1	Investigating the origin of the Belgian second SARS-CoV-2 wave by using
2	(pre)admission screening samples.
3	Naesens Reinout ^{1,2} , Heireman Laura ¹ , Vandamme Sarah ³ , Willems Philippe ^{4,5} , Van Herendael
4	Bruno ^{4,5} , Verstrepen Walter ¹ , De Schouwer Pieter ¹ , Bruynseels Peggy ^{1,2}
5	Affiliations:
6	^{1.} Department of Medical Microbiology, ZiekenhuisNetwerk Antwerpen, B-2020
7	Antwerp, Belgium
8	^{2.} Department of Infection Prevention and Control, ZiekenhuisNetwerk Antwerpen, B-
9	2020 Antwerp, Belgium
10	^{3.} Department of Medical Microbiology, University Hospital Antwerp, B-2650 Edegem,
11	Belgium
12	^{4.} Department of Medical Microbiology, GasthuisZusters Antwerpen, B-2060 Antwerp,
13	Belgium
14	^{5.} Department of Infection Prevention and Control, GasthuisZusters Antwerpen, B-2060
15	Antwerp, Belgium
16	
17	Corresponding Author: Reinout Naesens Corresponding Author Email:
18	reinout.naesens@zna.be

It is made available under a CC-BY-NC-ND 4.0 International license .

19 Abstract

20	The goal of this study was to estimate rates of SARS-CoV-2 carriership and viral loads in the
21	general Antwerp population and to compare the estimated prevalences and incidences with
22	governmental data (numbers of detected positive cases, stringency measure index) in order to
23	evaluate the dynamics leading to the second wave. We used (pre)admission screening results
24	from the major Antwerp hospitals for estimating community prevalences and incidences.
25	43.545 samples were included (April – November 2020). High SARS-CoV-2 carriership rates
26	(mean week prevalence of 1.3%) were found in the general Antwerp population. 35.4% of
27	positive cases carried high viral loads. Only a small proportion (15.3%) of the viral circulation
28	was detected by the nationally implemented testing policy. In the weeks before the second
29	Belgian wave, increasing prevalences and incidences were found, together with country-wide
30	easing of restriction measures. In our opinion these findings have led to origin of the second
31	viral wave.
32	Keywords: SARS-CoV-2; Belgium; second wave; driver; contact-tracing; prevalence;
33	incidence
34	Conflict of interest: None

35 **Funding statement:** No funding

It is made available under a CC-BY-NC-ND 4.0 International license .

36 INTRODUCTION

37	Since March 2020, the world has been in the grips of a pandemic caused by the Severe Acute
38	Respiratory Syndrome virus type 2 (SARS-CoV-2) leading to excess mortality and morbidity.
39	The virus has a detrimental impact on both economic and psycho-social well-being ¹ .
40	Belgium was highly impacted, having had to deal with two waves up to November 2020: the
41	first from the beginning of March to the end of May, the second during the fall (showing a
42	decline in November). The first wave was contained by implementing a full lockdown starting
43	on 14 March 2020. The first measures to ease restrictions were introduced on 4 June 2020.
44	Despite warnings from various Belgian key expert virologists and epidemiologists in
45	September 2020, the government decided to ease restrictions further, having been encouraged
46	by various pressure groups and public opinion. Belgium faced its second wave as from
47	October 2020 (Figure 1).
48	Until now, little is known about the dynamics and prevalence of asymptomatic carriership and
48 49	Until now, little is known about the dynamics and prevalence of asymptomatic carriership and viral loads in the general Belgian population ² . Furthermore, the role of the different age
49	viral loads in the general Belgian population ² . Furthermore, the role of the different age
49 50	viral loads in the general Belgian population ² . Furthermore, the role of the different age categories in the viral spread has not been fully elucidated ³ .
49 50 51	viral loads in the general Belgian population ² . Furthermore, the role of the different age categories in the viral spread has not been fully elucidated ³ . Since the major Antwerp hospitals implemented extensive (pre-)admission screening of
49 50 51 52	viral loads in the general Belgian population ² . Furthermore, the role of the different age categories in the viral spread has not been fully elucidated ³ . Since the major Antwerp hospitals implemented extensive (pre-)admission screening of asymptomatic cases in April 2020 (eg. prior to elective surgery or endoscopic procedures),
49 50 51 52 53	 viral loads in the general Belgian population². Furthermore, the role of the different age categories in the viral spread has not been fully elucidated³. Since the major Antwerp hospitals implemented extensive (pre-)admission screening of asymptomatic cases in April 2020 (eg. prior to elective surgery or endoscopic procedures), and have continued to do so, they possess valuable information regarding the actual
49 50 51 52 53 54	viral loads in the general Belgian population ² . Furthermore, the role of the different age categories in the viral spread has not been fully elucidated ³ . Since the major Antwerp hospitals implemented extensive (pre-)admission screening of asymptomatic cases in April 2020 (eg. prior to elective surgery or endoscopic procedures), and have continued to do so, they possess valuable information regarding the actual prevalence of the virus in the general population throughout the pandemic period.

It is made available under a CC-BY-NC-ND 4.0 International license .

