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Abstract 

Background: Vasovagal syncope (VVS) is the most common form of syncope, accounting for 50-
60% of unexplained syncope. Currently diagnosis is achieved via clinical assessment combined with 
the Head-Up Tilt Test (HUT).  

Aim: To examine the utility of the active stand test (AS) to identify those with a positive HUT or 
diagnosis of VVS. 

Design: Retrospective study of hemodynamic responses to AS.  
Methods: Continuous blood pressure responses to AS from 101 patients attending a Falls and 

Blackouts Unit were acquired, including: 37 controls (CON), 64 with a clinical diagnosis of VVS (VVS+) 
(34 tilt-positive (HUT+) and 30 tilt-negative (HUT-)) with a mean age of 25 ± 9 years. A total of 33 
hemodynamic features were extracted with a subset of these entered into linear discriminant 
classifier. Classification accuracy was assessed using N-fold cross-validation.  

Results: Results indicated that it was possible to classify the outcome of the HUT with sensitivity 
of 58.8%, specificity of 63.3% and an accuracy of 60.9%. Using a multivariate classifier it was possible 
to identify those with a positive diagnosis of VVS with a sensitivity of 84.3%, specificity of 72.9% and 
an accuracy of 80.2%.  

Conclusion: This study highlights the existence of a unique AS hemodynamic response 
characterised by autonomic hypersensitivity exhibited by young patients prone to VVS which is 
detectable using a multi-parameter machine learning framework. With further verification, this 
approach may have applications in syncope and falls diagnosis, population studies and the tracking 
of treatment efficacy.  
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Introduction  

Vasovagal syncope (VVS) is marked by a sudden decrease 
in blood pressure with an associated drop in heart rate, often 
resulting in syncope (faints) and falls in young and older 
people.1 It is a common symptom with up to half of the 
population suffering from at least one episode during their 
lifetime.2 Frequent reoccurrence of VVS can be severe 
enough to have a significant reduction in a patient’s quality 
of life, with a debilitating effect comparable to chronic 
arthritis.3 

The standard diagnostic test for VVS is clinical assessment 
together with symptom reproduction via a positive Head-Up 
Tilt Test (HUT). HUTT is a resource intensive procedure 
requiring at least 40 minutes of testing and constant clinical 
supervision. HUT is typically performed in specialist referral 
centres and is therefore unsuitable for non-specialist 
application. In addition, large variations in test accuracy and 
reproducibility have been reported.4,5 In the absence of a 
positive HUT, a clinical diagnosis of VVS is based on patient 
history.   
 When assessing a patient for unexplained syncope, 
the European Society of Cardiology recommends that a 
detailed history, physical examination, standard 
electrocardiogram (ECG) and supine and upright blood 
pressure (BP) measurements are performed.6 These BP 
measurements are commonly taken during the Active Stand 
Test (AS), a relatively simple procedure involving 5-10 
minutes rest, followed by a further 3-5 minutes of standing. 
Hemodynamic variables, such as HR and BP, are recorded 
continuously throughout on a beat-to-beat basis.7 
 The ability to predict the outcome of the HUT would 
be of large clinical benefit, saving clinician time, patient 
discomfort and reducing costs4. Therefore, it is 
understandable that many previous attempts to identify 
biomarkers and predict HUT results can be found in the 
literature, ranging from patient history based methods to 
applying advanced signal processing and pattern recognition 
methods to hemodynamic responses.4,8–10 

Heart rate (HR), along with blood pressure, is one of two 
main signals that were originally used to classify VVS. Using 
multivariate analysis,8 demonstrated that cardiovascular 
reactivity patterns during the first 10 minutes of baseline may 
be used to distinguish between syncope patients and controls 
with 93.3% sensitivity and 62.5% specificity. Similarly, some 
studies have demonstrated the degree of HR increase is 
greater in tilt-positive patients.9  

In addition, the frequency spectrum of the RR interval 
tachogram has been analysed in an attempt to predict 
syncope. Kouakam et al. performed spectral analysis of low 
(LF) and high frequency (HF) bands, as well as the LF/HF 
power ratio during the last five minutes of the supine position 
and the first five minutes of head up tilt.10 In these patients, 
spectral analysis of HRV indicated that the LF/HF power ratio 

was highly correlated with HUT results after only five minutes 
of tilt with sensitivity and specificity both reaching 89%. 

