Six-month antibody response to SARS-CoV-2 in healthcare workers assessed by virus neutralisation and commercial assays

Antonin Bal1,2*, Mary-Anne Trabaud1*, Jean-Baptiste Fassier3,4, Muriel Rabilloud5,6, Kahina Saker1, Carole Langlois-Jacques5,6, Nicolas Guibert3,4, Constance d’Aubarede3,4, Adèle Paul3,4, Dulce Alfaiate7, Amélie Massardier-Pilonchery3,4, Virginie Pitiot4, Florence Morfin-Sherpa1,2, Bruno Lina1,2, Bruno Pozzetto8,9*, Sophie Trouillet-Assant1,2* on behalf the COVID SER STUDY GROUP

1Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire associé au Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
2 CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
3 Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, Lyon, France
4 Service de Médecine et Santé au Travail, Hospices Civils de Lyon, Lyon, France.
5 Université de Lyon, F-69000, Lyon, France; Université Lyon 1, Villeurbanne, France; Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, Lyon, France
6 CNRS, UMR 5558, Université de Lyon, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne, France.
7 Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
8 GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), Université Jean Monnet, Université de Lyon, Saint-Etienne, France
9 Laboratoire des agents infectieux et hygiène, Hospital Universitaire de Saint-Etienne, Saint-Etienne, France

* Authors contributed equally to the manuscript

Corresponding author: Dr Sophie Trouillet-Assant, Ph.D
Hospices Civils de Lyon, France
Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
Phone: + 33 (0)472678780 Email: sophie.assant@chu-lyon.fr

Keywords: COVID-19; SARS-CoV-2; Serological assays; Virus neutralisation assay; Healthcare workers

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

We conducted a prospective study in healthcare workers (n=296) of the University Hospital of Lyon, France. Serum samples (n=296) collected six months after disease onset were tested using three commercial assays: the Wantai Ab assay detecting total antibodies against the receptor binding domain (RBD) of the S protein, the bioMerieux Vidas assay detecting IgG to the RBD and the Abbott Architect assay detecting IgG to the N protein. The neutralising antibody (NAb) titre was also determined for all samples with a virus neutralisation assay (VNA) using live virus. The positivity rate was 100% with the Wantai assay, 84.8% with the bioMerieux assay and 55.4% with the Abbott assay. Only 51% of HCWs were positive for the presence of NAb. Less than 10% of HCWs had a NAb titre greater than 80. At a neutralising titre of 80, the area under the curves [IC 95%] was 0.71 [0.62-0.81], 0.75 [0.65-0.85] and 0.95 [0.92-0.97] for Wantai, Abbott and Vidas respectively. The data presented herein suggest that commercial assays detecting antibodies against the N protein must not be used in long-term seroprevalence surveys while the Wantai assay could be useful for this purpose. VNA should remain the gold standard to assess the protective antibody response, but some commercial assays could be used as first-line screening of long-term presence of NAb.
To the Editor,

Since the SARS-CoV-2 emergence in December 2019, one of the major concerns is the duration of immune protection after a first episode. This question is of paramount importance for healthcare workers (HCWs) who are a highly exposed population and among the first targets of vaccination programmes. To date, the persistence of SARS-CoV-2 antibodies in HCWs six months after disease onset (ADO) has not been studied with both a virus neutralisation test and commercial assays.

HCWs who experienced COVID-19 during the early phase of the pandemic were included in a prospective study conducted at the University Hospital of Lyon, France [1]. Serum samples collected six months ADO were tested using three commercial assays: the Wantai Ab assay that detects total antibodies against the receptor binding domain (RBD) of the S protein, the bioMérieux Vidas assay that detects IgG to the RBD, and the Abbott Architect assay that detects IgG to the N protein. The neutralising antibody (NAb) titre was determined by a virus neutralisation assay (VNA) using live virus as previously described [2].

A total of 296 HCWs were included; the median [interquartile range, IQR] age was 41 [32-51] years and 17.2% (51/296) were male. The median duration between symptom onset and inclusion was 186 [180-196] days. Of note, 8/296 HCWs (2.7%) were asymptomatic and the onset of disease was established on the basis of the median date of the RT-PCR positive result of the ward cluster. All participants were tested positive for SARS-CoV-2 serology at least two weeks after disease onset. The SARS-CoV-2 infection was also documented by RT-PCR test in 170 patients.

The positivity rate at six months ADO was 100% with the Wantai assay, 84.8% with the Vidas assay, and 55.4% with the Architect assay. Only 51% of HCWs were positive for the presence of NAb. Positive NAb titres ranged from 20 to 240. Only 27/296 (9.1%) had a NAb ≥ 80 (Figure 1A). No difference in positivity rates with any assay was observed between patients with a SARS-CoV-2 infection documented by RT-PCR and the rest of the cohort.