58 **METHODS**

59 DATA COLLECTION

60	During the	period 27 A	pril to 15 I	November 2020,	, we collected	SARS-CoV-2	positivity	y data
----	------------	-------------	--------------	----------------	----------------	------------	------------	--------

from (pre)admission screenings from the following hospitals: the Antwerp University

- 62 Hospital (UZA), the multiple site public hospital ZiekenhuisNetwerk Antwerpen (ZNA), and
- the major multiple site private Antwerp hospital GemeenschapsZusters Antwerpen (GZA).
- Together they account for approximately 90% of hospital bed capacity (3697 hospital beds) in
- 65 the city of Antwerp.
- 66 (Pre-)admission screenings were defined as follows: pre-hospital screenings prior to elective
- admissions (GZA, UZA, ZNA), and systematic admission screenings in asymptomatic

patients admitted for other reasons than COVID-19 (GZA, UZA). Screenings of high/low risk

69 contacts or individuals with symptoms were excluded.

A distinction in test indications was obtained by implementing different sample flows per

indication (pre-admission screenings were performed by a nurse at patients' homes for the

or during a pre-visit at the swab laboratory, from UZA and GZA respectively). Unique test

codes were also used by GZA and UZA for registering the swab samples in the Laboratory

75 Information System (LIS).

Samples were analysed in the laboratory attached to the hospital of the prescribing physician.

All laboratories are certified by the Belgian government (BELAC). The following molecular

78 techniques and platforms were used:

79 In the clinical laboratory of GZA, nucleic acids were extracted on STARlet IVD® (Seegene

80 INC., Seoul, Korea) using the Viral DNA/RNA C-kit. Subsequently SARS-CoV-2 qPCR

81 (CDC N1 target) was performed on a Quantstudio 7 flex qPCR cycler® of Thermo Fisher

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246462; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

82 Scientific (Waltham, MA, USA) according to the protocol published by the Centers of

83 Disease Control and Prevention (CDC).

84	The laboratory of UZA used the Xpert Xpress SARS-CoV-2 test detecting E and N2 target on
85	the GeneXpert® Platform (Cepheid, USA) as per manufacturer's instructions. Alternatively,
86	an in-house PCR was performed detecting E target according to Corman et al. 2020 with
87	extraction on NucliSens EasyMag® (Biomérieux, France) or QiaSymphony® (Qiagen, The
88	Netherlands) and amplification with Cobas LightCycler 480 II® or Cobas z480 (Roche
89	Molecular Diagnostics, Switzerland). Alternatively, a BD MAX SARS-CoV-2 kit was used
90	detecting N1 and N2 target with an all-in one extraction amplification on the BD MAX®
91	platform (Becton Dickinson, USA).
92	In the laboratory of ZNA, nucleic acids were extracted on MagNA Pure 96 using the MagNA
93	Pure 96 DNA and Viral NA Small Volume Kit (Roche Molecular Diagnostics, Switzerland).
94	Subsequently SARS-CoV-2 qPCR (N1 target) was performed on a LightCycler 480 qPCR
95	cycler according to the protocol published by the CDC. Alternatively, nucleic acids were
96	extracted on KingFisher Flex using the MagMAX Viral/Pathogen II Nucleic Acid Isolation
97	Kit. These extracts were analysed on a Quantstudio 5 qPCR cycler using the TaqPath TM
98	COVID-19 CE-IVD RT-PCR Kit (ThermoFisher Scientific).
99	The parameters postal code, age, PCR result (associated with PCR platform used) and cycle
33	The parameters postar code, age, FCK result (associated with FCK platform used) and cycle
100	threshold (Ct) value (or alternatively Crossing point (Cp)) if available (GZA, ZNA) were
101	retrieved from the LIS for each patient, and transferred to a central ZNA-based and secured
102	database.

103 The following data were collected from the Belgian governmental scientific institution,

104 Sciensano⁴: absolute numbers (weekly) of positively detected cases for Antwerp province,

It is made available under a CC-BY-NC-ND 4.0 International license .

- admitted patients at the hospital for Antwerp province, and returning travelers in August 2020
- 106 with positivity rate (only available on national level).
- 107 The following data were collected from the Flemish Agency for Care and Health
- 108 (governmental agency responsible for the contact-tracing policy) for Antwerp province by
- 109 using the information from the web-based and secured database (Controle-toren)⁵:
- 110 percentages (weekly) of successfully (by phone) contacted positive cases in the Antwerp
- 111 province. Age distributions for the Antwerp province were obtained from Statistiek
- 112 Vlaanderen⁶.
- 113 We used the Oxford COVID-19 Government Response Stringency index to estimate
- 114 governmental measures. The index goes from zero (no restrictions) to hundred (strictest)⁷.

115

116 DATA ANALYSES AND DEFINITIONS

117 Cases with domicile outside the Antwerp province were excluded for further analysis. SARS-118 CoV-2 carriership was estimated by calculation of the weekly asymptomatic positivity rate in 119 the study population. The incidence was calculated by using an estimated duration of PCR positiveness of seventeen days as was found by Cevik and colleagues⁸. The percentage of the 120 121 cohort infected by SARS-CoV-2 (for the whole investigated period) was calculated by adding 122 up all estimated week incidences. By dividing the absolute weekly numbers of positively 123 tested cases in the province by the number of province inhabitants (1.858 million) in the 124 province, the percentage of positively tested patients in the Antwerp province was calculated. 125 The percentage of weekly new COVID-19 hospital admitted patients in the Antwerp province 126 was calculated by dividing the absolute weekly number of admitted patients by the number of 127 inhabitants in the province.

