure 2E) designed to mimic our assumed causal model (Figure 2C). This model resembles a linear 

regression model estimating risk differences but with two main modifications. First, the model includes a series 

of unobserved mediators that can combine the effects of various exposures. We call these unobserved mediators 

the synergy-functions*, 𝑆+(), represented in the hidden layer between the exposures and the outcome. Second, 

we restrict all connection parameters to have non-negative values,[22] so that exposures can only increase the 

occurrence of the outcome and thereby meet a relaxed version of the monotonicity assumption.[18] In Figure 

2E, 𝑋𝑖 denotes 𝑖 exposures (each category of the variable is binary (/one-hot) encoded* into one new variable 

each with 0 if not present and 1 if present) and 𝑌 denotes the disease outcome (coded 0 and 1); 𝛽𝑖,𝑗
+  denotes 

connection parameters from the exposures to the synergy-functions (parameters can only take non-negative 

values), 𝑆+(), which return the non-negative sum of its input value or zero; 𝛼𝑗
− is an intercept (can only take non-

positive values) that acts as an activation threshold which only allows combinations of exposures with large 𝛽𝑖,𝑗
+ -

weighted sum to pass 𝑆+() ; 𝑅𝑏+  represents the baseline risk (can only take non-negative values); and the 

parameter of connections between the synergy functions and the outcome has a fixed value of 1. The model 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.20225243doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.10.20225243
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 
 

estimates the risk on an additive scale so that synergism is defined as combined effects that are larger than the 

sum of individual effects.[2] Clearly, probabilities larger than 1 indicate model misspecification. 

This model can be denoted as below, where 𝑆+(𝑥) = 𝑚𝑎𝑥(0, 𝑥) , and likewise +  denotes restrictions to non-

negative values, and − denotes restrictions to non-positive values. This model satisfies the assumption that the 

added risk is independent of the baseline risk or phrased as an “independent of background” model by Beyea 

and Greenland.[17] 

𝑃(𝑌 = 1|𝑋) =∑(𝑆+ (∑(𝑋𝑖 ⋅ 𝛽𝑖,𝑗
+ )

𝑖

+ 𝛼𝑗
−))

𝑗

+𝑅𝑏+ 

Fitting the model is done using stochastic gradient decent* on the training dataset: In a step-wise procedure run 

on one individual at a time, the model estimates the individual’s risk of the disease outcome, 𝑃(𝑌|𝑋), calculates 

the squared prediction error (𝑌 − 𝑃(𝑌|𝑋))2 and adjusts the model parameters to minimize this error.[23] By 

iterating through all individuals for multiple epochs*, we obtain model parameters, which minimizes the sum of 

prediction errors across the entire population. The initial values*, derivatives*, learning rates*, and 

regularizations* are described in Supplementary information 2. 

While the prediction performance measured by the area under the receiver operating characteristic curve (AUC) 

provides a useful metric for evaluating model discriminatory performance across the entire population, it is 

important to consider that in case the outcome is caused by multiple distinct sets of causes, a model with low 

AUC can still capture sets of causes for a particular sub-group.[24] 

Figure 2F shows the model for our motivating example. We binary encode new variables for each possible 

category of each exposure, such that sex (coded 0 if man, 1 if women) becomes two factors; man (coded 1 if man, 

0 if not man) and woman (coded 1 if woman, 0 if not woman) and so forth for drug A and drug B. This data is 

used to fit the proposed non-negative model with 10 synergy-functions. Figure 4A-C shows how the error 

decreases by each epoch, it visualizes the neural network connections, and shows the accuracy using the 

prediction performance measure, AUC. 

2. Decomposing risk contributions 

Machine learning models are commonly referred to as black boxes due to the limited interpretability of their 

parameters and how they interact with the input-variables.[25] Instead of attempting to interpret the model 

directly, we use LRP [11–13] to decompose the risk of the outcome to risk contributions* for each individual (in 

particular, we use the LRPalpha,beta-rule, with alpha=1 and beta=0). LRP was introduced by Bach et al. in 2015[11] 

as a decomposition technique for pre-trained neural networks, and was later justified via Deep Taylor 

