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Abstract

We describe a simplified Bayesian analysis of vaccine trial data, in which a reparametrization of the Poisson likelihood
leads to a factorization in which the protective vaccine efficacy VES and the nuisance parameter appear in different
factors. As a consequence the posterior density acquires a factorized form, and marginalization over the nuisance
parameter is trivial. Estimates of VES accordingly become a matter of simple manipulations of one-dimensional
posterior probability densities. We demonstrate the method using the publically-released data on the efficacy of three
vaccines agains SARS-CoV-2: the final Phase III data from the Pfizer/BioNTech and Moderna mRNA vaccines and
the interim data released for the Sputnik V adenovirus-based vaccine.

1. Introduction

A key parameter of a vaccine against an infectious disease is the protective vaccine efficacy, usually denotedVES . This
parameter is intended to represent the reduction due to the vaccine of the chance of contracting the disease, and is
typically estimated using controlled double-blind clinical trials [1]. Simple point-estimates of VES may be produced
by person-time exposure-weighted ratios of vaccine group incidence to placebo group incidence. Such estimates
are known to be affected by correctable biases [2]. From a statistical perspective, however, interval estimates are
more valuable than point estimates, as they yield information concerning the uncertainty in the estimates. Frequentist
methods for estimating confidence regions have been proposed [e.g. 3, 4] and compared for relative conservativeness
and accuracy of their coverage [5, 6].

Bayesian credible region estimation methods have also been proposed [7, 8]. Such methods are straightforward to
implement and interpret, although they usually raise issues of choice of prior distribution over the parameters — both
over VES and over another “nuisance” parameter, often the disease incidence in the placebo group. In [7] the prior
density is chosen to be a product of log-normals, with “uninformative” widths. The work described in [8] examines the
use of reference priors, as a means of exhibiting principled notion of “uninformativeness” [9]. It is worth noting that
one reason for concern with prior choice is the extra degree of freedom represented by the nuisance parameter, since
the posterior density must be marginalized over the nuisance parameter in order to obtain inferences that concernVES
alone. It is a matter of due-diligence to demonstrate that such inferences are robust despite different prior choices, that
is, that credible regions and point estimates suffer negligible variation across plausible families of prior densities. In
many cases this desirable property of robustness is expected a priori for parameter estimation in the limit of abundant
data, since in this case the likelihood is typically so sharply peaked that all priors of interest are for all intents and
purposes constant in the parameter-space region where the mass of the posterior is concentrated [10]. However, the
higher the dimension of the parameter space in which parameter inference tasks are performed, the greater the risk
of loss of robustness to prior choice. In particular, if the nuisance parameter could be summarily ejected from the
Bayesian estimation of VES , the resulting estimates should be expected to be more robust against prior choice, as well
as simpler to obtain.

In this article we briefly describe a reparametrization of the Poisson likelihood that permits precisely this simplification:
the choice of a new, reparametrized nuisance parameter λ — the total expected infections across both vaccine and
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placebo group — results in a factorization of the likelihood into a factor depending only on VES and a second factor
depending only on λ. As a result, one obtains a simple, intuitive result for the reduced likelihood Le (VES ), which
in turn permits very simple inferences about credible regions, that are better insulated against variations due to prior
choice.

We describe the method in §2. In §3 we exhibit it’s use in a study that compares the efficacy of three recently-announced
vaccines agains SARS-CoV-2: The Pfizer/BioNTech mRNA vaccine [11], the Moderna mRNA vaccine [12], and the
Sputnik V adenovirus-based vaccine [13]. We supply some final discussion in §4.

2. The Factorized Likelihood

We assume that infections in the placebo and vaccine samples are well-described by Poisson models with different
means µP and µV , respectively. For the sake of notational compactness, we will denote the protective vaccine efficacy
VES by the symbol e. We introduce a model for e by assuming that

µV = (1 − e)rµP , (2.1)

where r is the vaccine-to-placebo ratio of person-times at risk – that is, if the vaccine and placebo groups represent
PV and PP person-times of exposure to the pathogen respectively, then r ≡ PV /PP . If the infection numbers recorded
during the trial are NV and NP respectively for the vaccine and placebo groups, then the likelihood under the model is
the product of the Poisson likelihoods for the two groups, that is

L ≡ P(NV ,NP |e, µP ) = e−µP [1+(1−e)r ]µNP+NV
P [(1 − e)r ]NV . (2.2)

This form of the likelihood entangles the nuisance parameter µP with the quantity of interest, the efficacy e, so that after
introducing a prior distribution and using Bayes’ theorem, the posterior distribution over (e, µP ) is similarly entangled.
Rather than submitting to the necessity of explicitly marginalizing the posterior over µP , we may introduce a factorized
form of the likelihood by means of a change of variables. We introduce the parameter λ, defined as

