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Abstract 

Background: COVID-19 is a major public health concern, yet its risk factors are not well-understood and 

effective therapies are lacking. It remains unclear how different drugs may increase or decrease the risks of 

infection and severity of disease.  

 

Methods:  We studied associations of prior use of all level-4 ATC drug categories (including vaccines) with 

COVID-19 diagnosis and outcome, based on a prospective cohort of UK Biobank(UKBB). Drug history was 

based on general practitioner(GP) records. Effects of prescribed medications/vaccinations on the risk of 

infection, severity of disease and mortality were investigated separately. Hospitalized and fatal cases were 

categorized as ‘severe’ infection. We also considered different study designs and conducted analyses within 

infected patients, tested subjects and the whole population respectively, and for 5 different time-windows of 

prescriptions. Missing data were accounted for by multiple imputation and inverse probability weighting was 

employed to reduce testing bias. Multivariable logistic regression was conducted which controls for main 

confounders.  

 

Results:  We placed a greater focus on protective associations here, as (residual) confounding by indication and 

comorbidities tends to bias towards harmful effects. Across all categories, statins showed the strongest and most 

consistent protective associations. Significant protective effects against severe infection were seen among 

infected subjects (OR for prescriptions within a 12-month window, same below: 0.50, 95% CI:0.42-0.60), tested 

subjects (OR=0.63, 0.54-0.73) or in the general population (OR=0.49, 0.42-0.57). A number of top-listed drugs 

with protective effects were also cardiovascular medications, such as angiotensin converting enzyme inhibitors, 
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angiotensin receptor blockers, calcium channel blocker and beta-blockers. Some other drugs showing protective 

associations included biguanides (metformin), estrogens, thyroid hormones and proton pump inhibitors, among 

others.  

Interestingly, we also observed protective associations by numerous vaccines. The most consistent 

association was observed for influenza vaccines, which showed reduced odds of infection (OR= 0.73 for 

vaccination in past year, CI 0.65-0.83) when compared cases to general population controls or test-negative 

controls (OR=0.60, 0.53-0.68). Protective associations were also observed when severe or fatal infection was 

considered as the outcome. Pneumococcal, tetanus, typhoid and combined bacterial and viral vaccines (ATC 

code J07CA) were also associated with lower odds of infection/severity.  

 

Conclusions: A number of drugs, including many for cardiometabolic disorders, may be associated with 

lower odds of infection/severity of infection. Several existing vaccines, especially flu vaccines, may be 

beneficial against COVID-19 as well. However, causal relationship cannot be established due to risk of 

confounding. While further studies are required to validate the findings, this work provides a useful reference 

for future meta-analyses, clinical trials or experimental studies.  
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Introduction 

Coronavirus Disease 2019 (COVID-19) has resulted in a pandemic affecting more than a hundred countries 

worldwide 1-3. More than 65 million confirmed infections and 1.5 million fatalities have been reported 

worldwide as at 20th Nov 2020 (https://coronavirus.jhu.edu/map.html). It is of urgent public interest to gain 

deeper understanding into the disease, including identifying risk factors (RFs) for infection and severe disease, 

and uncovering new treatment strategies.  

 

A number of clinical risk factors (e.g. age, obesity, cardiometabolic disorders, renal diseases, 

multi-comorbidities) 4-8 have been suggested to increase the risk to infection or lead to greater risks of 

complications. However, it is less well-known how different drugs may increase or reduce the risks of 

COVID-19 or its severity. Drugs with protective effects may be potentially repurposed for the prevention or 

treatment of the disease. Development of a new drug is often extremely lengthy and costly, while existing drugs 

with known safety profiles can be brought into practice in a much shorter time-frame.  

 

Here we performed a comprehensive study on all ATC (Anatomical Therapeutic Chemical Classification 

System) level-4 drug categories (N=819) and assessed their associations with susceptibility to and severity of 

COVID-19 infection in the UK Biobank (UKBB), controlling for possible confounding factors. Vaccines were 

also included. To our knowledge, this is the most comprehensive analysis of drug associations with COVID-19 

to date. While pharmaco-epidemiology studies are typically focused on one or a few drugs, COVID-19 is a new 

disease and we still have very limited understanding of its pathophysiology and treatment. As a result, a 

hypothesis-driven approach may have important limitations of missing potential drug associations. In the field 

of genetic epidemiology, it has been observed that hypothesis-driven candidate gene studies are not as reliable 

as genome-wide association studies (GWAS) 9 which is relatively unbiased, indicating merits of the latter 

approach. In the same vein, here we adopted a ‘drug-wide’ association study approach, which provides a 

systematic and unbiased assessment of drug associations. In the present work, we performed rigorous analyses 

on the impact of medications/vaccinations on the risk of infection, disease severity and mortality. Analyses were 

also conducted within infected patients, tested subjects and the whole population respectively, and for five 

different time-windows of prescriptions.  

 

 

 

Methods 

UK Biobank data 

The UK Biobank is a large-scale prospective cohort comprising over 500,000 subjects aged 40–69 years 

who were recruited in 2006–2010 10. In this study, subjects with recorded mortality before 31 Jan 2020 (N = 

28,930) were excluded, since it was the date for the first recorded case in UK. This study was conducted under 

project 28732.  
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COVID-19 phenotypes  

COVID-19 outcome data were downloaded from UKBB data portal. Information regarding COVID-19 

data in the UKBB was given at http://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=COVID19. Briefly, the 

latest COVID test results were downloaded on 6 Nov 2020 (last update 3 Nov 2020). We consider inpatient 

(hospitalization) status at testing as a proxy for severity. Data on date and cause of mortality were also 

extracted (latest update on 21 Oct 2020). Cases indicated by U07.1 were considered to be 

(laboratory-confirmed) COVID-19-related fatalities.  

A case was considered as having ‘severe COVID-19’ if the subject was hospitalized and/or if the cause of 

mortality was U07.1. We required both test result and origin to be 1 (positive test and inpatient origin) to be 

considered as a hospitalized case. For a small number of subjects with initial outpatient origin and positive test 

result, but changed to inpatient origin and negative result within 2 weeks, we still considered these subjects 

inpatient cases (i.e. assume the hospitalization was related to the infection).  

For a minority of subjects (N=19) whose mortality cause was U07.1 but test result(s) was negative within 

one week, to be conservative, they were excluded from subsequent analyses.  

 

Medication data  

Medication data was obtained from the Primary Care data for COVID-19 research in UKBB (details available 

at https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/gp4covid19.pdf). In the UK, patients seeking 

medical advice usually visit a general practitioner (GP) first. Many illnesses are managed under a primary care 

setting, while most secondary care medical encounters are also reported back to the GP and recorded in their 

electronic records. We made use of the latest release of GP records released by UKBB, which contains 

prescription data from two EHR systems (TPP or EMIS) for ~397,000 UKBB participants. The drug code and 

issue date of each drug are available.  