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246462; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

128	Viral loads (only available for GZA and ZNA) were calculated by extrapolation of the Ct/Cp
129	values corresponding to 5000 genome equivalents per mL of the AccuPlex TM SARS-CoV-2
130	full genome reference material (Seracare). A high viral load was defined as >= 256 000 viral
131	copies/mL ⁹ . Ratios of positive cases (on a weekly basis; all inclusions) with high viral loads
132	were plotted on the same timeline as the plotted estimated incidences.
133	
134	Mean positivity ratios per age decade (0-10 y, 11-20 y, 21-30 y, 31-40 y, 41-50 y, 51-60 y,
135	61-70 y, 71-80 y, 81-90 y, 90+ y) were investigated for the investigated cohort. Positivity
136	ratios of carriership were calculated for preschools (0-4 y), primary schools (5-11 y) and
137	secondary schools (12-18 y). The mean positivity ratio was also assessed for (pre)school
138	children (0-18 y) and the elderly (+80 y). Box-whisker plots represent the viral load among
139	different age categories.
140	
141	Ethical approvals were obtained by the hospital Institutional Boards (GZA: Approval N°

142 200906RETRO; UZA: Approval N°001355; ZNA: Approval N° 5416).

It is made available under a CC-BY-NC-ND 4.0 International license .

143 **RESULTS**

144

145	Overall, 43.545 cases were identified of which 38.763 cases (89.0%) were included. The
146	results of 4782 cases (11.0%) were excluded since domicile (based on postal code) was
147	outside Antwerp province. GZA, UZA, and ZNA accounted for respectively 53.2%, 34.6%
148	and 10.7% of included cases. The overall SARS-CoV-2 positivity rate was 1.3% (n=520).
149	Younger age groups (<21 years old) were underrepresented in the investigated cohort as
150	compared to the Antwerp province (9.0 % versus 22.3%; $p < 0.01$). Age groups of > 70 years
151	old were overrepresented in the cohort (25.0 % versus 14.1 %, p <0.01). The distribution of
152	cases was not equally dispersed throughout Antwerp province with an underweight of cases
153	from the city of Antwerp versus the Antwerp province (20.8% of cases had domicile in the
154	city of Antwerp, versus 26.8 % of inhabitants for the whole Antwerp province $p < 0.01$). Cases
155	with domicile in the city of Antwerp ($n = 8067$) had an overall positivity rate of 1.8%,
156	whereas cases with domicile outside the city of Antwerp ($n = 30696$) had an overall positivity
157	rate of 1.2% (<i>p</i> < 0.01).
158	
159	Estimated carriership (with high viral loads), estimated weekly new cases and number of

admissions are shown in Figure 1. Calculated weekly cohort carriership varied between 0.1 %

161 (week of 29 June) and 8.6 % (week of 26 October). The mean week percentage was 1.5%.

162 The calculated ratio of carriership with high viral loads varied between 0% (week of 11 May,

163 18 May, 1 June, 22 June, 29 June, 6 July, 13 July and 24 August) and 6.7 % (week of 26

- 164 October). The mean week ratio was 0.8%. Overall, the percentage of positive carriers with
- high viral loads was 35.4 %. The calculated weekly incidence varied between 0.0% (see
- 166 Figure 2) and 6.5 % (week of 19 October). The mean week incidence was 0.7%. Overall, we
- 167 calculated that 20.3 % of the investigated cohort became infected with SARS-CoV-2 in the

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246462; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

168	period from 27 April to 15 November. 3.1 % of Antwerp province inhabitants tested positive
169	in the investigated period (Sciensano data). In August 2020, 1.4 million Belgians (12.2% of
170	Belgian population) filled in a Passenger Locater Form. 2% of travelers tested positive for
171	SARS-CoV-2. On population level, this equals a potential increase of 0.2% in SARS-CoV-2
172	carrier-rate.
173	The percentage of weekly new hospital admissions varied between 0.00% (see Figure 1) and
174	0.02% (week of 26 October, 2 November, and 9 November) of the Antwerp province
175	population. The mean ratio of weekly detected cases versus the estimated weekly incidence
176	was 29.1 % (range: 2.9 % - 100 %). The percentage of successfully contacted positive cases
177	varied between 54.0% (week of 22 June) and 94.0 % (week of 26 October) for the Antwerp
178	province with a mean percentage of successfully contacted positive cases of 83.0% (data only
179	available from 1 June to 15 November since registration only started on 1 June).
180	The SARS-CoV-2 positivity rate according to age is 0.9% (95 % Confidence Interval (CI):
181	0.4 - 1.5 %) (n= 1292) for daycare children (0-4 years), 1.0% (95 % CI: $0.5 - 1.9$ %) (n= 877)
182	for primary school children (5-12 years), 0.8% (95 % CI: $0.3 - 1.6$ %) (n = 878) for secondary
183	school children (13-18 years), 0.9% (95 % CI: 0.6 – 1.3 %) (n= 3047) for overall school-aged
184	civilians (0-18 years), 1.4% (95 % CI: $1.3 - 1.5$ %) (n = 35637) for adults (>18 years) and
185	2.6% (95 % CI: 2.1 – 3.2 %) (n = 4033) for the elderly (>80 years). The distribution of viral
186	loads and ratios of carriers with high viral loads among different age categories are presented
187	in Figure 2 and 3 respectively.