λ ≡ µP [1 + (1 − e)r ] . (2.3)

The new parameter λ is the expected number of overall infections, summed over the two groups — this is clear, since
the sum of two Poisson random variables is itself a Poisson random variable whose mean is the sum of their respective
means. We may use Equation (2.3) to substitute λ for µP in Equation (2.2). The resulting likelihood is

L(e, λ) = e−λλNP+NV ×
rNV (1 − e)NV

[1 + (1 − e)r ]NP+NV

≡ Lλ(λ) × Le (e), (2.4)

where we have introduced the reduced likelihood for e,

Le (e) ≡
rNV (1 − e)NV

[1 + (1 − e)r ]NP+NV
. (2.5)

The advantage of the form of the likelihood in Equation (2.4) is that the dependence on e is factorized from the
dependence on λ. If we now introduce a factorized prior πλ(λ) × πe (e), then we obtain a factorized posterior
distribution. Marginalization over λ is trivial, and we obtain for the marginalized posterior the formula

π (e |NV ,NP ) = κπe (e) ×
rNV (1 − e)NV

[1 + (1 − e)r ]NP+NV
, (2.6)

where κ is a normalization constant.

From this point of the discussion, we assume, for simplicity, a proper uniform prior πe (e) = 1 on the domain e ∈ [0, 1].
In §3.3 we will re-examine the effect of prior choice on this model.
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Onemay easily show that ifNV , 0 then the posterior in Equation (2.6) has a maximum at eMP ≡ 1− NV /r
NP
= 1− NV /PV

NP /PP
,

which accords with intuition – the relative incidence 1− eMP is given by the ratio of the person-time adjusted infection
rates. On the other hand, when NV = 0 the posterior increases monotonically, attaining a domain maximum at eMP = 1.
This also accords with intuition: if no vaccinated subjects become infected, the most probable efficacy is 1.0 — perfect
efficacy. Of course, in this case the distribution may still have substantial mass at much lower efficacies, depending on
the value of NP .

The normalization constant κ may be calculated by integrating Equation (2.6) with respect to e, in the interval [0, 1].
This may be done by the change of variables e → д = 1+ (1−e)r , expanding the resulting integrand using the binomial
theorem. The result is

κ−1 = r−1
NV∑
l=0

NV !
l!(NV − l)!

(−1)l
1

l + NP − 1

[
1 − (r + 1)−(l+NP−1)

]
. (2.7)

The usage of the formula for the posterior in Equation (2.6) is very straightforward. One may simply bin the interval
[0, 1] into NSamp equally-spaced sample points, compute the factorized likelihood at each point (multiplying by a
non-uniform prior if so desired), and compute the normalization κ either by Equation (2.7) (for a uniform prior) or
by a straightforward numerical quadrature. Then, after normalization, various desired interval estimates (such as
credible regions, or upper/lower bounds of prescribed probability) can be obtained by sorting the array containing the
1-dimensional discretized posterior over e, and processing it as appropriate.

We now demonstrate the use of these procedures using public data from SARS-Cov-2 vaccine trials.

3. Bayesian Analysis of SARS-CoV-2 Vaccine Trial Data

At the time of this writing (early December 2020), the final data from the Phase III trials of the mRNA vaccines against
SARS-CoV-2 from Pfizer/BioNTech [11] and from Moderna [12] are available from public information, although
not yet from scientific journal articles. The two data releases include results for entire trials, and for subsamples of
infections leading to “severe” COVID-19 symptoms. In addition, preliminary data from the Sputnik V vaccine trials
are also available [13]. The data are summarized in Table 1.

Trial Vaccine Group Infections Placebo Group Infections r

Pfizer/BioNTech (Overall) 8 262 1.0
Pfizer/BioNTech (Severe) 1 9 1.0
Moderna (Overall) 11 185 1.0
Moderna (Severe) 0 30 1.0
Sputnik V (Preliminary) 8 31 3.0

Table 1: SARS-CoV-2 Vaccine Trial Data

The results of applying the reduced likelihood Bayesian analysis (with a uniform prior) to these samples and sub-
samples are summarized in Table 2, and displayed in the panels of Figure 3.1. The figures display the posteriors
over the efficacy e (blue solid line), the maximum-posterior efficacies (cyan dashed line), equal-posterior-density 90%
credible regions (red solid region), and 99% lower bounds (hatched regions). These are all obtained by straightforward
application of the method described in §2, implemented in a short Python script that makes use only of the Numpy
[14] and Matplotlib [15] modules. The code is available for public download under an MIT license at https:
//github.com/CarloGraziani/BayesVaccineEfficacy.

We now discuss these results in more detail.