 

Time window of prescriptions 

Since the GP records cover up to ~50 years’ of prescriptions, we set time windows to restrict prescriptions 

with a certain time period as the ‘exposure’. The ‘index date’ was defined as (1) the date of the first positive 

COVID-19 test for infected subjects (for U07.1 cases, the mortality date was regarded as the index date if no 

test record was found); (2) the date of last test for those tested negative; (3) 3 Nov 2020 for those who were 

untested.  

The issue date of each prescription was available but the duration was not. Time windows were determined 

by whether the drug was issued within a specified period before the index date. The following windows were 

considered for medications: 6 months, 1 year, 2 years and 5 years. Narrower time windows (<6 months) may 

not be desirable and may lead to many prescriptions being missed as the latest issue date was 25 July 2020, 

but the latest index date was 3 Nov 2020.  

 

As for vaccines, unlike many medications, vaccines are not prescribed regularly and most vaccines only 

need to be given once or less than a few times; hence a narrow time window is not optimal due to sparsity of 
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data. For seasonal vaccines, namely flu vaccines, they are usually given in autumn (Sep to Nov) or early 

winter in the UK. A time-window of 6 months will lead to missing most of the flu vaccines given. On the 

other hand, it is also reasonable to consider a longer time window (e.g. 10 years) as vaccine effects can be 

more long-lasting 11. In view of the above, we considered time windows of 1, 2, 5 and 10 years for 

vaccinations. For flu vaccines, we defined ‘past 1 year’ as prescriptions from 1st Sep 2019 onwards (and 

similarly for past k years) to account for seasonal nature of vaccination. 

 

Mapping to ATC 

All the medications were mapped to ATC Classification (https://www.genome.jp/kegg-bin/get_htext?br08303). 

Drug categories were defined by the 4th level of ATC classification. 

 

Covariate data  

We performed multivariable regression analysis with adjustment for potential confounders including basic 

demographic variables (age, sex, ethnic group), comorbidities (coronary artery disease, diabetes, hypertension, 

asthma, COPD, depression, dementia, history of cancer), blood measurement (e.g. blood urea and creatinine 

reflecting renal function), indicators of general health (number of medications taken, number of non-cancer 

illnesses), anthropometric measures (body mass index [BMI]), socioeconomic status (Townsend Deprivation 

index) and lifestyle risk factor (smoking status). For disease traits, we included information from ICD-10 

diagnoses (code 41270), self-reported illnesses (code 20002) and incorporated data from all waves of 

follow-ups. Subjects with no records of the relevant disease from either self-report or ICD-10 were regarded 

as having no history of the disease.  

 

Sets of analysis  

We performed a total of 8 sets of analysis (Table 1). The impact of prescribed medication/vaccination on the risk 

of infection (Model E and F), severity of infection (Model A, C and G) and risk of mortality (Model B, D and H) 

from COVID-19 were investigated separately. Both hospitalized and fatal cases were grouped under the ‘severe’ 

category.  

 

   We also considered different study designs and conducted our analyses with different comparison samples. 

Models A and B are restricted to the infected subjects, while models C, D and E involves comparison of severe, 

fatal and general infected cases to the general population (with no known diagnosis of COVID-19). On the other 

hand, models F, G and H compared infected, severe and fatal cases respectively against subjects who were 

tested negative for SARS-CoV-2. 

 

There were 397,000 subjects in the UKBB with available GP prescription records. Among them, 30,835 

subjects have received at least one COVID-19 test, and 3858 were tested positive. There were 1318 cases 

classified as ‘severe’ (hospitalized or mortality from COVID-19) and 170 fatal cases. In total 393,142 UKBB 
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participants did not have a known diagnosis of COVID-19. The detailed count of participants for each model is 

listed in Table 2. 

 

Statistical analysis methods 

Logistic regression (using the R package speedglm) was used to examine the impact of medication on different 

outcomes in the eight sets of analysis. All statistical analyses were conducted using R. The false discovery rate 

(FDR) approach by Benjamini & Hochberg 12 was performed to control for multiple testing. This approach 

controls the expected proportion of false positives among the rejected null hypotheses.  

 

Imputation of missing data  

Missing values of remaining features were imputed with the R package missRanger. The program is based on 

missForest, which is an iterative imputation approach based on random forest (RF). It has been widely used 

and has been shown to produce low imputation errors and good performance in predictive models 13. The 

program missRanger is largely based on the algorithm of missForest, but uses the R package ‘ranger 14’ to 

build RFs, leading to a large improvement in speed. (We found that other packages such as MICE and 

missForest are computationally too slow to produce results for the large-scale analyses here). Predictive mean 

matching (pmm) was also employed to avoid imputation with values not present in the original data and 

increase variance to more realistic levels for multiple imputation (MI). We followed the default settings with 

pmm.k = 5 and num.trees = 100. We performed the analyses on multiply imputed datasets (imputed for 10 

times) and combined the results by Rubin's rules15 using the mi.meld function under the R package amelia. 

Another advantage of missRanger is that out-of-bag errors (in terms of classification errors or normalized 

root-mean-squared error) could be computed which provides an estimate of imputation accuracy.  

  

Inverse probability weighting of the probability of being tested [Pr(tested)]  

Bias due to non-random testing has been discussed previously in other works 16,17. As a person has to be tested to 

be diagnosed of COVID-19, factors leading to increased risk of being tested will also lead to an apparent 

increase in the risk of infection 17. In addition, it has been raised that collider bias can occur when conditioned on 

the tested group and results in spurious associations, for example between a risk factor and COVID-19 severity 

if both increases the Pr(tested). One way to reduce this kind of bias is to employ inverse probability weighting 

(IPW) of Pr(tested). Essentially, we wish to create a pseudo-population or mimic a scenario under which testing 

is more random instead of selected for certain subgroups. The IPW approach unweighs those who are less likely 

tested and downweighs those who have a high chance of being tested. This may create more unbiased estimates 

of the effects of drugs.  

 

  We took reference to the approach described in 16 to analyze the data with IPW. Following our recent work 18 

which aims to predict COVID-19 severity with machine learning (ML), here we also employed an ML model 

(XGboost) to predict Pr(tested) based on a range of factors. An advantage of using ML models is that non-linear 

and complex interactions can be considered, which may improve predictive performance over logistic models. 
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We employed the same set of predictors as our previous work, and followed the same analysis strategy of 

hyper-parameter tuning and cross-validation to obtain predicted probabilities (please refer to18 for details). 

Beta-calibration 19 was performed and the resulting average AUC was 0.622. The predicted probabilities [i.e. 

Pr(tested)] were used to construct weights for IPW. Stabilized weights20 were used.  

 

Results 

Due to the large number of models and drugs being studied, we shall highlight the main results and findings 

from different sensitivity analysis.  