188 The results of the Oxford Stringency Index are shown in Figure 1.

It is made available under a CC-BY-NC-ND 4.0 International license .

189 **DISCUSSION**

190	Numerous reports provide data indicating that asymptomatic (or pre-symptomatic) subjects
191	can transmit COVID-19 with high efficiency ^{10,11} . In the living review paper of Buitrago-
192	Garcia, the secondary attack rate is only slightly lower in contacts of people with
193	asymptomatic infection than in those with symptomatic infection (relative risk 0.35, 95% CI
194	$(0.10-1.27)^{12}$. Mathematical modelling studies (not peer reviewed) have suggested that
195	asymptomatic individuals might be major drivers for the growth of the COVID-19
196	pandemic ¹³ .
197	We found high positivity ratios of asymptomatic carriership in our investigated cohort of
198	Antwerp inhabitants throughout the investigated pandemic period (27 April to 14 November
199	2020). Lowest positivity ratios were seen at the end of June (week of 29 June): after a period
200	of a full lockdown and only minor easing of containment measures, SARS-CoV-2 positivity
201	ratios were found to be at levels of 1 out of 1000 samples. Similar or even far lower
202	prevalences led to massive screening programs in China in order to stop further viral spread ¹⁴ .
203	Taking into account the SARS-CoV-2 key transmission epidemiological parameters
204	(estimated R_0 factor of 2.0 and a dispersion factor of 0.10), a strategy accepting prevalences
205	above 1% (the overall average in our cohort being 1.3 %) together with the simultaneously
206	reopening of a locked community were, in our opinion, the perfect ingredients for rapid
207	escalation towards a subsequent second national wave ¹⁵ . This finding is important as Belgium
208	has chosen a strategy of accepting significant circulation of the virus within the population
209	without having an accurate insight of past and actual viral prevalences (in contrast to eg.
210	Luxemburg and China, where thorough search and/or isolation programs have been set
211	up) ^{14,16} . Also, pressure is already increasing to further ease the contingency measures taken in
212	order to control the second wave.

It is made available under a CC-BY-NC-ND 4.0 International license .

213	The finding that, due to the implemented testing and tracing strategy, only marginal numbers
214	of positive cases were detected (we estimated that, by extrapolation of cohort data, 20.3 % of
215	the Antwerp population contracted the virus in the study period, but only 3.1 % (15.3% of
216	estimated positieve cases) were effectively tested positively) and subsequently traced (83,
217	range: 54 % - 94 %), even in the periods of upward movement of the curves, was probably
218	another important contributing factor to the uncontrollable rapid further viral spread seen in
219	October 2020. The hypothesis of underestimated viral circulation in Belgium has also been
220	put forward by Herzog and colleagues, by analyzing epi-serological data ¹⁷ . Since we only
221	measured the base-line (population wide) prevalence, our estimation may even be an
222	underestimation of the real viral circulation, since outbreaks and clusters are not represented
223	in our analysis, but may have been picked up in documented testing numbers (Sciensano). On
224	the other hand, the underrepresentation of the younger age groups versus the
225	overrepresenation of the older age groups in the investigated cohort leads to an upward bias.
226	Furthermore, backward tracing has not been implemented optimally to date by the
227	governmental task force ¹⁸ . We argue that the Belgian testing and tracing strategy was not able
228	to contain and monitor the pandemic in Belgium adequately, this being one of the major
229	ingredients of a failing containment policy leading to the second national wave.
230	The province of Antwerp was one of the three Belgian provinces (out of 10) with highest
231	number of tests per inhabitants ^{4,5} . There is no reason for postulating an exceptional role of
232	Antwerp province in Belgium as being a highly affected province. Inversely, the southern part
233	of the country was affected more severely in the second wave, as shown in the governmental
234	Sciensano data.
235	Interestingly, we also found higher proportions of carriers in the city of Antwerp (1.8%) than

in the province of Antwerp (1.2%; p < 0.01). This reflects a national trend: the second wave was more prevalent in crowded bigger capital cities⁴.

It is made available under a CC-BY-NC-ND 4.0 International license .

238 With regard to positivity ratios according to age category, we found high numbers (around 1

239 % throughout the investigated period) in school children and young adults (0-30 years).

240 Positivity ratios of young adults (21-40 years-old) were significantly higher than the adult

population aged 51-70 years (p < 0.01).

242 Although the role of children as main drivers of transmission is still debated, our finding may

243 be another argument for active transmission in these age groups 20,21,22 . A recent

seroprevalence survey in two Belgian municipalities (one highly affected, the other hardly

affected) also showed equivalent proportions of infections in primary school children versus

adolescents in the first three years of secondary education 23 .