3.1. Overall Efficacy

From the left-hand side panels of Figure 3.1, we may note first that, as expected, the preliminary data released for the
Sputnik V vaccine is much less constraining of the efficacy than is the final Phase III data for the Pfizer/BioNTech
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Trial Max. Posterior 90% Credible Region 99% Lower Bound
Pfizer/BioNTech (Overall) 0.970 [0.948, 0.985] 0.933
Pfizer/BioNTech (Severe) 0.889 [0.452, 0.993] 0.112
Moderna (Overall) 0.941 [0.903, 0.966] 0.881
Moderna (Severe) 1.0 [0.917, 1.0] 0.829
Sputnik V (Preliminary) 0.913 [0.837, 0.959] 0.775

Table 2: Summary of Bayesian efficacy estimation for SARS-CoV-2 vaccine trials.

and for the Moderna vaccines. The reason is obvious, but instructive: the likelihood, and hence the posterior, gathers
concentration with increasing NP , NV , and these numbers are, at this time, lower for the Sputnik V vaccine trials than
for the other two trials.

A comparison of the Pfizer/BioNTech vaccine and theModerna vaccine showbroadly consistent results. Pfizer/BioNTech
shows more posterior concentration (90% credible region: e ∈ [0.948, 0.985], 99% lower bound: e = 0.933), than does
Moderna (90% credible region: e ∈ [0.903, 0.966] 99% lower bound: e = 0.881), but the intervals overlap enough to
suggest that it is entirely possible on present data that the efficacies of the two vaccines are the same.1

These results are also consistent with the announced efficacy estimates from the (as of this date unpublished) statistical
analyses carried out by Pfizer/BioNTech (estimated efficacy: 95% [11]) and by Moderna (estimated efficacy: 94.1%
[12]). The Bayesian estimate for the efficacy of the Sputnik V vaccine is also consistent with the announced estimate
from preliminary data (91.4% [13]), although as pointed out above this data is less constraining of the final result than
is the data for the other two trials.

3.2. “Severe” Sub-Samples

An analysis of the “severe” case data suggests that the recruitment programs for the Pfizer/BioNTech and the Moderna
trials were significantly different, and that the Moderna trial recruited populations at higher risk of severe COVID-19
symptoms. According to the published data [12] the Moderna trial featured 30,000 subjects, divided equally into
placebo control and vaccine groups. Of the 15,000 control subjects, 30 developed “severe” symptoms. On the other
hand, the Pfizer/BioNTech trial [11] featured 43,661 participants, half of whom were in the control group, and only 9
of these developed “severe” symptoms. On this data, it seems clear that the populations in the two trials must have been
selected quite differently, since the control group incidence of severe COVID-19 appears to have been about 4.5 times
higher for the Moderna trial than for the Pfizer/BioNTech trial. This is possibly explained by the released information
about the Moderna trial [12], which asserts “The COVE study includes more than 7,000 Americans over the age of
65. It also includes more than 5,000 Americans who are under the age of 65 but have high-risk chronic diseases that
put them at increased risk of severe COVID-19, such as diabetes, severe obesity and cardiac disease. These medically
high-risk groups represent 42% of the total participants in the Phase 3 COVE study.” The Pfizer/BioNTech information
release makes less precise assertions about co-morbidities and other risk factors, to the effect that “Approximately
42% of global participants and 30% of U.S. participants have racially and ethnically diverse backgrounds, and 41% of
global and 45% of U.S. participants are 56-85 years of age.” Other factors, such as geographic distribution of the trial
subjects, may also explain the discrepancy.

From a comparison of the posteriors and credible regions for the two trials, it would appear that Moderna’s trial
was better adapted to the purpose of assessing protective efficacy against severe COVID-19 than was the case with
the Pfizer/BioNTech trial. The efficacy is much better-constrained in the Moderna trial than is the case for the
Pfizer/BioNTech trial — Moderna’s 90% credible region is e ∈ [0.917, 1.0] in contrast to Pfizer/BioNTech’s 90%
credible region of e ∈ [0.452, 0.993]. Note that the fact that Moderna’s severe efficacy posterior peak is at e = 1.0
whereas Pfizer/BioNTech’s is not is merely due to the accident that NV = 0 for the Moderna trial, as opposed to NV = 1
for the Pfizer trial. As should be clear from the form of the reduced likelihood (Equation 2.5), the happenstance of
observing 0 rather than 1 produces this posterior shape, which should not be overinterpreted. The most reasonable

1Given two posteriorsπ1(e1), π2(e2) over the efficacies e1 and e2 of two vaccines itwould be a simplematter to compare the efficacies by computing
a posterior density over the randomvariable∆e ≡ e2−e1, by implementing a discretized quadrature of the integralπ (∆e) =

∫
de1 π1(e1)×π2(e1+∆e).