Confounding by indication and other comorbidities is unavoidable and in particular, drugs showing harmful 

effects may possibly be explained by such confounding. On the other hand, as it is expected that most diseases 

tend to increase the risk/severity of infection, drugs showing protective effects are much less likely to be 

affected by confounding, and such associations may be relatively more reliable. We therefore place a greater 

focus on protective drugs in the sections below, although main drugs with harmful effects will also be briefly 

discussed.  

A summary of the demographic and covariate data of the original UKBB dataset is shown in Table S1. The 

missing rates and out-of-bag (OOB) errors for different variables from multiple imputations are shown in Table 

S2.  

 

Analysis on subjects with available GP records and multiple imputation of covariates 

Full results of all drug categories across all time windows (including 6, 12, 24, 60 and 120 months; the last 

time-window only for vaccines) are shown in Tables S6 to S10. All protective associations (with at least 

nominal significance i.e. p<0.05) are shown in Table S3, while all association results with vaccines are 

presented in Table S4. For drugs associated with increased odds of infection/severity, we also summarized the 

top 10 drugs (ranked by p-value) from each model and time window, and put them together in Table S5.  

 

Overview   

Across all categories, statins showed the strongest and most consistent protective associations. Highly 

significant protective effects were seen across infected subjects, tested or the whole population. The most 

consistent evidence is for models A, C, D and G, which suggests its effect in reducing the severity or mortality 

of infection. Albeit with smaller effect sizes, we also observed that statins might be linked to lower 

susceptibility to infection (model E). Interestingly, a number of top-listed drugs are also cardiovascular 

medications, such as angiotensin converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), 

calcium channel blocker (CCB) and beta-blockers.  

For simplicity, odds ratios (OR) are presented for a time horizon of 1 year if not further specified.  

 

Drugs for cardiometabolic disorders  

Significant protective associations (FDR<0.1) are shown in Table 3. Statins showed protective effects across 

models A, C, D, E and G. Significant protective effects against severe infection were seen among infected 
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subjects (OR for prescriptions within a 12-month window, same below: 0.50, 95% CI:0.42-0.60), tested subjects 

(OR=0.63, 0.54-0.73) or when comparing severe cases to the general population (OR=0.49, 0.42-0.57). In 

addition, protective association against fatality was observed (1-year OR: 0.51, CI 0.34 – 0.74). Statins was also 

associated with lower susceptibility to infection, with OR of 0.83 (CI: 0.77 – 0.91) and 0.86 (CI: 0.79 – 0.93) for 

prescriptions within 1 year and 2 years respectively.  

 

Another group of drugs with highly consistent protective associations are ACEI and ARB. ACEI showed 

protective associations against severe disease among infected subjects (model A: OR for 1-year time 

window=0.68, CI: 0.54 – 0.86), and when comparing to the general population (model C: OR 1-year=0.61, CI: 

0.51 – 0.74) or test-negative subjects (model G: OR 1-year=0.71, CI: 0.59 – 0.85). We also observed association 

with lower odds of infection at a population level (model E: OR 1-year=0.81, CI: 0.73 – 0.90); the effect size 

seemed to decrease over longer time windows. ARBs also showed protective associations against severe disease 

in the population (model C: OR 1-year=0.54, CI: 0.54-0.85) or among tested individuals (model G: OR 1-year = 

0.68, CI: 0.55 – 0.87).  

 

Biguanides (mainly metformin) were associated with lower odds of severe illness among the infected (model 

A: OR for 2-year time window= 0.60, CI: 0.42-0.86) and in the population (model C; OR 1-year=0.67, CI: 0.51 

– 0.88). Other drugs of interest include beta-blockers which were associated with lower risk of infection when 

comparing test-positive vs test-negative subjects (model F, OR 1-year=0.80, CI: 0.70- 0.91), and CCBs (C08CA) 

which were associated with lower odds of severe disease in the population (model C, OR 1-year: 0.76, CI: 0.64 

– 0.90).  

 

Vaccines  

Significant associations for vaccines (FDR<0.1) are shown in Table 4. As for vaccines, one of the most 

consistent associations was observed for influenza vaccines. Protective associations were observed across 

models B to H, and across all time windows. Flu vaccination was associated with lower odds of infection when 

compared to population controls (model E; OR 1-year=0.73, CI: 0.65 – 0.83) or compared to test-negative 

individuals (model F; OR 1-year=0.60, CI: 0.53 – 0.68). Similar protective effects were also observed when 

restricting the cases to severe cases (model C: OR 1-year=0.74; CI: 0.60-0.91; model G: OR 1-year=0.61, CI: 

0.50 – 0.76). Association with lower odds of mortality was also observed, although the confidence interval is 

wide as number of fatal cases was small (model D: OR 1-year=0.28, CI: 0.13-0.63; model H: OR 1-year=0.23, 

CI: 0.11 – 0.52). The effect sizes in general became weaker with longer time windows.  

 

Pneumococcal vaccines were also associated with protective effects, especially when comparing within 

tested subjects (model F: OR 1-year=0.50, CI:0.31-0.82), which shows a trend of attenuation with longer time 

windows (OR for 10-year window=0.67, CI: 0.51– 0.87). Another group of vaccines showing protective effects 

is J07CA (bacterial and viral vaccines) which was significant under model F (OR for 1-year window: 0.56, CI: 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.05.20244426doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.05.20244426
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

0.38 – 0.84); it also showed weakening of effect over time. Other significant associations included tetanus and 

typhoid vaccines which were observed to be protective against infections. 

   

 

Other drugs showing protective associations 

Significant results for other drugs having protective effects and FDR<0.1 are shown in Table 5. As for other 

drugs, proton pump inhibitors (PPI) was associated with lower odds of infection when we compared 

test-positive against test-negative patients (model F: OR 1 year=0.77, CI: 0.71 – 0.83); the OR showed a 

gradient with largest effect within 6 month of use (OR=0.72) and became weaker at 5-year time window 

(OR=0.87). PPI was also significantly associated with lower severity of disease. Estrogens (ATC G03CA) was 

consistently linked to lower risk of infection and severity in the tested population (model F: 1-year OR 0.67, CI: 

0.58 – 0.78) which showed attenuation of effect over time. The greatest effect size was noted within 6 month of 

use (OR=0.63) which was attenuated for a 5-year time window (OR=0.73). Similar protective associations were 

observed for model G with severity as the outcome. Prior use of thyroid hormones was consistently associated 

with lower risk of infection and severity, no matter the general population or test-negative individuals were 

considered as controls. The ORs were similar across all time windows. For model E (infected vs population), 

OR for 1 year time window was 0.80 (CI 0.71 to 0.92), which was close to the effect size under model F 

(infected vs test-negative). For model C (hospitalized/fatal cases vs population), OR for 1 year time window 

was 0.62 (CI 0.48 to 0.79) and estimates were similar under model G.  