Furthermore, several researchers have used multi-feature 
predictors, including Virag et al. who demonstrated that the 
joint assessment of RR interval and SBP successfully 
predicted HUT outcome in 719 of 759 patients (sensitivity 
95%, specificity 93%).4 However, this test required the 
implementation of the HUT and often included the 
prodromal symptom stage. Therefore, while it may 
reasonably predict the outcome of the HUT, it does not 
necessarily save much time or reduce patient discomfort. 

Large variations in prediction accuracy and time are 
reported in the literature. However, it appears that no 
previous research has examined the predictive utility of the 
AS test in this regard.  

The aim of this research is to examine the relationship 
between a patient’s AS response and the outcome of their 
HUT. We test the hypothesis that an alternative 
hemodynamic response to the AS test exists in those with a 
tendency towards VVS and that the outcome of the HUT can 
be predicted by analysing a patient’s hemodynamic response 
to the AS. 

Methods 

This was a retrospective study using previously acquired 
data [11].  

Research Setting 

All experimental procedures were conducted at the Fall's 
and Blackout Unit (FABU) in St. James’s Hospital Dublin 
between 2008 and 2010. N = 64 patients with a history 
consistent with VVS (denoted VVS+), i.e. syncope 
precipitated by prolonged standing, fear, severe pain, 
emotional distress or instrumentation and associated with 
typical prodromal symptoms were recruited from FABU.  

The cause of syncope was clinically evaluated and agreed 
upon by two independent, consultant geriatricians based on 
history, Sheldon scale and exclusion of other known causes 
of syncope in accordance with the European Society of 
Cardiology’s (ESC) guidelines. An additional 37 age-matched 
controls (CON) with no previous history of syncope were 
recruited from an existing database of healthy volunteers.  

Experimental Protocol 

Initially, an AS test was conducted. This involved surface 

ECG and beat-to-beat blood pressure monitoring during 5 

minutes of supine rest and 2-3 minutes standing. After the 

AS, syncope patients proceeded to a HUT test. Patients were 

secured safely on the HUT table and rested supine for an 

initial 5-minute stabilisation period. Following this, patients 

were tilted to 70° for 20 minutes. After this passive phase, 

400µg of glycerine trinitrate (GTN) was administered 
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sublingually, and the tilt was continued for a further 15 

minutes (provocation phase). The test was terminated either 

at the end of the protocol or at the onset of syncope. Those 

with a positive test formed the HUT+ group, while those with 

a negative test formed the HUT- group. All investigations 

were performed in a quiet, temperature-controlled room 

(22-24°C). 

Equipment 

Throughout both the AS and HUT test, the Finometer Pro 
(Finapres Medical Systems B. V., Netherlands) was used to 
monitor the hemodynamic activity of the patient. This system 
allows for the measurement of finger arterial pressure on a 
beat-to-beat basis, providing a non-invasive estimate of 
intra-arterial readings. It auto-corrects for the hydrostatic 
pressures associated with changes in hand position, as well 
as differences between brachial and finger-pressure 
waveform morphologies, by using a return-to-flow system. It 
has also passed both the AAMI/SP10 and BHS protocols for 
blood pressure measurement systems.11  

In addition to this, a number of software packages were 
used to record, compile and analyse the data. These include 
BeatScope (Finapress Medical Systems B. V., the 
Netherlands), Excel (Microsoft, US-WA), MATLAB 
(Mathworks, US-MA) and SPSS (PASW Statistics 18, IBM, US-
NY). 

Feature Extraction  

A total of 33 features, as detailed in Appendix A Appendix 

A Table 1 and Table 2, were extracted from the following 
signals: Systolic Blood Pressure (SBP), Heart Rate (HR), Stroke 
Volume (SV), Cardiac Output (CO) and Total Peripheral 
Resistance (TPR). Features were selected based on previous 
literature, visual inspection and control theory.  