We do not carry out such a comparison in this work.
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Figure 3.1: Efficacy estimates: Maximum a posteriori estimates (dashed line), 90% credible regions (solid shaded regions), and 99% lower bounds
(hatched regions). Top: Pfizer/BioNTech, overall (left) and severe (right). Middle: Moderna overall (left) and severe (right). Bottom: Interim
Sputnik V data.
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Trial Max. Posterior 90% Credible Region 99% Lower Bound
Pfizer/BioNTech (Overall) 0.966 [0.943, 0.982] 0.927
Pfizer/BioNTech (Severe) 0.750 [0.227, 0.942] 0.036
Moderna (Overall) 0.934 [0.896, 0.962] 0.873
Moderna (Severe) 0.966 [0.852, 0.997] 0.739
Sputnik V (Preliminary) 0.899 [0.814, 0.950] 0.748

Table 3: Summary of Bayesian efficacy estimation for SARS-CoV-2 vaccine trials assuming the “show-me” prior.

takeaway from this comparison is that the Pfizer severe COVID -19 efficacy is quite poorly constrained, but the
overlap in the respective 90% credible regions again suggests that it is entirely possible on present data that the severe
COVID-19 efficacies of the two vaccines are the same.

3.3. Prior Choice

To test robustness against prior choice, we select a prior that is somewhat informative compared to a uniform prior:

πe (e) = 2.0 × (1 − e). (3.1)

We refer to this prior as the “show-me” prior, because it embodies skepticism about values of e near 1.0, and insistence
on very informative data before conceding that such values are plausible.

With the “show-me” prior, the results from the Bayesian analysis are changed as reflected in Table 3.

A comparison of the results in Tables 2 and 3 shows that the final results for the Pfizer/BioNTech and Moderna trials
are barely affected by the change — the modifications are all in the third significant figure of the confidence regions
and the posterior maxima. The modifications to the Sputnik V estimates are somewhat larger, but still modest — all in
the second significant digit. Again, this is to be expected, in consequence of the lower numbers and broader likelihood
for this preliminary trial data. The Moderna Severe results also vary modestly, in the second significant digit. Here the
biggest change is that the “show-me” prior drives the posterior to 0 at e = 1.0, so the max-posterior point is moved to
0.966 instead. For these kinds of trial numbers, it is clear that even a rather extreme prior such as the “show-me” prior
cannot affect the results of the analysis very substantially.

The largest change is in the Pfizer/BioNTech Severe results, where the changes are in the most significant digit. This is
hardly surprising, since the likelihood shape (which is also the posterior shape in the top-right panel of Figure 3.1) is
not even arguably well-concentrated in comparison to the “show-me” prior. For this kind of small-number data, more
careful consideration of prior choice is clearly necessary.

4. Discussion

As illustrated in §3, the reduced likelihood approach leads to an easily-implemented 1-dimensional posterior density
on the unit interval for the vaccine efficacy. Simple and intuitive results are easily extractable from such posteriors,
and with the numbers characteristic of vaccine trials such as the three considered above, the overall efficacy estimates
are quite robust to prior choice.

The most cogent take-away conclusion from the Bayesian analysis in §3 appears to be that on present data, the three
vaccines for SARS-CoV-2 cannot be said to differ greatly in their efficacies. The differences are largely in the degree
to which those efficacies are constrained by their respective trial data.

More thought needs to be given to prior choice in the event where subsamples have low counts. In the Pfizer/BioNTech
Severe case, where there were 10 total infections, use of a skeptical prior such as the “show-me” prior can at least
provide some conservatism to estimates. In such cases it is possible that more principled prior choice approaches, such
as the reference prior approach advocated in [8] could lead to better-constrained, but still reasonable results. This is
of course true irrespective of whether one adopts the reduced likelihood approach advocated here or another standard
Bayesian nuisance parameterization.
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Some generalization of the approach is possible: to test time-varying immunogenesis (whether short-term ramping
up of immune response, or long-term decline of same, as in e.g. [16]), it is straightforward to introduce an empirical
parametrized time dependence to the efficacy, i.e. e = д(t ;θ ), where θ are parameters. If the data is in time bins, then
the time-dependence д(t ;θ ) could be integrated with respect to t over each time bin, and the likelihood computed as the
product of the individual bin reduced likelihoods, which are now functions of θ . The resulting analysis no longer leads
to simple manipulations of 1-dimensional posterior distributions on the unit interval, and MCMC methods may be
advisable, depending on the dimensionality of θ . However, one benefit is that the nuisance parameter is still banished
from the analysis, so that the parameter space has its dimensionality reduced by 1, and is limited to the empirical
parameters of interest.
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