 

Drug associated with increased odds of risk/severity of infection 

Among the drugs with harmful associations, the more frequently top-listed ones include laxatives, opioids 

(N02AA), benzodiazepines, tetracycline, penicillins, other antipsychotics (N05AX) and anti-dementia drugs 

(N06DA/DX). The full results are presented in Table S6-10 and a summary is also provided in Table S5.  

 

Analysis restricted to subjects with complete covariate data, with and without IPW  

We have repeated the analyses to subjects with complete covariate data, with or without the IPW approach. In 

general, we observed similar drugs with significant results and the top-ranked protective or harmful drugs were 

similar to the above. Comparing results with and without IPW, the list of significant drugs appeared similar 

although the OR estimates and SE were adjusted. The full results are presented in Table S11-12. 

 

Discussion  

In this work, we have performed a thorough and rigorous analysis on the effect of drugs and vaccines on 

COVID-19 susceptibility and severity. We uncovered a number of drugs with potentially protective or harmful 

effects.  

 

As an observational study, different kinds of bias such as confounding and selection bias may affect the 

results. We have performed analysis on infected subjects (models A and B), the whole population (models C, D, 
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E) and the tested population (models F, G, H) to obtain a more comprehensive picture of drug effects under 

different settings, and to avoid limitations (e.g. selection/collider bias) of some designs.  

 

We note that sometimes the different models may yield different results. One main observation is that 

analysis on the tested population appears to result in more findings of drugs with protective effects. We also 

observed that some drugs in model F (infected vs tested negative) may show different effects under model E 

(infected vs general population). Several reasons may explain this finding. First and foremost, confounding by 

indication is inevitable and may play a more important role when analyzing general population samples. It is 

possible that apparent harmful effects of drugs are due to the diseases/conditions that the prescription is related 

to, or to poorer health in general.  

 

Based on an machine learning model to predict testing probability (see Figure S1), we observed that people 

who are older, having more comorbidities and taking more medications, suffering from cardiovascular 

conditions etc. were more likely to be tested. Compared to the general population, the tested group may 

represent a more ‘homogeneous’ population, enriched for people with poorer health and more comorbidities in 

general. Therefore a proportion of confounders, which overlap with factors associated with higher probability of 

being tested, are essentially controlled for by stratification if we only study the tested subjects. On the other 

hand, in the general population, there is a higher proportion of healthy subjects, the effect of confounding by 

indication may be stronger. Another possibility is collider bias due to conditioning on a subgroup of subjects. 

For example, a drug may be associated with certain conditions which in turn are associated with higher chance 

of being tested; on the other hand those who have more severe symptoms or complications are more likely to be 

tested. Conditioning on testing may result in spurious associations between the drug and severity of infection. 

However, we have tried to minimize this type of bias by the IPW approach, and we did not observe substantial 

difference in results with or without IPW correction for most drugs. However, we note that even with 

adjustment by IPW, there is still chance for residual selection or collider bias. For example, some factors 

associated with Pr(tested) may not be captured in the prediction model. A third possibility to consider is that a 

drug may truly produce different effects in different subgroups, due to effect modification by other factors or 

diseases. For instance, a recent study reported that the protective effect of statins is more marked in patients with 

diabetes 21. The fact that risk factor associations may differ between a whole-population or tested-population 

based study has also been noted previously, for example by 17.  

 

Highlights of relevant drugs  

Below we highlight drugs that are tentatively associated with altered risk or severity of infection. We will 

preferentially consider drugs that showed significant associations (with FDR<0.1) across multiple models and 

time-windows, those with stronger statistical significance, and those with protective effects as confounding by 

indication is much less likely.  
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Drugs for cardiometabolic disorders with protective effects    

Interestingly, many drugs with potential protective effects are indicated for cardiometabolic (CM) disorders. 

Cardiometabolic risk factors, such as obesity, hypertension, DM and CAD, have consistently been shown to be 

related to risk and severity of infection; as such, it is biologically plausible that drugs for treating CM disorders 

may be beneficial.  

 

Among all drugs, the strongest and most consistent protective association was observed for statins. The 

beneficial effects of statins were supported by several previous studies. For example, a recent meta-analysis of 

four retrospective studies of COVID-19 patients 22 showed a significantly decreased hazard of severity or 

mortality of infection (pooled HR= 0.70) when comparing statin users against non-users. Another retrospective 

study by Tan et al. 23 also reported lower risk of ICU admission among statin users in infected patients. Yet 

another work showed that statins may be effective in reducing in-hospital mortality among diabetic patients 21. 

Potential mechanisms for the protective actions of statins have been discussed elsewhere 24-26. It has been 

postulated that besides reducing CVD risks, statins may reduce risk/severity of infection by inhibiting 

inflammation and excessive immune response, producing direct antiviral effects, improving endothelial 

function and exerting an antithrombotic effect, among other actions24-26.  

 

Another group of drugs worth highlighting is ACEI and ARB. There have been intense discussions on 

whether ACEI/ARB may affect risk or severity of infection from early on, as ACE2 is a receptor for 

SARS-CoV-2. Nevertheless, a recent study showed that ACE2 is localized in respiratory cilia, and the use of 

ARB/ACEI does not change its expression. 27. Recent systemic reviews and meta-analysis (for example see 28 

with continuous updates) of observational studies do not support an association between ACEI/ARB prior use 

and severity of infection. However, several studies 27,29-35 reported protective effects of ACEI/ARB on severity 

or mortality of disease. Here we observed highly consistent association of prior use of ACEI/ARB on reduced 

risks of severe/fatal infection (models A, C, G), and overall infection risk in the population (model E).  

   

  For several other kinds of CM drugs, the associations are not as strong but may still be worthy of further 

studies. Biguanides (mainly metformin) are observed to be protective for severe COVID-19 infection, both 

among the infected and at a population level. For example, in a meta-analysis on four observational studies of 

hospitalized patients mostly with type 2 DM, the use of metformin was associated with a lower risk of 

mortality (OR = 0.75, 95% CI = 0.67-0.85) 36. A number of mechanisms have been proposed 36,37. For 

example, besides improving glycemic control and weight reduction, metformin may lead to AMPK activation 

which potentially reduces viral entry by phosphorylation of ACE2 receptor. It may also lead to mTOR 

pathway inhibition and prevents hyperactivation of the immune system 36.  

 

   Other drugs of interest may include beta-blockers and calcium channel blockers (C08CA, dihydropyridine 

derivatives). It was suggested that beta-blockers may be useful in preventing hyperinflammation and hence 

beneficial for COVID-19 38. For calcium channel blockers (CCBs), a study using cell culture suggested that 
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CCBs, especially amlodipine and nifedipine, were useful in blocking viral entry and infection in epithelial 

lung cells. 39. In another retrospective study 40, both beta-blockers and CCBs were associated with lower 

mortality. Another relevant study in the UK 41 utilized data from the UK Clinical Practice Research Datalink 

(CPRD) and found that ACEI/ARB, CCBs and thiazide diuretics were all associated lower odds of diagnosis, 

while beta-blockers do not show any association after adjusting for consultation frequency. None of the above 

drugs were associated with mortality in that study 41.  