247 On the other hand, if children were equally susceptible, one might expect even higher rates of

248 carriership, since children were less restricted in the number of contacts (summercamps,

schools were open from 1 September 2020). Since we were not able to correct for number of

250 contacts, we cannot further determine the value of this hypothesis.

251 With regard to age distribution, another interesting finding is the high overall percentage of

252 positivity ratios in the elderly (+70 y). In our hypothesis, this is the reflection of the

augmented transmission risks in residential care homes.

254 We also found significant proportions of carriers with high viral loads (on average 35.4 % of

all inclusions). In the week of 26 October, we estimate that 7.0% of Antwerp inhabitants were

carrying high viral loads. Evaluating the whole investigated period, on average 0.7% of the

257 population was carrying high viral loads. Although the link of viral load with contagiousness

258 has not been established, this might have been an important factor in the spread of the virus¹⁹.

259 Viral loads in younger age groups were not lower than viral loads in the working age

260 population. (Figure 2) In another non-peer-reviewed publication, it was also shown that there

is no significant difference between viral loads in 1-20 year-olds as compared to 21-100 year-

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246462; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

old adults²⁴. Furthermore, another study suggests that the viral load in children below 5 years
of age with mild to moderate COVID-19 symptoms is higher than in older children and
adults²⁵.

In our hypothesis, positive children may have further introduced the virus into households,

which suggests that this is a potentially underestimated factor in the derailing of the situation

in September 2020.

268 Interestingly, we found significantly higher proportions of carriers with high viral loads in the

269 elder age categories. The combination of higher prevalences and higher ratios of carriers with

270 high viral loads in this age group might be an important driver of the abundance of outbreaks

and associated excess morbidity and mortality seen in retirement homes.

272 Overall, not recognizing the presence and potential important role of the asymptomatic

carriers with higher viral loads may also have been another ingredient which led to the

subsequent second wave.

In our opinion, the role of the returning travelers was very limited. In August 12.2 % of the

276 Belgian population filled in a Passenger Locater form. About 2% of returning travelers tested

positive. On a population level, this may have led to an increase of 0.2% in carriership rates.

278 On the positive side, we found that by implementing strict contingency measures (i.e.

following the tightening and easing advice of experts) even substantial viral circulation of

around 1% can be controlled: the ratio of positive carriers was contained in the period

between 27 April and 14 September (19 weeks) without overstretching health care capacities.

However, the efforts required to maintain controllable containment were enormous, thereby

putting high pressure on social (limited number of contacts) and economic well-being (Oxford

284 Stringency Index not below 50.0 between 27 April and 14 September).

It is made available under a CC-BY-NC-ND 4.0 International license .

285	Finally, we come to our last driver of the second wave, probably the most important one. Mid
286	to end September, key Belgian epidemiologists, virologists and biostatisticians warned the
287	temporary government of the possible rapid escalation in numbers of new infections and
288	admissions, based on available data. The government decided not to follow their advice, and
289	implemented a strategy that eased restriction measures (Oxford Stringency Index on 14
290	September: 52.8; 5 October: 47.2) in a time when there was a steadily increasing number of
291	new infections (incidence increased from 0.9% the week of 14 September to 2.3% the week of
292	5 October). They were being encouraged to carry out this strategy by various pressure groups.
293	In October, Belgium was facing a second wave with a rapid increase in numbers of COVID
294	admissions, thereby highly impacting the health care system and hospital facilities.
295	The limitations of this study include that (weak positive) asymptomatic cases could have
296	corrresponded to previous infections with persistant existence of detectable RNA. This may
297	have biased the results. However, the rapid decrease of positivity ratios after the
298	implementation of extra measures (second pandemic wave) suggests we predominantly
299	included active infections. Although the phenomenon of prolonged shedders does certainly
300	exist, our data suggest that it is relatively insignificant and does not affect the major findings
301	in this paper. Also, the median duration of positive results has been shown to be two to three
302	weeks ⁴ . Another limitation is that we did not follow up positive/negative cases. We did not
303	link the data to secondary COVID-19 cases, thus not establishing the contagiousness of
304	positive cases. The screenings were linked to hospital procedures/admissions. Although we
305	can accept these screenings as random samples from the community, the cohort is not a
306	representative sample from the community: data points were not equally distributed in the
307	Antwerp province, and age distributions were not representative for the Antwerp province
308	(underestimation of younger age groups, and overestimation of older age groups).

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246462; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

309	In conclusion, we found that SARS-CoV-2 was significantly present in the Antwerp province
310	population in the period after the first wave. The virus circulated in all age groups with a
311	predomincance in the elderly. 1.3% of the investigated cohort tested positive for SARS-CoV-
312	2 with 35% carrying high viral loads. The testing and contact-tracing policy only detected a
313	small proportion of the real viral circulation. The restriction measures were eased in a period
314	of increasing incidences. The combination of these factors were, in our opinion, the
315	ingredients for the onset of the second wave. If Belgium chooses to accept a certain viral
316	circulation, a very strict barometer has to be put into place, in order to prevent further
317	worsening of the pandemic situation. The positivity rates in (pre)admission screening results
318	may be an important tool;
319	
320	Acknowledgements: None
321	
322	Author Bio:
323	Dr. Reinout Naesens is Head of the Infection Prevention and Control Department and member
324	of the Medical Microbiology Department of the ZNA group, the largest public hospital in
325	Belgium.