Baseline features were established as the mean value from 
-60 to -30 seconds pre-stand. The final seconds pre-stand 
were not included in analysis due to significant signal noise 
present during the initial phase of the stand. The Steady-
State values were taken as the mean value during 80 to 100 
seconds post-stand. 

Heart Rate Variability (HRV) features, based on frequency 
domain approaches, were calculated using Welch’s power 
spectral density (PSD) to estimate the PSD of both the 
Baseline and Steady-State stages. In addition to this, the root-
mean-squared of successive differences (RMSSD) and 
standard deviation of successive differences (SDSD) of the 
pulse interval were calculated for each subject group. A list of 
calculation methods for each feature is available in Appendix 

A Table 2. 
  

Feature Selection  

The Mann-Whitney U test was used to establish the 

significance of each feature between the subgroups HUT+ 

versus HUT- and VVS+ versus CON.  A p-value of less than 0.05 

was considered to be significant. Features were then 

eliminated based on their lesser significance when compared 

to the additional feature they were correlated with. A 

correlation coefficient of 0.6 or greater was used for the cut-

off for elimination. The remaining, linearly independent 

features, were then ranked by the significance of their p-

value. Based on these features, a linear discriminant function 

was formed, providing a distinction between the distribution 

of each groups’ features. This function was then used to 

classify additional patients based on their hemodynamic 

responses to standing and utilized to cross-validate and 

classify each patient into a specific group. 

Cross Validation and Classifier 

The “k-fold cross-validation” classification technique was 

used to randomize the data set and divide it into k-partitions. 

A single partition was then selected to form the testing set, 

while the remaining k-1 partitions formed the training set. 

The classifier was trained and tested using this data. The 

process was then repeated, i.e. a new partition was selected 

from the k possibilities as the testing set and a new training 

set was then formed from the alternative k-1 partitions. This 

process was repeated k times, and the average results of the 

test sets formed an overall mean accuracy of the classifier. 

In this study, a range of k-values were tested to classify the 

data. These were 2, 5 and 10. A shortcoming of k-fold cross 

validation is that each of the individual classifiers considered 

is trained on a subset of the data. Hence some information is 

ultimately wasted. With this in mind, an additional cross-

validation method was also used in order to gain a range of 

accuracy for each classifier. Using this additional method, k 

was set to equal n, the number of patients in the dataset. This 

approach ensures that the maximum amount of training data 

(n-1) is available to each classifier. This method of n-fold 

cross-validation is commonly known as “leave-one-out cross-

validation” (LOOCV) and has been proven to improve the 

performance of classifiers in many separate studies.12–14 

Each of the features were entered into the linear classifier 

and the predictive powers of these univariate classifiers were 

examined. Following this, the features with the most 

predictive power were entered into a multivariate linear 

classifier in a stepwise fashion (highest predictive power first) 

to improve the overall accuracy. 

Assessing Classifier Performance 

When applying cross-validation to a dataset with two 

distinct classes, there are four possible outcomes for each 
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individual subject - true positive, false positive, true negative 

and false negative. For example, when classifying data from 

the Tilt-Positive (HUT+) and Control (CON) groups, the four 

possible outcomes are: 

• True Positive (TP): 
A HUT+ subject classified as a HUT+ subject  

• False Positive (FP): 
A CON subject classified HUT+ subject  

• True Negative (TN): 
A CON subject classified as a CON subject  

• False Negative (FN):  
A HUT+ subject classified as a CON subject  

Classifier performance was based on the common 
statistical measures of sensitivity, specificity, positive 
predictive value, negative predictive value and overall 
accuracy. Where: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(2) 

 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (4) 

 
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁
 

(5) 

Finally, Receiver Operator Characteristic (ROC) curves 
were generated to document the clinical utility of the 
distinctions made with the classifiers developed. ROC curves 
plot sensitivity versus 1 – specificity over a range of prior 
probabilities (from 0 to 1) for the two classes and present a 
trade-off in costs between false positives and false negatives. 
This information can then be used to decide the threshold for 
different clinical requirements, e.g. screening versus pre-
surgical diagnosis. The area enclosed by the ROC curve, or 
area under curve (AUC), has an important statistical property 
and is equivalent to the probability that the classifier will rank 
a randomly chosen positive instance higher than a randomly 
chosen negative instance.14 

