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Abstract: Metabolites are generated from critical biological functions and metabolism.  This 22 
pediatric study reviewed plasma metabolites in patients suffering from multi-organ dysfunction 23 
syndrome (MODS) in the pediatric intensive care unit (PICU) using an untargeted metabolomics 24 
approach.  Patients meeting criteria for MODS were screened for eligibility and consented (n=24), 25 
and blood samples were collected at baseline, 72 hours, and 8 days;  control patients (n=4), were 26 
presenting for routine sedation in an outpatient setting.  A sub-set of MODS patients (n=8) required 27 
additional support with veno-atrial extracorporeal membrane oxygenation (VA-ECMO) therapy.  28 
Metabolites from thawed blood plasma were determined from ion pairing reversed-phase LC-MS 29 
analysis. Chromatographic peak alignment, identification, relative quantitation, statistical and 30 
bioinformatics evaluation were performed using MAVEN and MetaboAnalyst 4.0. Metabolite 31 
analysis revealed 115 peaks per sample.  From the PLS-DA with VIP scores above ≥2.0, 7 dynamic 32 
metabolites emerged over the 3 time points:  tauro-chenodeoxycholic acid (TCDCA), hexose, p-33 
hydroxybenzoate, hydroxyphenylacetic acid (HPLA), 2_3-dihydroxybenzoic acid, 2-keto-34 
isovalerate, and deoxyribose phosphate.  After Bonferonni adjustment for repeated measures 35 
hexose and p-hydroxybenzoate were significant at one time point, or more.  Kendall's tau-b test 36 
was used for internal validation of creatinine.  Metabolites may be benign or significant in 37 
describing a patient’s pathophysiology and require operator interpretation. 38 

Keywords: blood plasma, extracorporeal membrane oxygenation, metabolites, multiple organ 39 
dysfunction syndrome, pediatric intensive care unit, liquid chromatography mass spectrometry 40 

1. Introduction 41 

The ability to identify, quantify, and analyze the metabolic profile of a pediatric patient, allows 42 
us to investigate the interaction between both physiologic and pathologic states.  Metabolites are 43 
under the control of environmental pressures, such as nutrition [1], viral infections (such as Covid-44 
19 [2], Ebola [3]), gut bacterial composition and cancer [4], medications [5,6], and a patient’s own pre-45 
existing genetic make-up [7].  Metabolites, being low molecular weight molecules and/or products 46 
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of metabolic pathways, are growing in appeal medically over the last decade for their potential in 47 
disease characterization, drug discovery and precision medicine [8,9]. 48 

We have previously described the current cohort of patients for patient whole blood 49 
transcriptomics [10,11], and plasma lipidome [12].  This has revealed a complex biology in a 50 
heterogenous patient population with a non-uniform patient response to treatments over an 8-day 51 
course (stabilization and recovery phases) of illness during a PICU admission.  Complimentary to 52 
these previously reported analytic modalities from whole blood [10-12], the aim of this current report 53 
was two-fold:  1) to characterize total blood plasma metabolites (polar, charged) using an untargeted 54 
approach, 2) to determine change in metabolites over an 8-day PICU course. There is a gap in our 55 
understanding of the complex interaction between pediatric critical illness, specifically multi-organ 56 
dysfunction syndrome (MODS) [13] (affecting twenty percent of PICU admissions [14], resulting in 57 
ten times the mortality rate [15]), and their respective blood metabolites. 58 

2. Materials and Methods 59 

2.1 Study Population, Site and Sample Collection 60 

After IRB approval, a short-term longitudinal design was adopted at Helen DeVos Children’s 61 
Hospital (2016-062-SH/HDVCH).  Samples were collected under the protocol and study design [10-62 
12] in a quaternary-care, urban, pediatric hospital in Western, Michigan.  In brief, patients who were 63 
identified as having MODS were enrolled, 24 in total, with an additional 4 sedation-control patients.  64 
These 24 patients were then further classified as needing veno-arterial extracorporeal membrane 65 
oxygenation (VA-ECMO) as a therapeutic modality (n=8) according to Extracorporeal Life Support 66 
Organization (ELSO) criteria [16].  Blood samples from the patients were obtained and placed into 67 
EDTA-filled tubes, plasma was processed and stored at -80 o C for later use.  All samples had 68 
undergone one freeze-thaw before processing and analysis.   69 