It is made available under a CC-BY-NC-ND 4.0 International license .

326 **REFERENCES**

327 Health Organisation, World Health Organisation situation reports, 1. World 328 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. 329 Accessed 2 december 2020. 330 2. Byambasuren O, Cardona M, Bell K, Clark J, McLaws M-L, Glasziou P. Estimating 331 the extent of true asymptomatic COVID-19 and its potential for community 332 transmission: systematic review and meta-analysis. medRxiv. 2020; (published online 333 September 13.) (preprint) doi: https://doi.org/10.1101/2020.05.10.20097543 334 3. Castagnoli R, Votto M, Licari A, Brambilla I, Bruno R, Perlini S, et al. Severe Acute 335 Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and 336 Adolescents: А Systematic Review. JAMA Pediatr. 2020;174:882-889. 337 doi:10.1001/jamapediatrics.2020.1467. 4. Sciensano, https://epistat.wiv-isp.be/covid/. Accessed 2 december 2020. 338 339 5. Toezicht Volksgezondheid, https://zorgatlas.vlaanderen.be. Accessed 2 december 340 2020. 6. Statistiek Vlaanderen, https://www.statistiekvlaanderen.be/nl/bevolking-naar-leeftijd-341 342 en-geslacht. Accessed 2 december 2020. 343 7. Oxford COVID-19 Government Response Tracker, https://covidtracker.bsg.ox.ac.uk/. 344 Accessed 2 december 2020. 345 8. Cevik M, Tate M, Lloyd O, Maraolo AE. SARS-CoV-2, SARS-CoV, and MERS-CoV 346 viral load dynamics, duration of viral shedding, and infectiousness: a sytematic review 347 and meta-analysis. Lancet Microb. 2020. Online first. doi: https://doi.org/10.1016/S2666-5247(20)30172-5. 348

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246462; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

- 9. Bullard J, Dust K, Funk D, Strong JE, Alexander D, Garnett L, et al. Predicting
- infectious SARS-CoV-2 from diagnostic samples. Clin Infect Dis. 2020;22:ciaa638.
 doi: 10.1093/cid/ciaa638.
- 10. Koh WC, Naing L, Chaw L, Rosledzana MA, Alikhan MF, Jamaludin SA, et al. What
 do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis
 of the secondary attack rate and associated risk factors. PLoS One.
 2020;15(10):e0240205. doi: 10.1371/journal.pone.0240205.
- 11. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic
 proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond
 Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25(10):2000180.
 doi: 10.2807/1560-7917.ES.2020.25.10.2000180.
- 12. Buitgrago-Garcia DC, Egli-Gany D, Counotte MJ, Hossmnn S., Imeri H, Ipekci AM,
- et al. Asymptomatic SARS-CoV-2 infections: a living systematic review and meta-analysis.
 medRxiv. 2020; (published online July 28.) (preprint) doi: https://doi.org/10.1101/2020.04.25.20079103.
- 13. Dobrovolny HM. Modeling the role of asymptomatics in infection spread with
 application to SARS-CoV-2. PLoS One 2020; 15:e0236976. doi:
 10.1371/journal.pone.0236976.
- 367 14. Health Commission of Hubei Province. Daily report on epidemic situation of COVID368 19 in Hubei province.
- 369 http://wjw.hubei.gov.cn/bmdt/ztzl/fkxxgzbdgrfyyq/xxfb/index.shtml. Accessed 2
 370 december 2020.
- 15. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, Eggo RM; Centre
 for Mathematical Modelling of Infectious Diseases COVID-19 working group. Early

It is made available under a CC-BY-NC-ND 4.0 International license .

- 373 dynamics of transmission and control of COVID-19: a mathematical modelling study.
- 374 Lancet Infect Dis. 2020; pii:S1473-3099(20)30144-4.