Decomposition.[26] As opposed to other explanation techniques for neural networks, LRP is aimed at conserving 

the information for predicting the outcome when assigning relevance to the inputs that were driving the 

prediction. In the CoOL approach, the predicted risk of the outcome, 𝑃(𝑌 = 1|𝑋) is decomposed into a baseline 

risk, 𝑅𝑏+, and the risk contributions by each exposure, 𝑅𝑖
𝑋 (where 𝑃(𝑌 = 1|𝑋) can take values between 0 and 1): 
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𝑅𝑏+ +∑𝑅𝑖
𝑋

𝑖

= 𝑃(𝑌 = 1|𝑋) 

These risk contributions may be interpreted as the exposures’ positive contribution to the risk given the model 

and the individual’s set of exposures. No risk contributions are decomposed to the intercepts, 𝛼𝑗
−. The below 

procedure is conducted for all individuals in a one-by-one fashion. The baseline risk, 𝑅𝑏+, is represented by its 

own parameter as illustrated in Figure 2E, and is therefore estimated as part of fitting the non-negative neural 

network. The decomposition of the risk contributions for exposures, 𝑅𝑖
𝑋, takes 3 steps: 

Step 1 - Subtract the baseline risk, 𝑅𝑏+: 

𝑅𝑡𝑜𝑡𝑎𝑙
𝑋 = 𝑃(𝑌 = 1|𝑋) − 𝑅𝑏+ 

Step 2 - Decompose risk contributions to the synergy-functions, where 𝑆𝑗 is the value returned by each of the 𝑗 

synergy-functions given the exposure distribution 𝑋𝑖, parameters, 𝛽𝑖,𝑗
+ , and intercepts, 𝛼𝑗

−: 

𝑅𝑗
𝑋 =

𝑆𝑗
∑ 𝑆𝑗′𝑗′

𝑅𝑡𝑜𝑡𝑎𝑙
𝑋  

Step 3 - Decompose risk contributions from the synergy-functions to the exposures: 

𝑅𝑖
𝑋 =∑ (

𝑋𝑖 ⋅ 𝛽𝑖,𝑗
+

∑ (𝑖′ 𝑋𝑖′ ⋅ 𝛽𝑖′,𝑗
+ )

𝑅𝑗
𝑋)

𝑗

 

As a result of the risk decomposition, each individual is assigned a set of risk contributions, 𝑅𝑖
𝑋, one for each 

exposure plus a baseline risk, 𝑅𝑏+. The decomposition of risk contributions can be illustrated in Figure 3E-F 

using the motivating example and explanation in the figure legend. 

3. Clustering of risk contributions 

We suggest to sub-group the individuals based on risk contributions using Manhattan distances* and the Ward 

method*.[27,28] One helpful technique that could inform deciding on number of subgroups is a dendrogram[29] 

of the distance matrix with node sizes representing the prevalence of similar risk contributions to be used to 

decide the number of sub-groups (Figure 3G). Additionally, we can plot the prevalence and mean risk of each 

sub-groups (inspired by excess probability plots[30]) to help identify the sub-groups with a high impact by 

identifying the area within a sub-group above the baseline risk (Figure 3I). Further, we can make a table of mean 

risk contributions and standard deviations (SD) by sub-groups to illuminate which exposures elevate the risk in 

each sub-group (Figure 3J). An indication of synergism is when the combined risk contribution of a set of 

exposures is higher than the sum of stand-alone risk contributions of each of the exposures, which can also be 

added to the table (Supplementary information 3, but it should be interpreted with caution as deviation may 

occur in noisy datasets). Formal investigation of synergism should be done in the yet unseen internal validation 

dataset before developing hypotheses for phase 3 of the Causes of Outcome Learning approach (see formulas for 

formal interaction analyses by VanderWeele[31]). 
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If exposures identified as high risk contributors are associated with the outcome due to uncontrolled 

confounding, the risk contributors only help identify the high-risk group and removing the exposure will not 

necessarily affect the risk. If two component causes act solely in synergy on the outcome, then removing just one 

of them is sufficient by itself, and thus the estimated risk contributions underestimate the causal effects in a 

counterfactual framework. The area within a sub-group above the baseline risk (Figure 3I) indicate the excess 

fraction of all cases due to the combination of exposures in the sub-group and thus indicate groups where a large 

public health impact may be made, but the interpretation should depend on how well the causal mechanisms are 

understood. The term also relates to the concept of grouped partial attributable risks[32] or termed formally as 

the attributable proportion in the population[19] and can be defined for a subgroup Z as: 

𝑃(𝑌 = 1) − 𝑃(𝑌𝑋𝑧=𝑋𝑧̅̅̅̅ = 1)