 

Vaccines 

There has been intense interest in whether vaccines indicated for other diseases may protect against COVID-19. 

Here we observed that a number of vaccines (ATC code J07) showed protection against infection or severe 

infection. For example, pneumococcal vaccines were protective against infection in the population and tested 

subjects, and risk of severe infection (model G). Significant protective associations were also observed for 

tetanus and typhoid vaccines at a time horizon of 10 years (the power to detect associations is likely stronger 

over longer periods due to larger number of people having received the vaccine; it does not exclude the 

possibility that the vaccines may have effects over shorter time windows). We also observed associations with 

J07CA category, which contains various bacterial and viral vaccines (see 

https://www.whocc.no/atc_ddd_index/?code=J07CA).  

For influenza vaccines, we observed highly consistent protective associations. It has been proposed that 

‘trained innate immunity’, which may involve epigenetic reprogramming of innate immune cells, may enable a 

vaccine to protect against other diseases 42,43. Interestingly, two studies in Italy reported that higher coverage 

rate of flu vaccine was associated with lower rate of infection, hospitalization and mortality from COVID-19. 

Another larger-scale study based on electronic records of 137,037 subjects who have received viral PCR tests 

showed that a number of vaccines (given in the past 1, 2 or 5 years) were associated with lower risks of infection 
44. These included flu and pneumococcal vaccines also implicated in the present study. Taken together, we 

believe that further experimental and clinical studies are warranted to investigate the non-specific effects of 

vaccines.  

 

Other potential protective drugs   

We briefly highlight a few other drugs with potential protective effects. Estrogens (G03CA) were among the 

drugs showing protective associations. As many studies reported higher risks of severe disease in men than in 

women, it has been hypothesized that estrogen may play a part in the sex-discordant outcomes, for example via 

its effects on immune response to infections 45-47. Thyroid hormones (TH) were also among the top-ranked drugs. 

It was postulated that TH may ameliorate tissue injury due to hypoxia by suppression of p38 MAPK 48. Clinical 

trials on TH are ongoing 48,49 and our findings support a protective role of TH in COVID-19.  Another drug 

category of note is proton pump inhibitors (PPI). Several studies have suggested harmful effects of PPI on 

disease severity, which may be related to reduced gastric acid production with subsequent bacterial overgrowth 
50-52. However, an in-vitro screening study revealed that PPIs may serve as a potent inhibitor of SARS-CoV-2 

replication 53. The difference in findings between the current study and previous works may be due to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.05.20244426doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.05.20244426
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

heterogeneity in study samples and designs, differences in the outcome studied (e.g. hospitalization vs ICU 

admission used in some other studies; infection risk vs severity of disease) and variations in the covariates being 

adjusted. Residual confounding, such as by other comorbidities and drugs given, may also affect the results.  

 

Drugs with potentially harmful effects 

We noted a number of drugs with potentially harmful effects, but we caution that residual confounding, such as 

confounding by indication, other comorbidities and general poor health, may lead to bias towards an increased 

odds of infection or severe disease.  

For example, people who have poorer health in general may visit their GPs more often and be prescribed 

drugs (e.g. laxatives, antibiotics, painkillers), which may lead to confounding. Nevertheless, it is possible that 

some of the top-ranked drugs may indeed increase the risk/severity of infection. For instance, it is slightly 

unexpected that laxatives were highly significant across multiple models and time windows. Of note, it has 

recently been postulated that dysregulation of gut microbiome may be associated with susceptibility or 

resilience to infection 54,55, and laxatives represent a main category of drugs that affects the gut microbiome 56. 

Interestingly, several associations involve psychiatric medications such as benzodiazepines, antipsychotics and 

anti-dementia drugs. The association may be due to underlying neuropsychiatric conditions (e.g. anxiety, 

psychosis, dementia etc.), or the effect of the drugs, or a combination of both. Some of above drugs overlapped 

with those revealed in a recent study using primary care data in Scotland. In a univariate analysis restricted to 

non-residents in care homes and those without major conditions, laxatives, anxiolytics, penicillins and opioid 

analgesics were significantly associated with ICU admission or mortality from COVID-19 when compared to 

population controls 57. These drugs were also top-listed as those with harmful effects in our study.  

 

Strengths and limitation  

This study has a number of strengths. First and foremost, the study was performed on a large cohort of subjects 

with a sample size close to half a million. The sample was not limited to one or a few medical centers and 

covered the entire UK population, although this is not an entirely random sample and participation bias still 

exists 16. The large and well-characterized sample also enables analysis of infected, tested as well the whole 

population. We have studies all level-4 ATC drug categories, allowing an unbiased and systematic analysis on 

the association of different drugs with COVID-19 risks or outcomes. This avoids the risk of publication bias, 

especially negative results to be unreported. Drugs showing null associations are still be of important public 

health interest, as this may suggest that patients on such medications may not need to change their regimen in 

view of the pandemic. Medication history was retrieved from GP records, which minimize recall bias and errors 

from self-reporting. Another strength is that we performed a variety of statistical analysis to reduce bias, 

including control for potential confounders, multiple imputation, IPW to reduce effects of testing bias, and 

study of different time windows and multiple models. Some of our findings were corroborated by previous 

studies; however, many previous clinical studies were limited to hospitalized or infected individuals, which 

cannot study the effect of drugs on susceptibility to infection. Selection on hospitalized/infected subjects may be 

prone to selection/collider bias as discussed elsewhere 16, therefore we included multiple models with infected, 
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tested as well the whole population as samples, which aims to reduce bias and limitations due to specific study 

designs.  

   

There are also various limitations, some of which are mentioned above. First and foremost, this is an 

observational study based on a retrospective cohort of UKBB. As this is not a randomized controlled trial (RCT), 

confounding is inevitable, especially confounding by indication. Although we have controlled for main 

confounders in the regression model, residual confounding is still likely. Since confounding by indication will 

likely bias towards increased odds of infection or severe disease, null or protective associations may be more 

reliable. Confounding by the use of other types of drugs is also possible. Also, the UKBB cohort is not random 

and participants are in general healthier than the general population 58. The majority of participants are of 

European descent so the findings may not be generalizable to other ethnicities. Also, the subjects are mostly >50 

years old and drug effects in younger individuals may be different.  

 

Regarding drug history, it is worth noting that vaccination records are not complete as individuals may 

receive vaccination outside GP practices. Over-the-counter prescriptions were not counted, and it cannot be 

guaranteed that all drugs issued are dispensed by the pharmacy 

(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/tppgp4covid19.pdf ). There is a relatively high missing rate 

of GP prescription records for deceased COVID-19 patients, which leads to reduced power to detect 

associations. While the UKBB cohort sample is large, we still have low power to detect associations for drugs 

that are uncommonly prescribed. Another limitation with the GP records is that only the issue date but no 

duration or dosage is available. 