 70 
2.2 Metabolite Extraction and Liquid Chromatography-Mass Spectrometry (LC-MS) 71 

 72 
Plasma samples (~50 microliters) were subjected to biphasic extraction using 73 

chloroform/methanol/water as described previously [17] to remove nonpolar matrix interferences 74 
and recover polar metabolites in the aqueous extraction phase. Stable isotope labeled (D4)-succinate 75 
was added to plasma during extraction for use in estimation of metabolite recovery and for relative 76 
quantitation across experimental groups. Samples were filtered through 0.2 micron syringe filters 77 
(Fisher Scientific) and reconstituted in 100 microliters of 50 % methanol for use in ion pairing 78 
reversed-phase LC-MS analysis. 79 

Targeted polar metabolite identification utilized a Thermo Scientific model TSQ Vantage triple 80 
quadrupole mass spectrometer operating in negative ion mode.  The mass spectrometer was 81 
coupled to a Shimadzu Prominence HPLC with thermostated column oven and autosampler. Ten 82 
microliter sample injections were subjected to gradient elution with (A) 10 mM tributylamine and 15 83 
mM acetic acid (pH 4.95), and (B) Methanol according to B. Luo, et al. [18], with separation of 84 
metabolites achieved on a Phenomenex Synergi Hydro-RP C18 column (2.0 mm x 150 mm, 3 micron 85 
particles, 80 Angstrom pore size). The column was protected by a Phenomenex guard cartridge of 86 
identical chemistry. Metabolites were identified and quantitated by selected ion monitoring. 87 
Detection parameters for each precursor/product ion pair of interest have been optimized based 88 
using commercially available standards. 89 

 90 
2.3 Data analysis 91 

 92 
LC-MS data analysis of chromatographic peak alignment, compound identification, relative 93 

quantitation, and statistical evaluation across experimental groups will be performed using MAVEN 94 
software [19]. Only relative quantitation of analytes against a selected internal standard was 95 
performed for comparison of values across experimental treatment groups. “Absolute” quantitation 96 
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was not carried out in these experiments.  Metabolites as listed in Supplemental Table 1, were 97 
initially categorized as anabolic vs. catabolic and endogenous vs. exogenous according to Human 98 
Metabolite Data Base (HMDB) (https://hmdb.ca/metabolites/) (Supplemental Figure 1). 99 

Metabolic profiles for sedation-controls were compared to MODS or ECMO patients, quantified 100 
as percent of total.  Metabolites with >30% of cases with zero values were excluded from further 101 
analysis; consequently 66 metabolites were analyzed over the three time points (Figure 1).  Using 102 
MetaboAnalyst 4.0 [20], data were normalized using pareto scaling (mean-centered and divided by 103 
the square root of standard deviation of each variable), and subjected to a multi-variate partial least 104 
squares-discriminant analysis (PLS-DA) analysis [21], using Q2 values for cross-validation [22].  No 105 
data points were excluded.  To assess the significance of class discrimination, a permutation test was 106 
performed and PLS-DA model built [between the data (X) and the permuted class labels (Y)] using 107 
the optimal number of components as determined by cross validation for the model based on the 108 
original class assignment [23].  This guided analysis allowed for the display of each specific group 109 
assignment.  Variable Importance in Projection (VIP) is a weighted sum of squares of the PLS 110 
loadings considering the amount of explained Y-variation in each dimension. 111 

Univariate analysis was performed using MedCalc (MedCalc Software Ltd, Ostend, Belgium) 112 
for candidate metabolites as determined by variance of importance (VIP) scores >2.0 from seven 113 
metabolites, using independent T-tests (equal variances), and Welch-test (unequal variances).  A 114 
Bonferroni correction of P-value (<0.008) was used to identify statistically significant associations 115 
with metabolites (to control for Type I errors), which was calculated by dividing the significance 116 
threshold of 0.05 by the number of repeated measures;  in this case MODS and ECMO compared to 117 
sedation-controls (at baseline, time 72hrs and 8 days).  Box and whisker plots were generated for the 118 
two remaining metabolites of interest, which included the median, the interquartile range (box), the 119 
outer range (whiskers) to pictorially summarize the central tendency, dispersion, skewness, and 120 
extremes of the dataset [24].   121 