𝑃(𝑌 = 1)
 

where 𝑋𝑧 = 𝑋𝑧̅̅ ̅  denotes eliminating risk contributors in subgroup Z. Given the combined risk contributions 

causally affect the outcome and meet the assumption of positive monotonicity, the excess fraction can be 

calculated as (Supplementary information 4): 

𝑃(𝑋 = 𝑥𝑧) ∙ (𝑃(𝑌𝑋𝑧 = 1) − 𝑅𝑏+)

𝑃(𝑌 = 1)
 

Analyzing our motivating example, we can apply the fitted non-negative model, decompose the risk contributions 

using LRP and show a dendrogram of how similar the population are to each other in Figure 4D, which indicated 

3 groups. Figure 4E shows the risk and prevalence of the 3 sub-groups, where one sub-group which has a risk of 

5%, a second sub-group that has a risk of approximately 20% with a prevalence of 10%, and a third sub-group 

that has a risk of approximately 20% with a prevalence of 10%. Figure 4F shows us that we correctly identified 

that men (sex_0) who are exposed to drug A (drug_a_1) have a 5% baseline risk, which reaches a near 20% risk 

through the contributions from being a man and drug A. Similar are the findings for women (sex_1) and drug B 

(drug_b_1). Though not observed in this analysis, we may expect that the predicted risks are slightly 

underestimated since we apply regularization to reduce noise signals in data. 

Post-computational phase on hypothesis development and validation  

The results of the computational step may provide learnings about different sets of exposures, which may have 

led to the outcome in different sub-populations. This evidence should be interpreted in the light of the assumed 

causal model that was specified in phase 1, and thus formulated into new hypotheses about multifactorial 

etiology, which may be denoted in a DAG as done by VanderWeele.[16] The empirical evidence from the 

computational phase highlights the outcome prevalence and risk distribution across population sub-groups and 

directs attention towards groups with a potentially large public health impact. 

The domain experts will need to assess whether the causal assumptions are met across the identified sub-groups. 

Hypothetically, it may be that unmeasured confounding influenced our results based on our prior causal 

assumptions, which suggests that further work needs to be conducted to validate the findings and to understand 
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how risk may be mitigated for the sub-groups. The major gain of using the CoOL approach compared to many 

other machine learning approaches is that the sub-groups can be defined by specific combinations of exposures 

that are easily communicated with words rather than by a black box algorithm. Hence, our learnings may be 

formulated as a hypothetical intervention and explored using established methodological frameworks for causal 

inference modelling.[6] Here, we can use the frameworks developed for synergistic effects of causes in a causal 

inference framework to draw our causal assumptions.[16] 

Phase 3 for triangulating the hypotheses is conducted in external populations (either temporal validation or 

more desirably, external validation). If replicable, the researchers should provide sufficient evidence that the 

replicated finding is causal (and not due to similar bias structures) for example using various triangulation 

approaches with orthogonal bias structures (i.e. designs with biases in different directions) including studies 

outside the epidemiological field.[33] Eventually, if possible, the hypotheses needs to be tested using a 

randomized set-up. 

In our example, we now have some learnings to inform two hypotheses: Men taking drug A seem to be at a higher-

than-normal risk, women taking drug B seem to be at a higher-than-normal risk. We may supplement with 

observational data from other settings before we eventually may intervene (stop exposure to drug A for men, 

and drug B for women) possible in a randomized way if justified by equipoise*. 

Discussion 
We have introduced the CoOL approach, which investigates common combinations of exposures, which may have 

led to a specific health outcome. We have used a simple simulated example in the presentation, however, the 

approach applies to more complex scenarios (see additional simulations and a real life data analysis in the 

Supplementary material). New learnings can be formulated as hypotheses in words rather than a black box 

algorithm, and these hypotheses can subsequently be challenged and tested using for example the framework 

for hypothetical interventions and by triangulation. 

So far, the sufficient cause model and the way of thinking about causes of an outcome have, de facto, mostly been 

a theoretical framework and not a practical approach for applied data analysis in epidemiology.[6] Though, there 

exists justifications of individual (n=1) explanation rather than group-based explanations by going from studying 

effects of causes to causes of an outcome,[34] our intention with the CoOL approach is to identify commonly 

shared sets of events, which are associated with higher risks of the outcome in specific sub-populations for public 

health interventions. Fully explaining an outcome seems far-fetched in epidemiology,[35] since these sets of 

events will interplay with multiple unknown or unmeasurable causes, but an approach like ours takes the first 

steps towards suggesting etiology[36] or – at least – to identify vulnerable subgroups. 