Results 

During testing, 34 of the VVS+ subjects were HUT+ and 30 
were HUT-. This lead to the formation of three groups: HUT+, 
HUT- and CON. The participant characteristics collected from 
these individuals and their respective groups are detailed in 
Table III. As can be seen, the subjects included were a young 
cohort (mean age: 25 years) with a male predominance 

(66%). All features listed in Appendix Appendix A Table 1 
and Table 2  were analysed with respect to their ability to 
distinguish between each group. Tables IV, V and VI 
document each of the features that were found to have 
predictive utility for each group analysis (features with a p-
value >0.05 are omitted).

 
Table 1: Participant characteristics 

 
 HUT+ HUT- CON 

Units N = 34 N=30 N=37 

Age Years (Mean ± SD) 25 ± 8.4 26 ± 7.0 24 ± 4.6 

Number Of Males N (%) 21 (62%) 20 (67%) 26 (70%) 

Weight kg (Mean ± SD) 70 ± 14 70 ± 14 73 ± 15 

Height cm (Mean ± SD) 172 ± 11 169 ± 10 170 ± 10 

Number Of Faints Median (Range) 3.5 (2-72) 6.5 (2-210) NA 

Duration Of Symptoms Years (Mean ± SD) 3.8 ± 5.0 3.3 ± 5.6 NA 

 

Table 2: Significant features for HUT+ vs. CON 

Order of 

Significance 
Feature Units 

HUT+ 

N = 34 

CON 

N = 37 
P-Value 

1 SV-B2SS % (Mean ± SD) -26.66 ± 11.54 -16.14 ± 14.34 0.0022 

2 SBP-20s% % (Mean ± SD) 11.03 ± 16.31 -0.09 ± 13.84 0.0023 

3 SBP-5s% % (Mean ± SD) -8.06 ± 13.86 -17.54 ± 15.72 0.0115 

4 SBP-SSS mmHg/sec -0.07 ± 0.27 0.07 ± 0.31 0.0204 

5 HR-%I % (Mean ± SD) 57.49 ± 19.69 46.98 ± 23.47 0.0210 
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6 HRV-SLF/SHF Ratio (Mean ± SD) 9.305 ± 13.80 14.560 ± 17.99 0.0309 

 

Table 3: Significant features for HUT- vs. CON 

Order of 

Significance 
Feature Units 

HUT- 

N = 30 

CON 

N = 37 
P-Value 

1 SBP-20s% % (Mean ± SD) 12.29 ± 18.77 -0.09 ± 13.84 0.0018 

2 HR-%I % (Mean ± SD) 61.55 ± 19.93 46.98 ± 23.47 0.0041 

3 SBP-5s% % (Mean ± SD) -5.30 ± 21.51 -17.54 ± 15.72 0.0045 

4 SBP-10s% % (Mean ± SD) -22.57 ± 13.79 -30.70 ± 15.44 0.0163 

5 HRV-SLF/SHF Ratio (Mean ± SD) 7.804 ± 7.798 14.560 ± 17.99 0.0261 

6 SBP-60s% % (Mean ± SD) 7.80 ± 10.16 2.08 ± 9.31 0.0336 

7 TPR-%D % (Mean ± SD) -40.03 ± 11.59 -46.44 ± 12.81 0.0499 

 

Table 4: Significant features for HUT+ vs. HUT- 

Order of 

Significance 
Feature Units 

HUT+ 

N = 34 

HUT- 

N = 30 
P-Value 

1 SV-B2SS % (Mean ± SD) -26.66 ± 11.54 -16.14 ± 14.34 0.0157 

 

a) b) 

c) d) 

Figure 1: Mean response during active stand test including standard error for a) SBP b) HR c) SV d) CO 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.20245159doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.07.20245159


 Carmody et al. 