3. Results 122 

3.1 Metabolite Ontology and Origin 123 

All 115 metabolites are listed in Supplemental Table 1 according to compound identification 124 
from the metabolic mass to charge ratio and retention time.  From here we looked at the ontology of 125 
the metabolites in order to characterize according to any known function and origin.  We found that 126 
the majority of metabolites detected were endogenous in nature (76%), and associated with catabolic 127 
(38%), anabolic (35%), both catabolic and anabolic metabolism (14%), or unspecified mechanisms of 128 
action (13%) (Supplement Figure 1 A & B), according to HMDB (https://hmdb.ca/metabolites/).       129 

 130 
3.2 Bioinformatic Analysis 131 

     132 
Analytical flow chart is presented in Figure 1.  Percent total of metabolites and change over time 133 

were visualized using supervised analysis PLS-DA, which revealed clustering of ECMO patients 134 
within the MODS patients over the three time points, as compared to the sedation-control group 135 
(Figure 2, A, B, C).  These groupings were also visualized by heatmap analysis (Supplemental Figure 136 
2, A, B, C), supporting the initial finding of the PLS-DA, whereby the sedation-control patients were 137 
found to cluster amongst themselves.  138 

 139 
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Figure 1: Overview-untargeted analysis 140 

 141 
 142 

Figure 2: PLS-DA plot of all patient samples at baseline (A), 72 hours (B), and 8 days (C) 143 
 144 

 145 
Figure 2:  Insert:  PLS-DA classification using different number of components. The red star 146 

 indicates the best classier. 147 
 148 
 The important features as identifies by the PLS-DA at baseline (Figure 3A), at 72 hours (Figure 149 
3B) and at 8 days (Figure 3C), reveal seven metabolites with relative concentrations of the 150 
corresponding metabolite in each group under study.  In total seven metabolites of interest emerged 151 
over the 3 time points:  tauro-chenodeoxycholic acid (TCDCA)-a conjugated bile acid, hexose- 152 
monosaccharide-simple sugar, p-hydroxybenzoate-biocide-antimicrobial agent/tyrosine, tryptophan, 153 
phenylalanine metabolite, hydroxyphenylacetic acid (HPLA)-metabolite of phenylalanine, 2_3-154 
dihydroxybenzoic acid-drug metabolite, 2-keto-isovalerate-cellular intermediate for the synthesis of 155 
branched-chain amino acids, deoxyribose phosphate-a pentose phosphate.   156 
 Starting with HPLA (with a VIP score ≥1.5 at 8 days) over the 3-time points, sedation-control 157 
values are consistently highest, with ECMO patients demonstrating an intermediate profile and 158 
MODS patients with the lowest values according to the relative concentrations.  2_3-159 
dihydroxybenzoic acid and deoxyribose-phosphate share similar relative concentration profiles to 160 
HPLA with the values highest for sedation-control patients compared to MODS with the lowest 161 
relative concentrations. 162 
   In the exact opposite profile is hexose, which reveals the highest relative concentrations values 163 
in MODS patients as compared to sedation-controls, again with ECMO sharing intermediate profiles 164 
at baseline.  By day 8 however, this has changed completely, whereby sedation-controls have the 165 
highest relative concentrations, and ECMO the lowest, with MODS demonstrating intermediate 166 
profiles. We may extrapolate from this that the patients with critical illness demonstrate some 167 
fluctuations in hexose over time, and that the detection of this blood plasma metabolite is a dynamic 168 
process.  Patients were neither hyper- nor hypo-glycemic according to their clinical glucose levels 169 
(also a 6-carbon sugar-data not shown), and this is closely monitored at the PICU bedside, given blood 170 
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glucose levels have been previously demonstrated to adversely affect patient outcomes, especially in 171 
the case of hyperglycemia [25].   172 
 Remaining metabolites of interest include p-hydroxybenzoate with exception of the 72 hours’ 173 
time point, reveal that ECMO patients have lower relative concentrations than MODS patients, and 174 
TCDCA, which is consistently lower in sedation-control patients, as compared to both MODS and 175 
ECMO.  TCDCA is a maker of liver injury, which is still elevated after 8 days for MODS and ECMO 176 
patients.  It is believed that shock liver common in this patient population usually subsides after a 177 
few days, from our results we may speculate that this metabolite is still present at the 8th day post-178 
study enrollment.  Lastly, keto-isovalerate like hexose and TCDCA has higher relative 179 
concentrations for both MODS and ECMO patients compared to sedation-controls at both baseline 180 
and 72 hours (at 8-days similar patterning, however VIP score <1.0).  Additional metabolites of note 181 
include lactate (VIP score ≥1.5) which would be expected in this group of patients [24], which is 182 
highest in ECMO patients, second in MODS and lowest in the sedation-controls at the 72-hour time 183 
point.   184 
 185 