The proposed approach may be of relevance to a number of theoretical frameworks: It links to the classical 

sufficient causes model[2], it may help disentangle structures in the syndemics (synergistic epidemics) 

literature,[37] and add a tool for holistic approaches to “precision” public health.[38] We stress that the CoOL 
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approach is an inductive-deductive approach and that researchers in each of the phases need to carefully 

consider the most appropriate set-up that eventually may lead to fair public health actions.  

Limitations and extensions 

Inference  
Co-occurring associations between the exposures and the outcome can be due to various causal structures such 

as interactions,[31] clustered causes (exposures sharing a common cause), mediation,[31] uncontrolled 

confounding,[6] and conditioning on a common effect (collider-stratification or selection bias)[39] (Figure 5). 

Interactions (Figure 5A) entail a combined structural effect that is beyond the sum of the individual effects of the 

putative causes, and thus some inference about the underlying structures may be suggested by the CoOL 

approach and confirmed by formal interaction analysis. When studying non-randomized epidemiological data, 

complex combinations of all of these structures can be expected. Researchers will need to assess various 

hypotheses through triangulation to support their explanatory contribution.  

Rose described chains of causes by separating causes into distal and proximal causes.[3] Proximal causes, 

e.g. infectious agents, dietary deficiencies, smoking, toxic exposures and allergens, are close to the outcome in 

the causal chain, and distal causes, e.g. social and economic positions, as the causes of causes and thus are distal 

to the outcome in the causal chain. Such frameworks have been further expanded in the exposome literature.[40] 

The CoOL approach focuses on the most proximal causes of the causal chain, and thus included exposures should 

be carefully selected according to appropriate actionable exposures and contextual factors. An individualized 

focus on proximal causes may misdirect our attention away from structural public health interventions and could 

in the worst case scenario stigmatize parts of the population without offering preventive interventions.[41] 

Future work is needed to explore the degree of which bias is introduced due to collider bias by using a neural 

network.[16] 

Model  

The version of CoOL we have presented deals with binary exposures and outcomes, similar to the sufficient cause 

model.[7] However, the approach can be extended to continuous outcomes, where the value 0 has a meaningful 

interpretation (as e.g. loss of disease-free years, and in contrast to e.g. body mass index). Further, it may be that 

the CoOL approach reveals complementary information when studying positive outcomes (high quality of life) 

in comparison to negative outcomes (diseases and death).[42] Multiple other extensions of the CoOL approach 

may be possible, e.g. ways to incorporate time, such as time-varying variables, complex confounding scenarios, 

and censoring, would be of high relevance for epidemiological, and we encourage others to explore these. It could 

be of interest to explore a variation of  outcome-wide approaches,[43] since co-morbidity may be a sign of shared 

underlying sufficient component causes (e.g. atopic diseases as asthma, dermatitis and nasopharyngitis), and 

thus analyzing several health outcomes may let us pick up suggestions of common sufficient causes otherwise 

missed (multi-task learning*). The best presentation of the results will depend on the aim and extensions of the 

CoOL approach. 
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Robustness checks 

If data are sparse for investigating the causal structure, the results may not be reliable both with the potential of 

type 1 (false positive findings) and type 2 errors (false negative findings). Robustness checks should be 

conducted to challenge the stability of the approach.[44] It can give insight to try the following to ensure that the 

baseline risk estimation and the identified groups are robust: change the number of synergy-functions 

(Supplementary simulation 7) re-run the analysis with sub-samples of the study population (Supplementary 

simulation 8), change the regularization values (Supplementary simulation 9). A baseline risk above its initial 

value, 
∑𝑌

𝑛
, is a sign of model misspecification. 

Theoretical comparison with other approaches 

Though not commonly applied in epidemiology, frameworks for identifying component causes exist by selection 

on either cases[9]or exposure[10]. In the social sciences, Configurational Comparative Methods deal with 

sufficient causes (referencing earlier work[45]), of which the most famous is the Qualitative Comparative 

Analysis,[46] which has also been applied in the public health domain.[47] Qualitative comparative analysis 

works by analyzing all combinations of exposures and uses a top-down search of exposure combinations which 

fulfill some chosen criteria, such as a risk threshold.[8] Using pre-defined risk thresholds may both have 

advantages such as transparent protocols and disadvantages such as being sensitive to the chosen threshold 

level with the risk of not identifying relevant risk groups with moderate increased risks but with large public 

health impact. 