 6  
 

Table 5: HUT+ vs. HUT-: Optimum classifier 

N = 61 

Features Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

Accuracy 

(%) 

Area Under 

Curve (%) 

95% 

Confidence 

Interval  (%) 

SV-B2SS 58.8 63.3 64.5 57.6 60.9 67.6 54.5-80.8 

Note: P/NPV = Positive/Negative Predictive Value 

 

Figure 2: ROC curve for HUT+ vs. HUT-. Area under the curve is 67.6%.  

When comparing the HUT+ and HUT- groups, only one 
feature was found to have significant predictive power (p = 
0.016). This was the percentage difference in SV from 
baseline to steady state (SV-B2SS). As can be seen in Error! 
Reference source not found., the mean SV response of the 
HUT+ group experiences a significantly larger (p < 0.05) 
reduction in stroke volume when compared with HUT-. When 
used in the univariate linear classifier, this feature performed 
poorly, producing a sensitivity of 58.8%, specificity of 63.3% 
and an accuracy of 60.9%, a relatively low predictive power ( 
and Figure 5).  

When analysing the VVS+ and CON groups, there were 
many significant features noted. The majority of which were 
functions of SBP, HR, SV and CO (Figures 1, respectively). As 
seen in the plots, VVS+ subjects experience a smaller drop in 
SBP after standing, followed by a greater overshoot and 
increased settling time. In addition, VVS+ subjects were also 
noted to have greater increases from baseline in both HR and 
CO. Finally, the VVS+ group experienced a greater reduction 
in SV from baseline to steady state.  

Using the common features appearing in Tables IV and V, 
two univariate linear classifiers were developed to examine 
the predictive utility of each of the features with regards to 
the VVS+ and CON groups - a 2-fold classifier and a LOOCV 
classifier (Table VIII). A maximum accuracy of 65% was 

achieved using the percentage change in SBP from baseline 
at 5 seconds (SBP-5s%) when analysed using LOOCV.  

Using the features above, two multivariate linear 
classifiers were also developed - a 2-fold classifier and a 
LOOCV classifier. The features with most predictive power 
were entered into a multivariate linear classifier in a stepwise 
fashion (highest predictive power first) based on the 
univariate analysis. The most accurate classifier (72.2%) was 
found using the 2-fold cross-validation method and uses only 
three features (Table IX).  

A stepwise linear discriminant classification analysis using 
LOOCV was performed on each of the group relationships, 
and all of the previously established features were included. 
The stepwise method, as implemented in SPSS, resulted in an 
alternative classifier and an increase in accuracy from 72% to 
80.2%. 

The strongest combination of features contained the 
percentage change in SBP from baseline at 5 seconds and 20 
seconds post-stand (SBP-5s%, SBP-20s%), the percentage 
increase from baseline of HR and CO (HR-%I, CO-%I) and the 
percentage difference in SV from baseline to steady state (SV-
B2SS). This classifier produced a sensitivity of 84.3%, 
specificity of 72.9% and an accuracy of 80.2%. Table X and 
Figure 6 contain a summary of the results and the ROC curve 
for this classifier, respectively. 
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Table 6: VVS+ vs. CON: Univariate classifier results 

N = 101 
Feature Classifier Type Sensitivity  Specificity  PPV  NPV Accuracy 

SBP-5s% 2 Fold 0.907 0.239 0.686 0.647 0.644 
LOOCV 0.641 0.676 0.774 0.521 0.653 

SBP-20s% 2 Fold 0.646 0.633 0.744 0.525 0.641 
LOOCV 0.656 0.595 0.737 0.500 0.634 

HRV-

SLF/SHF 
2 Fold 0.761 0.353 0.671 0.462 0.614 

LOOCV 0.781 0.378 0.685 0.500 0.634 
HR-%I 2 Fold 0.620 0.637 0.744 0.501 0.626 

LOOCV 0.609 0.649 0.750 0.490 0.624 

 
Table 7: VVS+ vx. CON: Multivariate classifier results 

2 Fold Classifier 

 Features Sensitivity Specificity PPV NPV Accuracy 

 SBP-5s% 0.915 0.224 0.670 0.626 0.656 
+ SBP-20s% 0.816 0.346 0.698 0.646 0.663 
+ HRV-SLF/SHF 0.877 0.460 0.740 0.703 0.722* 
+ HR-%I 0.860 0.502 0.748 0.700 0.720 