Of the 296 HCWs, 6 (2.0%) developed a clinical form requiring hospitalisation; all were positive with the three serological assays and for the presence of NAb with a median titre of 40 (range: 30-
By contrast, in asymptomatic HCWs, 8/8, 5/8, and 4/8 were positive with Wantai, Vidas, and Architect assays, respectively, and only 3/8 exhibited NAb with low titres (range: 30-60).

The area under the ROC curve (AUC) was estimated for assessing the performance of serological assays for two NAb titres (PRNT\(_{50} \geq 20\) or PRNT\(_{50} \geq 80\); (Figure 1C, E, G). The highest AUCs were found with the Vidas assay: 0.85 (95% CI [0.81-0.89]) and 0.95 [0.92-0.97], respectively. The Wantai and Abbott assays had AUCs of, respectively, 0.73 [0.68-0.79] and 0.70 [0.64-0.76] for PRNT\(_{50} \geq 20\), and 0.71 [0.62-0.81], 0.75 [0.65-0.85] for PRNT\(_{50} \geq 80\). These results suggest that an optimised ratio with some commercial serological assay could be found to maximize the positive predictive value enabling to select individuals with a NAb titre \(\geq 80\). For instance, with the Vidas assay, the median [IQR] ratio for samples with PRNT\(_{50} \geq 80\) was 15.4 [9.7-22.7] vs 5.9 [3.3-9.2] for samples with a titre between 20 and 80 and 1.8 [0.8-3.8] for samples without NAb (Figure 1F).

Among the 27 samples with NAb titre \(\geq 80\), all had a Vidas ratio above 8 compared to 31.5% and 3.5% of the samples with a titre between 20 and 80 or without NAb, respectively.

The findings of the present study indicate that, six months after infection, NAb were no longer detected in about half of HCWs who presented mainly mild COVID-19. Overall, the detection of SARS-CoV-2 Abs with commercial tests was higher despite important heterogeneity between the assays evaluated herein. In a previous study [3], about 40% of asymptomatic subjects became negative for IgG to the N protein within 3 to 6 months, which is consistent with that presented herein for the Architect assay. This suggests that assays detecting only antibodies against the N protein must not be used in long-term seroprevalence surveys. By contrast, the Wantai assay could be very useful for epidemiological purposes as 100% of the HCWs were still positive at 6 months ADO. Although VNA should remain the gold standard to assess the protective antibody response, the data presented herein suggest that some commercial assays could be useful for first-line screening of long-term presence of NAb as previously reported within 4 months ADO [2,4].
Despite these observations on the decrease of NAbs in patients with mild COVID-19, it is important to note that they do not preclude the protective role of an anamnestic antibody response in previously exposed subjects, nor that of the long-term cellular immunity [5].

References

Figure legend:

A. Distribution of neutralisation antibody titres in convalescent subjects (n=296) 6 months after SARS-CoV-2 infection. B-D-F. Violin plots describing ODR according to neutralising antibody titres. Dotted lines described positive threshold recommended by each manufacturer. Comparisons was performed using the Kruskal Wallis test followed by Dunn’s test. ***p<0.001, *p<0.05 C-E-G.

ROC curves were built to estimate the performance of Wantai (C), bioMérieux (E) and Abbott (G) assays for detecting the presence of neutralising antibodies (PRNT$_{50} ≥ 20$-continuous line) and high neutralising antibody titre (PRNT$_{50} ≥ 80$-dotted line). ODR-Optical Density Ratio, PRNT-Plaque Reducing Neutralisation Titres.

Ethics

Written informed consent was obtained from all participants; ethics approval was obtained from the national review board for biomedical research in April 2020 (Comité de Protection des Personnes Sud Méditerranée I, Marseille, France; ID RCB 2020-A00932-37), and the study was registered on ClinicalTrials.gov (NCT04341142).

COVID-SER study group

Acknowledgements
We thank all the personnel of the occupational health and medicine department of Hospices Civils de Lyon who contributed to the samples collection. Human biological samples and associated data were obtained from NeuroBioTec (CRB HCL, Lyon France, Biobank BB-0033-00046). We thank Karima Brahima and all members of the clinical research and innovation department for their reactivity (DRCI, Hospices Civils de Lyon). We thank Philip Robinson (DRCI, Hospices Civils de Lyon) for his help in manuscript preparation.

Conflict interests statement

Antonin Bal has received grant from bioMérieux and has served as consultant for bioMérieux for work and research not related to this manuscript. Sophie Trouillet-Assant has received research grant from bioMérieux concerning previous works not related to this manuscript.

The other authors have no relevant affiliations or financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.