Figure 3: Important features identified by PLS-DA at baseline (A), 72 hours (B), and 8 days (C). 186 

 187 

Figure 3:  The colored boxes on the right indicate the relative concentrations of the corresponding 188 
metabolite in each group under study. TCDCA:  tauro-chenodeoxycholic acid. 189 
 190 

3.3 Repeated Measures Over 3 Time Points 191 
 192 

 Furthermore, it was of interest to determine whether any of those metabolites identified by PLS-193 
DA with high VIP scores where statistically significant over time, as this may provide additional 194 
understanding and potential biomarker identification of this cohort of untargeted metabolites.  195 
When comparing to sedation-controls and correcting for Bonferonni adjustment for repeated 196 
measures (P-value <0.008), both hexose and p-hydroxybenzoate were significant at, at least one time 197 
point (Table 1).   198 
 199 
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 200 

 201 

Table 1: Repeated measures summary statistics for VIP ≥2.0 at baseline (A), 72 hours (B), and 8 days (C). 202 

 203 

Table 1. Independent T-test performed (assuming equal variances); *F-test for equal variances was P 204 
= < 0.05 Welch-test (assuming unequal variances) was used;   P-values less than 0.008 were deemed 205 
significant, after the Bonferonni adjustment; comparing MODS and ECMO samples to sedation-206 
controls;  TCDCA:  tauro-chenodeoxycholic acid.    207 

 Box and whisker-plots were generated to be able to visualize the distribution of samples over 208 
time (Figure 4).  From this we can visualize a large spread of patient blood plasma metabolite values, 209 
and that the values change over the three time points.  More frequent and intensive sampling would 210 
be necessary to determine exact distribution for the acute, stabilization and recovery phases of MODS 211 
and ECMO patients, using a metabolic platform.  This illustrates the complexity and the dynamic 212 
nature of sampling for this patient population.   213 

 214 

Figure 4: Top two metabolites with significant differences from sedation-controls over 8-days. 215 

 216 

Figure 4:  Box and whisker plots, which include the median, the interquartile range (box), the outer 217 
range (whiskers) and pictorially summarize the central tendency, dispersion, skewness, and extremes 218 
of the dataset using a linear scale.  MODS:  multi-organ dysfunction syndrome; ECMO:  219 
extracorporeal membrane oxygenation; BL:  baseline; 72:  72-hour time point; 8D:  8-day time 220 
point.  Stars denote statistical significance from Independent T-test, or Welch-test as compared to 221 
sedation-controls. 222 

3.4 Internal Validation 223 

 Kendall's tau-b test was used for internal validation, and revealed a positive correlation between 224 
creatinine and the respective creatinine metabolite at all three time points (baseline: τb=0.708, p=0.000; 225 
72 hours: τb=0.511, p=0.001; 8 days: 0.684, p=0.001) (Supplemental Figure 3).  While the three 226 
coefficients yielded similar results, the skewness and heteroskedasticity of the data violate the 227 
assumptions for Pearson’s r.  Spearman’s Rho and Kendall’s Tau are both non-parametric and 228 