383

- 375 16. https://covid19.public.lu/en/testing.html Accessed 2 december 2020.
- 376 17. Herzog S, Abrams S, Wouters I, Ekinci E, Pateet L, Coppens A, et al. Seroprevalence 377 of IgG antibodies against SARS coronavirus 2 in Belgium – a serial prospective cross-378 sectional nationwide study of residual samples. medRxiv. 2020; (published online 379 October 1.) (preprint) doi: https://doi.org/10.1101/2020.06.08.20125179.
- 380 18. Endo A; Leclerc QJ, Knight GM, Medley GF, Atkins KE, Funk S, et al. Implication of 381 backward contact tracing in the presence of overdispersed transmission in COVID-19
- 382 outbreaks. Wellcome Open Res. 2020;5:239. doi: 10.12688/wellcomeopenres.16344.1.
- 19. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARSCoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382:1177-384 385 1179. doi: https://www.nejm.org/doi/full/10.1056/NEJMc2001737.
- 386 20. Jones TC, Mühlemann B, Veith T, Biele G, Zuchowski M, Hoffmann J, et al. An 387 analysis of SARS-CoV-2 viral load by patient age. medRxiv. 2020; (preprint) doi: 388 https://doi.org/10.1101/2020.06.08.20125484.
- 389 21. Viner RM, Russell SJ, Croker H, Packer J, Ward J, Stansfield C, et al. School closure 390 and management practices during coronavirus outbreaks including COVID-19: a rapid 391 systematic review. Lancet Child & Adolescent Health. 2020;4(5):397-404. doi: 392 10.1016/S2352-4642(20)30095-X.
- 393 22. Heavey L, Casey G, Kelly C, Kelly D, McDarby G. No evidence of secondary 394 transmission of COVID-19 from children attending school in Ireland, 2020. Euro 395 Surveillance: bulletin Europeen sur les maladies transmissibles = European 396 bulletin. 10.2807/1560communicable disease 2020;25(21). doi: 397 7917.ES.2020.25.21.2000903.

It is made available under a CC-BY-NC-ND 4.0 International license .

- 398 23. Sciensano, https://www.sciensano.be/sites/default/files/limburg-validation-sars-
- 399 cov2_report_20201112_final.pdf. Accessed 2 December 2020.
- 400 24. Jones TC, Mühlemann B, Veith T, Zuchowski M, Hofmann J, Stein A, et al. An
- 401 analysis of SARS-CoV-2 viral load by patient age. Available from:
- 402 https://zoonosen.charite.de/fileadmin/user_upload/microsites/m_cc05/virologie-
- 403 ccm/dateien_upload/Weitere_Dateien/analysis-of-SARS-CoV-2-viral-load-by-patient-
- 404 age.pdf. Accessed 2 December 2020.
- 405 25. Heald-Sargent T, Muller WJ, Zheng X, Rippe J, Patel AB, Kociolek LK. Age-Related
- 406 Differences in Nasopharyngeal Severe Acute Respiratory Syndrome Coronavirus 2
- 407 (SARS-CoV-2) Levels in Patients With Mild to Moderate Coronavirus Disease 2019
- 408 (COVID-19). JAMA Pediatr. 2020;174(9):902-903. doi:
- 409 10.1001/jamapediatrics.2020.3651.

It is made available under a CC-BY-NC-ND 4.0 International license .

Age	Number	Percentage of	Percentage of	<i>p</i> -value (difference in
category	of	inclusions	inhabitants in the	rates of inclusions
	inclusions		Antwerp province	versus the Antwerp
				province)
0-10 y	1971	5.1	11.3	<i>p</i> <0.01
11-20 y	1493	3.9	11.0	<i>p</i> <0.01
21-30 y	3942	10.2	12.1	<i>p</i> <0.01
31-40 y	5110	13.2	13.1	<i>p</i> =0.83
41-50 y	4376	11.3	12.7	<i>p</i> <0.01
51-60 y	5993	15.5	14.0	<i>p</i> <0.01
61-70 y	6194	16.0	11.8	<i>p</i> <0.01
71-80 y	5651	14.6	8.2	<i>p</i> <0.01
81-90 y	3450	8.9	4.9	<i>p</i> <0.01
+90 y	583	1.5	1.0	<i>p</i> =0.23

410 Table 1 Age distribution of included cases and age distribution of the province of Antwerp.

411

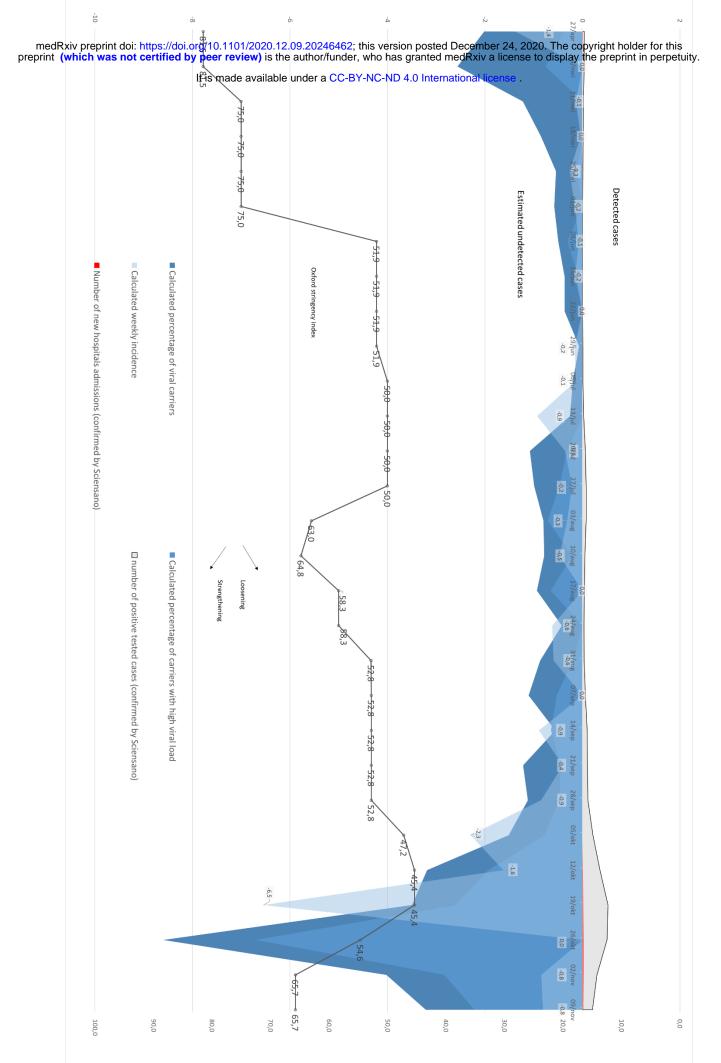
It is made available under a CC-BY-NC-ND 4.0 International license .