LOOCV Classifier 
 Features Sensitivity Specificity PPV NPV Accuracy 

 SBP-5s% 0.641 0.676 0.774 0.521 0.653 
+ SBP-20s% 0.703 0.649 0.776 0.558 0.683 
+ HRV-SLF/SHF 0.688 0.703 0.800 0.565 0.693 
+ HR-%I 0.719 0.676 0.793 0.581 0.703* 
Note: * = Optimum parameter combination based on overall classifier accuracy 

 
Table 8: VVS+ vs. CON: Optimum classifier 

N = 101 

Features Sensitivity 

(%) 
Specificity 

(%) 
PPV 

(%) 
NPV 

(%) 
Accuracy 

(%) 
Area Under 

Curve (%) 
95% Confidence 

Interval  (%) 

SBP-20s%; 

HR-%I; 

SV-B2SS; 

SBP-5s% 

CO-%I 

84.3 72.9 84.4 72.9 80.2 83.2 74.3-92.0 

Note: P/NPV = Positive/Negative Predictive Value 
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Figure 3: ROC curve for VVS+ vs. CON. Area under the curve is 83.2%. 

Discussion 

Discussion of Findings 

This study aimed to examine the utility of using 

cardiovascular responses to the AS to predict the outcome of 

the HUT using the patients’ hemodynamic response to the AS 

test. The most effective method established was a univariate 

classifier resulting in 58.8% sensitivity, 63.3% specificity and 

60.9% accuracy.  

However, when the HUT+ and HUT- subjects were merged 

to form a VVS+ group, a multivariate classifier was capable of 

distinguishing between this group and control subjects with 

84.4% sensitivity, 72.9% specificity and 80.2% accuracy. This 

was the highest performing classifier and utilised five 

features: the percentage change in SBP from baseline at 5 

seconds and 20 seconds post-stand (SBP-5s%, SBP-20s%), the 

percentage increase from baseline of HR and CO (HR-%I, CO-

%I) and the percentage difference in SV from baseline to 

steady state (SV-B2SS). 

Comparison with Literature 

Few studies have analysed the relationship between the AS 
response and the HUT outcome in adults. Using the AS, it has 
been found that the underlying cardiac autonomic 
mechanisms in vasovagal syncope may involve different 
autonomic patterns in subjects with a history of recurrent 
syncope.15 During active standing, heart rate and short-term 
complexity (alpha-1) increased in both groups (HUT+ and 

HUT-). In HUT+ patients, pNN50 decreased, whereas 
sympathovagal balance increased. The magnitude of change 
between positions of sympathovagal balance and alpha-1 
was 6.1 and 4.8 times larger, respectively, in HUT+ than HUT- 
patients. However, the predictive power of these features 
was not reported.  

Previous groups have attempted to predict the outcome of 
the HUT. Many researchers have developed multivariate 
classifiers capable of predicting syncope.4,13,16 Using the HUT, 
Ebden predicted syncope with a sensitivity of 93% and 
specificity of 88%.13 Similarly, it was found in Virag et al that 
syncope was predicted in a mean time of 128 ± 216s post-tilt 
with a sensitivity of 95% and specificity of 93%. However, 
prediction times varied from 0 to 30 minutes.4  

Using the derivative of the ratio between RR interval and 
SBP (dRR/SBP), Mereu et al. was capable of predicting 
syncope with a sensitivity and specificity of 86.2% and 89.1% 
respectively.16 However, this was only possible within 44.1 ± 
6.6s in advance of syncope.  

An increase in HR has previously been observed by Mallat 
et al. in patients prone to VVS.9 They noted that an early 
sustained increase in HR ≤18 bpm during the first six minutes 
of tilt identified a negative test with 88.6% sensitivity and 
100% specificity. 