Metabolites

Mean SD Median P-value Mean SD Median P-value Mean SD Median P-value Mean SD Median P-value Mean SD Median P-value Mean SD Median P-value Mean SD Median P-value

Sedation (n=4) 47.40 53.93 44.87 16.00 10.56 13.58 6.52 0.97 6.63 6.79 4.60 6.71 15.80 3.26 14.37 53.12 7.66 53.00 0.22 0.323 0.08

MODS BL (n=16) 1.82 5.29 0.43 P = 0.1900 1.81 2.63 0.74 P = 0.0760 11.83 8.64 10.03 P = 0.0291* 1.09 1.12 0.73 P = 0.0907 37.22 24.03 30.55 P = 0.0031* 65.01 36.71 56.51 P = 0.2476 2.53 4.14 0.77 P = 0.0422*

ECMO BL (n=8) 4.72 10.12 0.81 P = 0.2146 10.98 14.87 4.80 P = 0.5631 9.33 3.91 9.41 P = 0.0879 2.25 3.25 1.15 P = 0.0733 21.03 19.43 23.88 P = 0.4799 26.59 20.68 15.73 P = 0.3170 14.30 25.76 2.53 P = 0.1660

MODS 72h (n=15) 6.94 12.2 2.39 P = 0.2331 2.10 3.15 1.23 P = 0.0804 10.60 5.07 8.18 P = 0.0127* 0.79 0.65 0.62 P = 0.0802 9.79 12.38 0.19 P = 0.1228 19.16 15.29 13.74 P = 0.0251 11.87 24.91 1.93 P = 0.1037

ECMO 72h (n=7) 7.87 7.65 6.7 P = 0.2410 5.12 4.39 4.32 P = 0.0366 9.78 4.33 7.91 P = 0.0981 1.40 0.77 1.31 P = 0.1025 2.94 6.76 0.10 P = 0.0065 41.73 20.51 39.74 P = 0.0482 9.20 9.10 4.95 P = 0.0402*

MODS 8d (n=8) 24.04 19.50 20.97 P = 0.4629 2.54 1.85 1.38 P = 0.0855 14.04 6.96 11.71 P = 0.0172* 0.53 0.57 0.27 P = 0.0729 2.77 7.46 0.14 P = 0.0083 24.57 23.82 14.20 P = 0.0021 792.38 2208 8.05 P = 0.3441

ECMO 8d (n=6) 13.66 12.16 10.70 P = 0.3062 4.68 7.96 1.45 P = 0.0878 9.70 5.10 7.87 P = 0.1874 0.77 0.34 0.68 P = 0.0793 0.08 0.03 0.07 P = 0.0024* 9.05 3.047 9.20 P < 0.0001 6.66 7.604 4.15 P = 0.0929

p-hydroxybenzoate TCDCAHydroxyphenylacetic acid 2_3_dihydroxybenzoic acid 2-keto-isovalerate Deoxyribose phosphate Hexose
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acceptable to use in this case.  Spearman’s Rho measures the rank correlation (how the ranks of the 229 
x and y values align), and Kendall’s Tau measures the percent of concordant pairs, which is also 230 
based on ranks but considered to be a more robust measure.  Creatinine was found to be high at 231 
baseline, which correlated with clinical creatinine values. 232 

4. Discussion 233 

Untargeted analyses are intended to provide a means for finding differences in abundance 234 
across samples or groups of samples. Multivariate statistical techniques are therefore well suited to 235 
analysis of untargeted metabolomics data.  MetaboAnalyst is a web-based platform created and 236 
developed by the Wishart group from the University of Alberta, offering R-based software for public 237 
use [20,26], and was the software of choice for this analysis.   238 

From these preliminary results we may glean a few main findings:  1)  metabolites of MODS 239 
and ECMO patients contain both Phase I and Phase II metabolites;  2)  are dynamic in nature;  3)  240 
contain both potentially clinically relevant findings (such as TCDCA), as well as those of benign 241 
(±inert) function, as normally metabolized and excreted through downstream organ systems (renal, 242 
digestive);  4)  metabolites can be measured and qualified in blood plasma of critically ill pediatric 243 
patients using an untargeted approach, which correlated to clinical values for routine care (e.g. 244 
creatinine). 245 

