Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Post Hoc Evaluation of Probabilistic Model Forecasts: A COVID-19 Case Study

View ORCID ProfileKyle J. Colonna, View ORCID ProfileRoger M. Cooke, View ORCID ProfileJohn S. Evans
doi: https://doi.org/10.1101/2020.12.09.20246157
Kyle J. Colonna
aEnvironmental Health Department, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kyle J. Colonna
  • For correspondence: kcolonna@g.harvard.edu
Roger M. Cooke
bResources for the Future, Washington, DC 20036
cDepartment of Mathematics, Delft University of Technology, Delft, The Netherlands 2628 XE
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Roger M. Cooke
John S. Evans
aEnvironmental Health Department, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John S. Evans
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

To combat the spread of coronavirus disease 2019 (COVID-19), decision-makers and the public may desire forecasts of the cases, hospitalizations, and deaths that are likely to occur. Thankfully, dozens of COVID-19 forecasting models exist and many of their forecasts have been made publicly available. However, there has been little published peer-reviewed information regarding the performance of these models and what is available has focused mostly on the performance of their central estimates (i.e., predictive performance). There has been little reported on the accuracy of their uncertainty estimates (i.e., probabilistic performance), which could inform users how often they would be surprised by observations outside forecasted confidence intervals. To address this gap in knowledge, we borrow from the literature on formally elicited expert judgment to demonstrate one commonly used approach for resolving this issue. For two distinct periods of the pandemic, we applied the Classical Model (CM) to evaluate probabilistic model performance and constructed a performance-weighted ensemble based on this evaluation. Some models which exhibited good predictive performance were found to have poor probabilistic performance, and vice versa. Only two of the nine models considered exhibited superior predictive and probabilistic performance. Additionally, the CM-weighted ensemble outperformed the equal-weighted and predictive-weighted ensembles. With its limited scope, this study does not provide definitive conclusions on model performance. Rather, it highlights the evaluation methodology and indicates the utility associated with using the CM when assessing probabilistic performance and constructing high performing ensembles, not only for COVID-19 modeling but other applications as well.

Significance Statement Coronavirus disease 2019 (COVID-19) forecasting models can provide critical information for decision-makers and the public. Unfortunately, little information on their performance has been published, particularly regarding the accuracy of their uncertainty estimates (i.e., probabilistic performance). To address this research gap, we demonstrate the Classical Model (CM), a commonly used approach from the literature on formally elicited expert judgment, which considers both the tightness of forecast confidence intervals and frequency in which confidence intervals contain the observation. Two models exhibited superior performance and the CM-based ensemble consistently outperformed the other constructed ensembles. While these results are not definitive, they highlight the evaluation methodology and indicate the value associated with using the CM when assessing probabilistic performance and constructing high performing ensembles.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

Kyle J. Colonna's involvement was funded by the Harvard Population Health Sciences PhD scholarship. Roger M. Cooke's involvement was pro bono. John S. Evans' involvement was funded by the Department of Environmental Health and the Harvard Cyprus Initiative at the Harvard T.F. Chan School of Public Health.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

No IRB/oversight body approval or exemption was necessary as the data is publicly available.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • Competing Interest Statement: The authors declare they have no competing interests that might be perceived to influence the results and/or discussion reported in this manuscript. There has also been no prior discussion with a PNAS editor.

  • More appropriately qualified our results; reduced the jargon in our significance statement; more consistently and better defined technical terms throughout the manuscript; pulled some supplementary material into the manuscript; made the supplementary material a more formal read; made minor edits to the figures/tables

Data Availability

Observed state COVID-19 mortality and case data was gathered from the Centers for Disease Control and Prevention (CDC) (43). State population and racial composition data was collected from one-year estimates from the Census Bureau's 2018 and 2019 American Community Survey (ACS) (44). For racial composition statistics and case rate data, please see SI appendix, Tables S3 and S4. Model forecasting data was gathered from the COVID-19 Forecast Hub's publicly available structured data storage repository on GitHub (8). For the model and ensemble predictions, their uncertainty distributions, and the subsequent observations of COVID-19 mortality, please see SI appendix, Tables S5 and S6.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted December 22, 2021.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Post Hoc Evaluation of Probabilistic Model Forecasts: A COVID-19 Case Study
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Post Hoc Evaluation of Probabilistic Model Forecasts: A COVID-19 Case Study
Kyle J. Colonna, Roger M. Cooke, John S. Evans
medRxiv 2020.12.09.20246157; doi: https://doi.org/10.1101/2020.12.09.20246157
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Post Hoc Evaluation of Probabilistic Model Forecasts: A COVID-19 Case Study
Kyle J. Colonna, Roger M. Cooke, John S. Evans
medRxiv 2020.12.09.20246157; doi: https://doi.org/10.1101/2020.12.09.20246157

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (216)
  • Allergy and Immunology (495)
  • Anesthesia (106)
  • Cardiovascular Medicine (1101)
  • Dentistry and Oral Medicine (196)
  • Dermatology (141)
  • Emergency Medicine (274)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (502)
  • Epidemiology (9782)
  • Forensic Medicine (5)
  • Gastroenterology (481)
  • Genetic and Genomic Medicine (2318)
  • Geriatric Medicine (223)
  • Health Economics (463)
  • Health Informatics (1563)
  • Health Policy (737)
  • Health Systems and Quality Improvement (606)
  • Hematology (238)
  • HIV/AIDS (507)
  • Infectious Diseases (except HIV/AIDS) (11656)
  • Intensive Care and Critical Care Medicine (617)
  • Medical Education (240)
  • Medical Ethics (67)
  • Nephrology (258)
  • Neurology (2148)
  • Nursing (134)
  • Nutrition (338)
  • Obstetrics and Gynecology (427)
  • Occupational and Environmental Health (518)
  • Oncology (1183)
  • Ophthalmology (366)
  • Orthopedics (129)
  • Otolaryngology (220)
  • Pain Medicine (148)
  • Palliative Medicine (50)
  • Pathology (313)
  • Pediatrics (698)
  • Pharmacology and Therapeutics (302)
  • Primary Care Research (267)
  • Psychiatry and Clinical Psychology (2188)
  • Public and Global Health (4673)
  • Radiology and Imaging (781)
  • Rehabilitation Medicine and Physical Therapy (457)
  • Respiratory Medicine (624)
  • Rheumatology (274)
  • Sexual and Reproductive Health (226)
  • Sports Medicine (210)
  • Surgery (252)
  • Toxicology (43)
  • Transplantation (120)
  • Urology (94)