Additionally when comparing VVS+ subjects to CON, 
Pitzalis et al. noted that concurrent reductions of SBP during 
the first 15 minutes of tilt was indicative of a positive HUT 
with 93% sensitivity and 58% specificity.17 SBP was 
considered to be reduced when its beat-to-beat value was 
lower than the lowest baseline value. However, these 
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observations could not be reproduced in this research due to 
the shorter duration of the AS. 

It must also be noted that the tests in the literature were 
performed during the HUT and therefore spanned a much 
greater period of time, with some utilizing the entire length 
of the HUT.4,13,16 In addition to this, some studies  
administered vasodilatory drugs during testing.18 The use of 
these drugs during testing is likely to speed up the onset of 
syncope, and therefore it is not reasonable to compare it with 
a drug-free AS. 

Finally, in clinical practice, a very wide range of HUT yields 
have been noted. Accuracy from 26% to 87% have been 
reported with the overall reproducibility of a negative 
response (85– 94%) being higher than that of an initial 
positive response (31–92%).19 When considering this, the 
extended time taken for these predictions and the fact the 
HUT apparatus is required, the classifier as described in this 
paper can be considered to be effective. Although it does not 
directly predict the outcome of the HUT on a specific day, it 
appears to distinguish between those prone to VVS and those 
who are not – a potentially more useful outcome, clinically. 

Pathophysiology 

Given that the pathophysiology of VVS remains to be 
completely understood, one may only hypothesize the 
potential underlying mechanisms of these results. However, 
experimental data-to-date suggests that the VVS response is 
due to a sudden failure of the autonomic nervous system 
(ANS) to maintain adequate vascular tone and HR during 
orthostatic stress. This results in hypotension leading to 
cerebral hypoperfusion and loss of consciousness.20 While 
the contributing factors that lead to this ANS failure remain 
unclear, the subjects analysed within this study appear to 
exhibit the symptoms of a hypersensitive autonomic nervous 
system which over-respond to various stimuli, in this case, 
orthostatic stress.21,22 Furthermore, our results suggest that 
individuals prone to VVS have larger drops in SV on standing, 
suggestive of larger volume of blood pooling below heart 
level. This reaction may have some similarities with the 
Bezold-Jarisch reflex hypothesis. This theory states that 
fainting occurs due to cerebral hypoperfusion, as a result of 
profound vasodilation and bradycardia caused by blood 
pooling in the peripheral vasculature during prolonged 
standing.23 However, the question of whether this cardiac 
under-filling, coupled with excessive force of contraction, is 
sufficient to cause VVS has become a source of debate; 
several issues with this hypothesis have been highlighted.13 

Limitations 

The subjects studied in this research were relatively young 

(mean age: 25 years). Given the heterogeneous nature of 

syncope sufferers, it is unlikely that this small, young cohort 

is representative of the entire syncope population. It is 

unknown whether or not the same hemodynamic pattern will 

apply to older patients prone to VVS, especially when 

considering the potential presence of comorbidities, such as 

OH, low BP and increased frailty. Therefore, these results 

must be considered within the context of the age range 

studied.  

During the original research study in which this data was 

collected, the CON subjects were not subjected to the HUT. It 

is possible that a small proportion of this group may have 

experienced syncope .24 

Finally, the AS is a very short test. Spanning only a few 

minutes, it may have limited the ability to establish a 

differentiating pattern. This may be notable in the lack of 

utility of the HRV features. These measurements are usually 

taken over a greater period of time and applying them to the 

AS may not reveal the true underlying variability. 

Conclusion 

This paper examined the relationship between subjects’ 

hemodynamic response to standing, their clinical diagnosis of 

Vasovagal Syncope (VVS) and the outcome of a Head-Up Tilt 

Test (HUT). Here we have shown that while using the AS to 

predict HUT outcomes is limited, it is possible to distinguish 

between those with a clinical diagnosis of VVS and controls 

with 80.2% accuracy, a potentially more useful clinical 

outcome. This approach may have significant applications in 

population screening (e.g. population studies, military 

medicals) and tracking treatment efficacy. It also has the 

potential to be clinically applicable in situations where the 

HUT is not available or practical. 