 

As for the outcome, hospitalization is a rough proxy for severity only. Finally, this study focuses on prior (or 

pre-diagnostic) use of drugs and their association with infection risk/severity, and does not directly address 

whether newly prescribed drugs to recently diagnosed patients will be useful or not.  

 

Conclusions 

Here we observed that a number of drugs, including many for cardiometabolic disorders, may be associated 

with lower odds of infection/severity of COVID-19. Several existing vaccines, especially flu vaccines, may be 

beneficial against COVID-19 as well. Due to the observational nature of the study, confounding cannot be 

excluded, and other bias and limitations may be present. We understand that causal relationship between drugs 

and disease cannot be reliably concluded from this study alone, and shall regard the findings as more 

exploratory than confirmatory. Nevertheless, being one of the most comprehensive studies to date on drug 

associations, we believe the current work provided a valuable resource to prioritize relevant drugs for future 

meta-analyses, clinical trials or experimental studies.  
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Table 1  The eight sets of analyses based on infected patients (model A, B), tested subjects (models 

F, G, H) and the population (models C, D, E)  

Model Cohort 1  Cohort 2 

A Hospitalized or fatal infection (U07.1) (Severe) Non-hospitalized COVID-19 (Mild) 

B U07.1 cases All other COVID-19 cases 

C Hospitalized or fatal infection (U07.1) (Severe) UKBB subjects without COVID-19 Dx or tested -ve 

D U07.1 cases UKBB subjects without COVID-19 Dx or tested -ve 

E Infected UKBB subjects without COVID-19 Dx or tested -ve 

F Infected Tested -ve 

G Hospitalized or fatal infection (U07.1) (Severe) Tested -ve 

H U07.1 cases Tested -ve 

U07.1 is the code for fatal (laboratory-confirmed) COVID-19 infection based on the latest ICD 

coding. Dx, diagnosis.  
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Table 2  Number of available subjects for analysis for the 8 models  

Model Cohort 1 Cohort 2 Total 

A 1,318 2,540 3,858 

B 170 3,688 3,858 

C 1,318 393,142 394,460 

D 170 393,142 393,312 

E 3,858 393,142 397,000 

F 3,858 26,977 30,835 

G 1,318 26,977 28,295 

H 170 26,977 27,147 

Only subjects with available GP prescription records are shown.  
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Table 3  Cardiometabolic medications showing significant protective associations within time windows of 6, 12 and 24 months 

Window Model ATC code OR conf.low conf.high p FDR.BH Full name 

1yrs F A10AE 0.52  0.32  0.84  6.88E-03 9.82E-02   A10AE Insulins and analogues for injection, long-acting 

2yrs A A10BA 0.60  0.42  0.86  5.00E-03 8.26E-02   A10BA Biguanides  

1yrs C A10BA 0.67  0.51  0.88  4.01E-03 2.24E-02   A10BA Biguanides 

2yrs C A10BA 0.68  0.52  0.90  5.79E-03 3.22E-02   A10BA Biguanides  

0.5yr F C07AB 0.78  0.68  0.89  3.56E-04 1.28E-02   C07AB Beta blocking agents, selective 

1yrs F C07AB 0.80  0.70  0.91  7.59E-04 2.24E-02   C07AB Beta blocking agents, selective 

2yrs F C07AB 0.78  0.69  0.88  9.10E-05 3.52E-03   C07AB Beta blocking agents, selective 

1yrs C C08CA 0.76  0.64  0.90  1.31E-03 8.59E-03   C08CA Dihydropyridine derivatives 

2yrs C C08CA 0.78  0.66  0.92  3.27E-03 2.15E-02   C08CA Dihydropyridine derivatives  

0.5yr A C09AA 0.68  0.53  0.87  2.11E-03 2.72E-02   C09AA ACE inhibitors, plain  

1yrs A C09AA 0.68  0.54  0.86  1.15E-03 1.87E-02   C09AA ACE inhibitors, plain  

2yrs A C09AA 0.67  0.54  0.84  5.87E-04 1.85E-02   C09AA ACE inhibitors, plain  

0.5yr C C09AA 0.75  0.62  0.91  3.15E-03 1.23E-02   C09AA ACE inhibitors, plain  

1yrs C C09AA 0.61  0.51  0.74  1.59E-07 2.86E-06   C09AA ACE inhibitors, plain  

2yrs C C09AA 0.63  0.53  0.75  2.84E-07 5.60E-06   C09AA ACE inhibitors, plain  

1yrs E C09AA 0.79  0.72  0.88  1.40E-05 1.67E-04   C09AA ACE inhibitors, plain  

2yrs E C09AA 0.81  0.73  0.90  5.38E-05 6.06E-04   C09AA ACE inhibitors, plain  

0.5yr G C09AA 0.68  0.56  0.83  1.13E-04 3.18E-03   C09AA ACE inhibitors, plain  

1yrs G C09AA 0.71  0.59  0.85  2.80E-04 8.26E-03   C09AA ACE inhibitors, plain  

2yrs G C09AA 0.71  0.59  0.85  1.41E-04 5.24E-03   C09AA ACE inhibitors, plain  

1yrs C C09CA 0.68  0.54  0.85  7.58E-04 5.35E-03   C09CA Angiotensin II receptor blockers, plain  

2yrs C C09CA 0.73  0.58  0.90  3.97E-03 2.41E-02   C09CA Angiotensin II receptor blockers, plain  

0.5yr G C09CA 0.72  0.56  0.91  7.00E-03 9.51E-02   C09CA Angiotensin II receptor blockers, plain  

1yrs G C09CA 0.69  0.55  0.87  1.95E-03 3.84E-02   C09CA Angiotensin II receptor blockers, plain  

2yrs G C09CA 0.72  0.58  0.90  3.93E-03 8.79E-02   C09CA Angiotensin II receptor blockers, plain  

0.5yr A C10AA 0.57  0.47  0.68  3.37E-09 1.74E-07   C10AA HMG CoA reductase inhibitors 
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1yrs A C10AA 0.50  0.42  0.60  2.87E-13 9.36E-11   C10AA HMG CoA reductase inhibitors 

2yrs A C10AA 0.49  0.40  0.58  1.55E-14 5.38E-12   C10AA HMG CoA reductase inhibitors 

0.5yr C C10AA 0.79  0.68  0.91  1.20E-03 5.19E-03   C10AA HMG CoA reductase inhibitors 

1yrs C C10AA 0.49  0.42  0.57  2.97E-21 1.70E-19   C10AA HMG CoA reductase inhibitors 