The CoOL approach has similarities to decomposition approaches of mediated and interactive effects in 

epidemiology,[48,49] however, work is needed to assess the similarities to the LRP properties in the CoOL 

approach. A recent approach, Algorithm for Learning Pathway Structures (ALPS), which uses a Monte Carlo 

scheme to update a pathway structure has shown promise for identifying complex interactions in large 

epidemiological datasets.[50] However, since ALPS focuses on parameter interpretation, its results differs from 

those of the CoOL approach, which identifies sizeable sub-groups who share exposures, which may have led to 

their increased risk of the outcome. 

Approaches such as the exposome[40,51,52] and exposure- or environment-wide association studies 

(EWAS)[53,54] assess multiple exposures simultaneously, but few applied studies include interactions.[53–56] 

The few that do consider interactions tend to investigate interaction of pre-selected factors only.[57] Such 

studies have been discussed in relation to their potential, especially in light of successes of genome-wide 

association studies,[58] and limitations such as a challenging causal interpretation.[5]  

LRP has previously been successfully demonstrated in image, text and biological data classification,[59–61] as 

well as for health records to explain clinical decisions on therapy assignment.[62] In this latter case, neither a 

baseline risk was estimated nor was there interest in identifying sub-groups. The computational phase of the 

CoOL approach has similarities to existing work on explaining and correcting computer vision,[63,64] but takes 

its depart from a causal question. The CoOL approach may be viewed as a supervised clustering approach based 
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on an additive feature attribution method guided by a causally inspired model. It should be investigated to which 

degree other additive feature attribution methods approximate similar results,[65] since they are usually not 

related to any causal frameworks nor any underlying epidemiological theories. These methods seem to depart 

from a specified reference group in contrast to the CoOL approach, which estimates a baseline risk. Different 

model dependent methods for decomposing risks can naturally yield different estimates.[66] 

Alternative methods to LRP for decomposing neural network predictions were proposed recently, such as 

DeepLIFT[67] or Integrated Gradients.[68] However, only LRP and its Deep Taylor Decomposition theoretical 

framework[26] fit our assumption of a non-negative neural network with negative biases, and allow for a 

seamless interpretation of relevance as risk contributions in our causal inference setup. Using non-negative 

models for sets of explanations within certain aims was proposed decades ago[69] but not in relation to causal 

questions. We did not want to consider sensitivity-, perturbation-, or surrogate-based explanation techniques, 

since our question of interest relates to the causes of an outcome posed as “Given a particular health outcome, 

what are the most common sets of exposures, which might have been its causes?” rather than effects of causes posed 

as “What would have occurred if a particular factor were intervened upon and thus set to a different level than it in 

fact was?” These distinctions have previously been discussed both in the causal inference literature[7] and in the 

literature on LRP.[12] Furthermore, perturbation-based methods produce localized explanations which may not 

generalize to global causal pathways.[59,70,71] 

Conclusion 

We have introduced the Causes of Outcome Learning approach with the aim of disentangling common 

combinations of pre-outcome exposures that could have caused a specific health outcome. The approach is based 

on prior knowledge of the causal structure, the flexibility of a non-negative neural network, the LRP explanation 

technique for decomposing risk contributions and clustering, and, finally, hypothesis development and testing. 

These are steps towards building better transparency and causal reasoning into hypothesized causal findings 

from machine learning methods in the health sciences.[72,73] This CoOL approach should encourage and enable 

epidemiologists to examine common combinations of exposures as causes of the outcome of interest. This could 

eventually inform the development of more effective, targeted and impactful public health interventions. 
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Figures 

 

Figure 1. The phases of the CoOL approach towards inference to the best explanation  
A) PRE-COMPUTATIONAL PHASE: SCOPING THE RESEARCH QUESTION AND CAUSAL STRUCTURE ASSUMPTIONS. 
COMPUTATIONAL PHASE: I) A NON-NEGATIVE MODEL AS CLOSE TO THE ASSUMED CAUSAL MODEL IS FITTED, II) RISK 