412 Table 2. Overall positivity rate of SARS-CoV-2 in asymptomatic carriers according to age

413 groups.

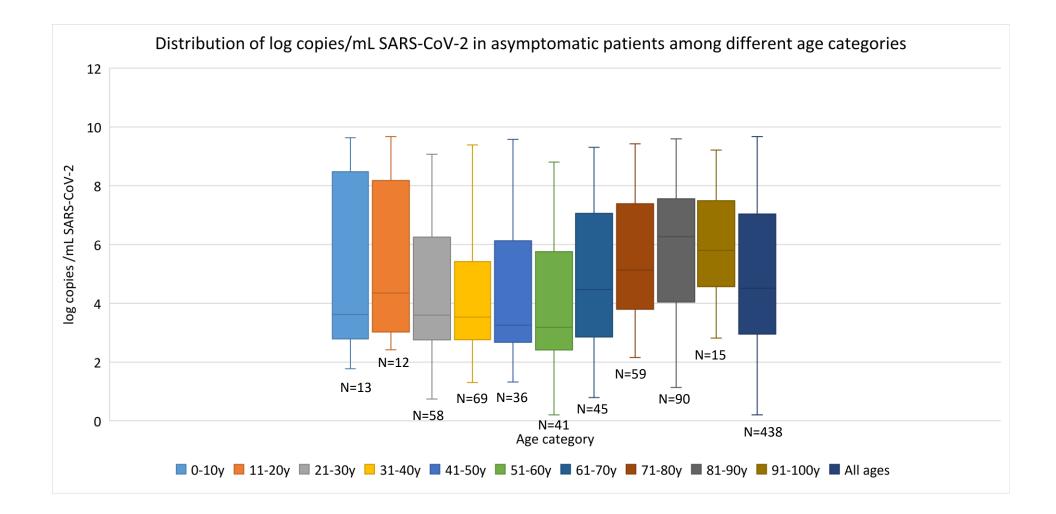
			414
Age category	Overall percentage of positive tests	95% CI	
0 - 10 y	1.0	0.6 to 1.5	415
11 - 20 y	1.3	0.8 to 2.0	
21 - 30 y	1.6	1.3 to 2.1	
31 - 40 y	1.6	1.3 to 2.0	
41 - 50 y	1.2	0.9 to 1.6	
51 - 60 y	1.0	0.7 to 1.2	
61 - 70 y	0.9	0.7 to 1.1	
71 - 80 y	1.2	0.9 to 1.5	
81 - 90 y	2.7	2.2 to 3.3	
> 90 y	2.6	1.4 to 4.2	

It is made available under a CC-BY-NC-ND 4.0 International license .

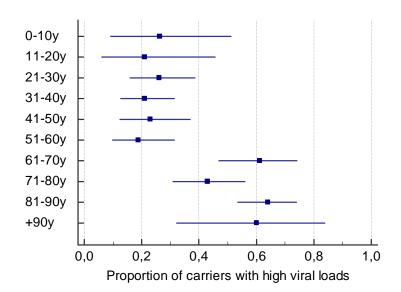

- 416 Figure 1. Estimated prevalence and incidence of SARS-CoV-2 carriers, estimated prevalence
- 417 of carriers with high viral loads, percentages of cases with confirmed a positive SARS-CoV-2
- 418 test and percentages of confirmed hospital admitted COVID cases in the Antwerp province.

It is made available under a CC-BY-NC-ND 4.0 International license .

- 419 Figure 2. Viral loads according to age groups in asymptomatic carriers (viral loads only
- 420 available for GZA and ZNA).


It is made available under a CC-BY-NC-ND 4.0 International license .

421 Figure 3. Proportion of asymptomatic carriers with high viral loads according to age category.



PERCENTAGE OF ANTWPER PROVINCE INHABITANTS

OXFORD STRINGENCY INDEX

It is made available under a CC-BY-NC-ND 4.0 International license .

	Proportion of carriers	
Age category	with high viral loads (%)	95 % Cl
0-10y	26.3	9.1-51.2
11-20y	21.1	6.1-45.6
21-30y	26.2	16.0-38.5
31-40у	21.0	12.7-31.5
41-50γ	23.1	12.5-36.8
51-60γ	19.0	9.9-31.4
61-70у	61.1	46.9-74.1
71-80γ	43.1	30.8-56.0
81-90γ	64.1	53.5-73.9
+90y	60.0	32.2-83.7