The existence of an alternative hemodynamic pattern 

exhibited in those with VVS during active standing may also 

provide some pathophysiological insight into the 

mechanisms of VVS.  Here we note that those with VVS have 

evidence of increased levels of pooling and hypersensitive 

autonomic reflexes to standing.  
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Appendix 

Appendix A Table 9: Features 

Systolic Blood Pressure (SBP) Variables Abbreviation 

Percentage Overshoot SBP-%OS 

5 Seconds Percentage (from baseline) SBP-5s% 

10 Seconds Percentage (from baseline) SBP-10s% 

20 Seconds Percentage (from baseline) SBP-20s% 

30 Seconds Percentage (from baseline) SBP-30s% 

40 Seconds Percentage (from baseline) SBP-40s% 

50 Seconds Percentage (from baseline) SBP-50s% 

60 Seconds Percentage (from baseline) SBP-60s% 

70 Seconds Percentage (from baseline) SBP-70s% 

Baseline to Steady State Difference SBP-B2SS 

Steady State Slope SBP-SSS 

Heart Rate (HR) Variables Shorthand 

Percentage Increase (from baseline) HR-%I 

Baseline to Steady State Difference HR-B2SS 

Steady State Slope HR-SSS 

Stroke Volume (SV) Variables Shorthand 

Percentage Decrease (from baseline) SV-%D 

Baseline to Steady State Difference SV-B2SS 

Steady State Slope SV-SSS 

Cardiac Output (CO) Variables Shorthand 

Percentage Increase (from baseline) CO-%I 

Baseline to Steady State Difference CO-B2SS 

Steady State Slope CO-SSS 
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Total Peripheral Resistance (TPR) Variables Shorthand 

Percentage Decrease (from baseline) TPR-%D 

Baseline to Steady State Difference TPR-B2SS 

Steady State Slope TPR-SSS 

Heart Rate Variability (HRV) Variables Shorthand 

Baseline LF/Baseline HF Ratio BLF/BHF 

Steady State LF/ Steady State HF Ratio SLF/SHF 

Baseline LF/ Steady State LF Ratio BLF/SLF 

Baseline HF/ Steady State HF Ratio BHF/SHF 

Baseline LF/ Steady State HF Ratio BLF/SHF 

Steady State LF/ Baseline HF Ratio SLF/BHF 

Baseline RMS HRV-BRMS 

Steady State RMS HRV-SRMS 

Baseline SDSD HRV-BSD 

Steady State SDSD HRV-SDSD 

 

Appendix A Table 10: Feature calculations 

Feature Description Calculation Method 

Baseline (B) 
1

50
∑ xi

-10

i= -60

 

Steady State (SS) 
1

40
∑ xi

120

i= 80

 

Baseline to Steady 

State Difference (-

B2SS) 

(
SS-B

B
)  × 100 

Percentage Overshoot 

(-%OS) 
(

Max(xi)-B

B
)  × 100 

X Seconds Percentage 

Change (from baseline) 

(-Xs%) 

(
Absoulte xi @ Xs-B

B
)  × 100 

Steady State Slope (-

SSS) 

df

dt
(xi) 

 

Where i, is the value from 80-120 seconds 

post stand. Percentage Increase 

(from baseline) (-%I) 
(

Max(xi)-Baseline

Baseline
)  × 100 

Percentage Decrease 

(from baseline) (-%D) 
(

Min (xi)-Baseline

Baseline
)  × 100 

Root-mean-squared of 

Successive Differences 

(RMSSD) 

√
1

N-1
 (∑((R-R)i+1- (R-R)i)

2

N-1

i=i

) 

 

Where N = number of pulse interval terms 

and:  

RR =  
1

HR
 

Standard Deviation of 

the Successive 

Differences (SDSD) 

√ (
∑ (Di- Dmean)2N-1

i=1

N-1
) 

 

Where: 

D1 =  RR1-  RR2 

 

DN-1 =  RRN-1-  RRN  

 

Dmean =   
1

N-1
∑ Di

N-1

i= 1
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