CONTRIBUTIONS ARE DECOMPOSED AND III) INDIVIDUALS ARE CLUSTERED INTO SUB-GROUPS. IV) MANUAL VALIDATION OF 

THE RESULTS IS SUGGESTED IN AN INTERNAL VALIDATION DATASET TO ASSESS THE STABILITY OF THE RESULTS. C) POST-
COMPUTATIONAL PHASE: THE RESULTS ARE HELD AGAINST EXISTING EVIDENCE IN ORDER TO DEVELOP NEW HYPOTHESES 

THAT CAN BE TESTED IN NEW STUDIES. NEW UNDERSTANDINGS WILL UPDATE OUR INITIAL ASSUMED CAUSAL MODEL. 
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Figure 2. Sufficient causes, causal model and non-negative neural network 
THE PICTOGRAM SHOWS THE RELATION BETWEEN EPIDEMIOLOGICAL THEORY, STRUCTURAL MODELS AND A NON-NEGATIVE 

NEURAL NETWORK. THE LEFT COLUMN IS A GENERIC PRESENTATION, AND THE RIGHT COLUMN SHOWS THE SIMULATED 

EXAMPLE. A-B) AN ILLUSTRATION OF SUFFICIENT CAUSES. THE EXAMPLE TO THE RIGHT SHOWS THAT A CERTAIN DISEASE 

OCCURS IF MEN ARE EXPOSED TO DRUG A AND SOME UNKNOWN FACTORS AND IF WOMEN ARE EXPOSED TO DRUG B AND SOME 

UNKNOWN FACTORS. C-D) AN ASSUMED CAUSAL MODEL ILLUSTRATED USING A DIRECTED ACYCLIC GRAPH, WHERE 𝑿𝒊 

DENOTES THE EXPOSURES, USCI DENOTES THE UNMEASURED CAUSES OF THE SUFFICIENT CAUSES, U DENOTES THE 

UNMEASURED CAUSES OF Y ASSUMED TO AFFECT ALL INDIVIDUALS, 𝑺𝑪𝒋  DENOTES HIDDEN SUFFICIENT CAUSES, AND 𝒀 

DENOTES THE OUTCOME. E-F) A NON-NEGATIVE NEURAL NETWORK RESEMBLING THE ASSUMED CAUSAL MODEL. 𝑿𝒊 DENOTES 

EXPOSURES, 𝜷𝒊,𝒋
+  DENOTES NON-NEGATIVE PARAMETERS, 𝑺𝒋

+  DENOTES HIDDEN SYNERGY-FUNCTIONS, 𝜶𝒋
−  DENOTES NON-

POSITIVE INTERCEPTS, ACTING AS ACTIVATION THRESHOLDS FOR SYNERGY-FUNCTIONS, AND 𝑹𝒃+  DENOTES THE BASELINE 

RISK. 
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Figure 3. Workflow of the computational phase of CoOL 
THE FLOWCHART OF HOW SUB-GROUPS ARE IDENTIFIED AS PART OF THE COMPUTATIONAL PHASE  OF CAUSES OF OUTCOME 

LEARNING. A) THE EXPANDED DATASET OF SEX (ONE VARIABLE FOR MAN, ONE FOR WOMAN), DRUG A (ONE VARIABLE FOR 

DRUG A, ONE FOR NO DRUG A), AND DRUG B (ONE VARIABLE FOR DRUG B, ONE FOR NO DRUG B). B) THE FITTED NON-
NEGATIVE MODEL IS ILLUSTRATED. WIDE EDGES INDICATE LARGE CONNECTION PARAMETERS. C-D) THE PREDICTED RISK, 
𝑷(𝒀|𝑿) . E) THE PREDICTED RISK IS DECOMPOSED USING LRP TO RISK CONTRIBUTIONS OF THE BASELINE, 𝑹𝒃+ , AND 

EXPOSURES, 𝑹𝑿. F) THE RISK CONTRIBUTION MATRIX. G) A DENDROGRAM TO HELP DECIDE ON THE NUMBER OF SUB-GROUPS. 
H) CLUSTERED RISK CONTRIBUTION MATRIX INTO SUB-GROUPS. I) PREVALENCE AND MEAN RISK BY SUB-GROUP PLOT. THIS 

PLOT INDICATE AREAS FOR GREATER PUBLIC HEALTH IMPACT. J) A TABLE WITH SUB-GROUP MEAN OF RISK CONTRIBUTIONS. 
IT CAN HOLD MORE INFORMATION WHICH CAN BE USEFUL WHEN DEVELOPING HYPOTHESES, SUCH AS QUANTIFICATIONS OF 