2yrs C C10AA 0.49  0.43  0.57  7.09E-21 5.59E-19   C10AA HMG CoA reductase inhibitors 

1yrs D C10AA 0.50  0.34  0.74  5.28E-04 5.91E-03   C10AA HMG CoA reductase inhibitors 

2yrs D C10AA 0.50  0.34  0.74  4.38E-04 6.28E-03   C10AA HMG CoA reductase inhibitors 

1yrs E C10AA 0.83  0.77  0.91  1.69E-05 1.94E-04   C10AA HMG CoA reductase inhibitors 

2yrs E C10AA 0.86  0.79  0.93  3.09E-04 2.71E-03   C10AA HMG CoA reductase inhibitors 

0.5yr G C10AA 0.66  0.57  0.76  2.55E-08 1.67E-06   C10AA HMG CoA reductase inhibitors 

1yrs G C10AA 0.63  0.54  0.73  4.15E-10 5.71E-08   C10AA HMG CoA reductase inhibitors 

2yrs G C10AA 0.63  0.54  0.72  2.65E-10 5.63E-08   C10AA HMG CoA reductase inhibitors 

Only results with FDR<0.1 are shown.  

OR, odds ratio; conf.low, lower 95% CI for OR; conf.high, upper 95% CI for OR; FDR.BH, false discovery rate by the Benjamini Hochberg method. 
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Table 4   Vaccines with significant protective associations (FDR<0.1) within time windows of 1, 2, 5 and 10 years 

 

Window Model ATC code OR conf.low conf.high p FDR.BH Name of vaccine 

5yrs E J07AL 0.70  0.55  0.89  3.81E-03 2.67E-02   J07AL Pneumococcal vaccines 

10yrs E J07AL 0.78  0.67  0.91  1.89E-03 1.32E-02   J07AL Pneumococcal vaccines 

1yrs F J07AL 0.50  0.31  0.82  5.29E-03 8.11E-02   J07AL Pneumococcal vaccines 

2yrs F J07AL 0.59  0.42  0.82  1.59E-03 3.56E-02   J07AL Pneumococcal vaccines 

5yrs F J07AL 0.61  0.47  0.79  1.47E-04 5.18E-03   J07AL Pneumococcal vaccines 

10yrs F J07AL 0.67  0.57  0.78  9.39E-07 6.57E-06   J07AL Pneumococcal vaccines 

10yrs G J07AL 0.67  0.51  0.87  3.32E-03 1.71E-02   J07AL Pneumococcal vaccines 

10yrs E J07AM 0.65  0.45  0.92  1.60E-02 6.58E-02   J07AM Tetanus vaccines 

5yrs F J07AM 0.45  0.29  0.68  1.94E-04 5.92E-03   J07AM Tetanus vaccines 

10yrs F J07AM 0.49  0.34  0.71  1.69E-04 5.92E-04   J07AM Tetanus vaccines 

10yrs E J07AP 0.86  0.76  0.97  1.88E-02 6.58E-02   J07AP Typhoid vaccines 

5yrs F J07AP 0.70  0.58  0.84  1.60E-04 5.23E-03   J07AP Typhoid vaccines 

10yrs F J07AP 0.76  0.67  0.88  1.18E-04 5.51E-04   J07AP Typhoid vaccines 

10yrs G J07AP 0.74  0.58  0.95  1.61E-02 5.23E-02   J07AP Typhoid vaccines 

1yrs C J07BB 0.74  0.60  0.91  3.80E-03 4.94E-02   J07BB Influenza vaccines 

2yrs C J07BB 0.75  0.62  0.90  2.02E-03 1.45E-02   J07BB Influenza vaccines 

1yrs D J07BB 0.28  0.13  0.63  1.92E-03 2.50E-02   J07BB Influenza vaccines 

2yrs D J07BB 0.30  0.15  0.60  7.22E-04 9.07E-03   J07BB Influenza vaccines 

1yrs E J07BB 0.73  0.65  0.83  5.93E-07 7.71E-06   J07BB Influenza vaccines 

2yrs E J07BB 0.75  0.68  0.84  4.83E-07 8.79E-06   J07BB Influenza vaccines 

5yrs E J07BB 0.80  0.73  0.88  7.01E-06 9.95E-05   J07BB Influenza vaccines 

10yrs E J07BB 0.82  0.75  0.89  6.70E-06 9.38E-05   J07BB Influenza vaccines 

1yrs F J07BB 0.60  0.53  0.68  2.94E-15 3.23E-14   J07BB Influenza vaccines 

2yrs F J07BB 0.62  0.55  0.70  4.38E-16 1.87E-13   J07BB Influenza vaccines 
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5yrs F J07BB 0.66  0.60  0.73  7.67E-16 1.76E-13   J07BB Influenza vaccines 

10yrs F J07BB 0.67  0.61  0.74  5.16E-17 7.22E-16   J07BB Influenza vaccines 

1yrs G J07BB 0.61  0.50  0.76  4.35E-06 4.78E-05   J07BB Influenza vaccines 

2yrs G J07BB 0.62  0.52  0.75  8.86E-07 5.38E-05   J07BB Influenza vaccines 

5yrs G J07BB 0.69  0.59  0.81  8.14E-06 5.31E-04   J07BB Influenza vaccines 

10yrs G J07BB 0.69  0.59  0.80  9.82E-07 1.28E-05   J07BB Influenza vaccines 

1yrs H J07BB 0.23  0.11  0.52  4.04E-04 4.44E-03   J07BB Influenza vaccines 

2yrs H J07BB 0.25  0.12  0.50  9.64E-05 3.41E-03   J07BB Influenza vaccines 

5yrs H J07BB 0.44  0.27  0.72  1.13E-03 3.40E-02   J07BB Influenza vaccines 

10yrs H J07BB 0.50  0.32  0.76  1.44E-03 1.87E-02   J07BB Influenza vaccines 

10yrs F J07BC 0.86  0.75  0.99  3.67E-02 8.56E-02   J07BC Hepatitis vaccines 

10yrs E J07CA 0.91  0.84  0.99  2.90E-02 8.12E-02   J07CA Bacterial and viral vaccines, combined 

1yrs F J07CA 0.56  0.38  0.84  4.30E-03 6.94E-02   J07CA Bacterial and viral vaccines, combined 

2yrs F J07CA 0.71  0.57  0.89  3.05E-03 5.89E-02   J07CA Bacterial and viral vaccines, combined 

10yrs F J07CA 0.85  0.78  0.94  7.85E-04 2.20E-03   J07CA Bacterial and viral vaccines, combined 

10yrs G J07CA 0.78  0.66  0.92  3.94E-03 1.71E-02   J07CA Bacterial and viral vaccines, combined 

 

 

 

 

Table 5  Other drugs with significant protective associations (FDR<0.1) within time windows of 6, 12 and 24 months 

Window Model ATC code OR conf.low conf.high p FDR.BH Full name 

1yrs A A02BC 0.77  0.65  0.91  2.37E-03 3.22E-02 A02BC Proton pump inhibitors 

2yrs A A02BC 0.77  0.66  0.90  1.05E-03 3.04E-02 A02BC Proton pump inhibitors 

0.5yr F A02BC 0.72  0.67  0.79  1.05E-13 4.15E-11 A02BC Proton pump inhibitors 

1yrs F A02BC 0.77  0.71  0.83  2.01E-11 4.16E-09 A02BC Proton pump inhibitors 

2yrs F A02BC 0.80  0.74  0.86  2.94E-09 4.17E-07 A02BC Proton pump inhibitors 

0.5yr G A02BC 0.70  0.61  0.81  1.06E-06 4.18E-05 A02BC Proton pump inhibitors 
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1yrs G A02BC 0.66  0.58  0.76  1.56E-09 1.61E-07 A02BC Proton pump inhibitors 

2yrs G A02BC 0.68  0.59  0.77  1.81E-09 1.92E-07 A02BC Proton pump inhibitors 

2yrs F A03FA 0.51  0.37  0.70  3.67E-05 1.95E-03 A03FA Propulsives 

1yrs F A09AA 0.24  0.09  0.64  4.19E-03 6.94E-02 A09AA Enzyme preparations 

2yrs F A09AA 0.23  0.09  0.60  2.81E-03 5.70E-02 A09AA Enzyme preparations 

0.5yr F A12AX 0.80  0.69  0.93  2.74E-03 6.28E-02 A12AX Calcium, combinations with vitamin D and/or other drugs 

1yrs F A12AX 0.83  0.72  0.94  4.36E-03 6.94E-02 A12AX Calcium, combinations with vitamin D and/or other drugs 

1yrs F B03AA 0.74  0.60  0.91  4.00E-03 6.94E-02 B03AA Iron bivalent, oral preparations 

0.5yr F G03CA 0.63  0.52  0.76  3.03E-06 2.39E-04 G03CA Natural and semisynthetic estrogens, plain 

1yrs F G03CA 0.67  0.58  0.78  4.08E-07 4.22E-05 G03CA Natural and semisynthetic estrogens, plain 

2yrs F G03CA 0.70  0.61  0.80  1.89E-07 1.61E-05 G03CA Natural and semisynthetic estrogens, plain 

2yrs G G03CA 0.66  0.51  0.86  2.43E-03 6.08E-02 G03CA Natural and semisynthetic estrogens, plain 

0.5yr F G04CB 0.63  0.46  0.85  3.02E-03 6.28E-02 G04CB Testosterone-5-alpha reductase inhibitors 

1yrs C H03AA 0.62  0.48  0.79  1.77E-04 1.43E-03 H03AA Thyroid hormones 

2yrs C H03AA 0.62  0.48  0.79  1.51E-04 1.52E-03 H03AA Thyroid hormones 

1yrs E H03AA 0.80  0.71  0.92  9.47E-04 8.05E-03 H03AA Thyroid hormones 

2yrs E H03AA 0.80  0.70  0.91  5.94E-04 5.02E-03 H03AA Thyroid hormones 

0.5yr F H03AA 0.80  0.69  0.92  2.24E-03 5.53E-02 H03AA Thyroid hormones 

1yrs F H03AA 0.81  0.71  0.93  2.51E-03 5.20E-02 H03AA Thyroid hormones 

2yrs F H03AA 0.81  0.71  0.93  2.57E-03 5.47E-02 H03AA Thyroid hormones 

0.5yr G H03AA 0.66  0.51  0.86  2.10E-03 3.60E-02 H03AA Thyroid hormones 

1yrs G H03AA 0.64  0.49  0.82  5.53E-04 1.34E-02 H03AA Thyroid hormones 

2yrs G H03AA 0.64  0.50  0.83  6.06E-04 1.72E-02 H03AA Thyroid hormones 

1yrs F J01EA 0.69  0.53  0.90  6.09E-03 9.00E-02 J01EA Trimethoprim and derivatives 

1yrs F J01MA 0.49  0.34  0.72  2.40E-04 1.04E-02 J01MA Fluoroquinolones 

2yrs F J01MA 0.59  0.46  0.76  5.39E-05 2.55E-03 J01MA Fluoroquinolones 

0.5yr F L02AE 0.29  0.14  0.60  9.85E-04 3.24E-02 L02AE Gonadotropin releasing hormone analogues 

1yrs F L02AE 0.41  0.23  0.72  2.02E-03 4.58E-02 L02AE Gonadotropin releasing hormone analogues 
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2yrs F L02AE 0.42  0.25  0.70  9.73E-04 2.44E-02 L02AE Gonadotropin releasing hormone analogues 

0.5yr F M01AE 0.68  0.56  0.82  4.61E-05 2.28E-03 M01AE Propionic acid derivatives 

1yrs F M01AE 0.79  0.70  0.91  6.65E-04 2.24E-02 M01AE Propionic acid derivatives 

0.5yr F N02AX 0.56  0.41  0.76  1.88E-04 7.43E-03 N02AX Other opioids 

1yrs F N02AX 0.63  0.49  0.80  1.64E-04 8.49E-03 N02AX Other opioids 

2yrs F N02AX 0.68  0.56  0.83  1.14E-04 3.74E-03 N02AX Other opioids 

0.5yr F N03AX 0.68  0.58  0.81  1.72E-05 9.71E-04 N03AX Other antiepileptics 

1yrs F N03AX 0.70  0.60  0.82  1.00E-05 6.90E-04 N03AX Other antiepileptics 

2yrs F N03AX 0.73  0.64  0.84  7.15E-06 5.08E-04 N03AX Other antiepileptics 

0.5yr F N06AA 0.77  0.65  0.92  3.99E-03 7.51E-02 N06AA Non-selective monoamine reuptake inhibitors  

1yrs F N06AA 0.79  0.68  0.92  1.98E-03 4.58E-02 N06AA Non-selective monoamine reuptake inhibitors  

2yrs F N06AA 0.79  0.70  0.90  2.67E-04 8.12E-03 N06AA Non-selective monoamine reuptake inhibitors  

1yrs A R03BA 0.48  0.31  0.73  7.44E-04 1.35E-02 R03BA Glucocorticoids 

2yrs A R03BA 0.55  0.38  0.81  2.44E-03 5.64E-02 R03BA Glucocorticoids 

0.5yr F R05DA 0.69  0.55  0.87  1.46E-03 4.12E-02 R05DA Opium alkaloids and derivatives 

1yrs F R05DA 0.74  0.62  0.88  5.47E-04 2.06E-02 R05DA Opium alkaloids and derivatives 

2yrs F R05DA 0.80  0.70  0.91  7.02E-04 1.99E-02 R05DA Opium alkaloids and derivatives 

Only results with FDR<0.1 are shown. 
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