THE EXCESS PROPORTION OF ALL CASES FOUND IS THIS SUB-GROUPS WHEN CONSIDERING THE PREVALENCE OF THE SUBGROUP, 
THE RISK IN THE SUB-GROUP AND THE BASELINE RISK. 
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Figure 4. Results of the computational phase of CoOL 
THE MAIN RESULTS ARE COMBINED IN ONE PLOT. A) PERFORMANCE MEASURED BY THE MEAN SQUARED ERROR BY EPOCH. B) 

A VISUALISATION OF THE FITTED NON-NEGATIVE NEURAL NETWORK. THE WIDTH OF THE LINE INDICATE THE STRENGTH OF 

EACH CONNECTION. C) A PLOT ON PREDICTION PERFORMANCE AS MEASURED BY A ROC CURVE. D) A DENDROGRAM COLORED 

BY 3 GROUPS. E) THE MEAN RISK AND PREVALENCE BY SUB-GROUPS. F) THE TABLE WITH THE MAIN RESULTS FOR THE 

WORKING EXAMPLE. “N” IS THE TOTAL NUMBER OF INDIVIDUALS IN THE SUB-GROUP, “E” IS THE NUMBER OF EVENTS / 

INDIVIDUALS WITH THE OUTCOME IN THE SUBGROUP, “PREV” IS THE PREVALENCE OF THE SUB-GROUP, “RISK” IS THE MEAN 

RISK IN THE SUB-GROUP BASED ON THE MODEL, “EXCESS” IS THE EXCESS FRACTION BEING THE PROPORTION OUT OF ALL CASES 

WHICH ARE MORE THAN EXPECTED (MORE THAN THE BASELINE RISK) IN THIS SUB-GROUP, “OBS RISK” IS THE OBSERVED RISK 

IN THIS SUB-GROUP (95% CONFIDENCE INTERVAL IS CALCULATED USING THE WALD METHOD IN [74]), “RISK BASED ON THE 

SUM OF INDIVIDUAL EFFECTS” IS THE RISK SUMMED UP WHERE ALL OTHER EXPOSURES ARE SET TO ZERO. FOR THE 3 

ESTIMATES PRESENTED AT EACH VARIABLE BY EACH SUB-GROUP, THE FIRST ESTIMATE IS THE MEAN RISK CONTRIBUTION, THE 

ESTIMATE IN PARENTHESES IS THE STANDARD DEVIATION, AND THE ESTIMATE IN BRACKETS IS THE RISK CONTRIBUTION HAD 

ALL OTHER EXPOSURES BEEN SET TO ZERO. THE BASELINE RISK IS BY DEFINITION THE SAME FOR ALL GROUPS. 
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Figure 5. Six causal structures causing co-occurring associations 
A AND B DENOTES MEASURED EXPOSURES OF INTEREST, U DENOTES AN UNMEASURED CAUSE OF A AND B, Y DENOTES THE 

OUTCOME, S DENOTES A SELECTION MECHANISM. ALL SIX CAUSAL STRUCTURES RESULT IN AN INCREASED CO-OCCURRENCE OF 

A AND B IN THE CAUSES OF OUTCOME LEARNING APPROACH. IT ONLY APPLIES FOR INTERACTIONS THAT THE COMBINED 

EFFECT IS LARGER THAN THE SUM OF THE INDIVIDUAL EFFECTS. A) INTERACTION - A AND B JOINTLY AFFECT Y, AND THUS 

OCCUR OFTEN TOGETHER WHEN ASSESSING RISK CONTRIBUTIONS (SEE ALSO [31]). B) CLUSTERED CAUSES - A AND B OCCUR 

MORE OFTEN TOGETHER DUE TO U. C) MEDIATION - SINCE B IS CAUSED BY A, A AND B OFTEN OCCUR TOGETHER (SEE ALSO 

[31]). D) CONFOUNDING - IF U IS A CAUSE OF A, B AND Y, ALL VARIABLES OCCUR OFTEN TOGETHER (SEE ALSO [6]). E) M-

BIAS - SELECTION ON B CAN CAUSE A NON-CAUSAL ASSOCIATION BETWEEN A AND B, AND A AND Y (SEE ALSO [39]). F) 

SELECTION BIAS - CONDITIONING ON S CREATES A NON-CAUSAL ASSOCIATION BETWEEN A, B AND Y (SEE ALSO [39]). 
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