Phase I and Phase II metabolites were detected amongst the 66 values analyzed.  Recent 246 
evidence suggests that gut microbiome influences blood metabolites [27], which undergo Phase I 247 
metabolism through oxidation (R-OH), reduction (R-SH), or hydrolysis (R-NH2), and Phase II 248 
metabolism through sulfation (R-SO3H), glucuronidation (R-Gluc) and glutathione conjugation (R-249 
Gl).  This may suggest that there are greater metabolic influences beyond the scope this this study 250 
that need to be controlled for in future work, such as including gut microbiome profiles. 251 

p-hydroxybenzoate, is thought to be produced via two major pathways: 1) microbial oxidation 252 
of petroleum derivative toluene into p-hydroxybenzoate, as described for Pseudomonas species [28];  253 
and 2) the de novo bioproduction of p-hydroxybenzoate from amino acids (tyrosine, tryptophan, 254 
phenylalanine) through and intermediate chorismite, via the enzyme chorismite lyase (UbiC) [29].  255 
p-hydroxybenzoate (paraben and alkyl ester derivative) is commercially used as a preservative and 256 
antimicrobial agent pharmaceutical and cosmetic industry [30], and therefore may be from an 257 
exogenous source.  The second possibility is an endogenous source, which has been described in 258 
Escherichia coli [31] and Mycobacterium tuberculosis [32], as produced from glucose, and can be toxic at 259 
higher-concentrations.  Lower levels of p-hydroxybenzoate as observed in our MODS and ECMO 260 
patients at day 8 is a Phase I metabolite, and may be an indication of a gut bacteria dysbiosis (impaired 261 
microbiota), and to date has not been described in this patient population.  262 

The most dynamic metabolite described herein is hexose which reflects the fluctuating energetic 263 
state of the patients.  Low hexose at the third time point (8 days-post MODS diagnosis and into their 264 
PICU admission) could be a sign of energy deficiency, however we know that the patients were under 265 
close monitoring and by 72 hours were all receiving some nutritional intervention [12], after largely 266 
being nil per os at baseline.  Blood glucose control has been further evaluated in Covid-19 patients, 267 
and is of ongoing concern given reports of higher mortality and multi-organ injury [33].  HPLA, a 268 
phenylcarboxylic acid, has been speculated to be a marker of sepsis in adult cardiac surgery, however 269 
requires further validation [34].       270 

Cholesterol breaks down in the liver to produce primary bile acids, one being chenodeoxycholic 271 
acid, which together with taurocholic acid produces a conjugated bile acid TCDCA and excreted in 272 
the intestine, constituting our enterohepatic circulation.  In spite of normalizing liver enzymes 273 
(alanine transaminase (ALT) Aspartate transaminase (AST)) in this patient population as previously 274 
reported [11], TCDCA remained elevated as compared to sedation-controls at the 8-day time point. 275 
This indicates that the metabolic profile may illustrate a different landscape on patient recovery, and 276 
metabolites may be organ specific.     277 

Limitations of the work include a low sample volume, capturing high-abundance metabolites, 278 
and sample integrity may have been compromised by a previous freeze-thaw cycle.  A second cohort 279 
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study would be necessary for further metabolite identification and validation to explore their clinical 280 
utility. 281 

5. Conclusions 282 

 It is feasible to measure blood plasma metabolites in pediatric patients with MODS and 283 
undergoing ECMO treatment.  Metabolites may be benign or significant in describing a patient’s 284 
pathophysiology, fluctuate over time and require operator interpretation. 285 

6. Abbreviations 286 

 287 

HPLA: hyroxyphenylacetic acid: LC-MS: Liquid chromatography-mass spectrometry; MODS: multi-288 

organ dysfunction syndrome; PICU: pediatric intensive care unit; PLS-DA: partial least squares-289 

discriminant analysis; VA-ECMO: veno-atrial extracorporeal membrane oxygenation; VIP: variance 290 

of importance; TCDCA: tauro-chenodeoxycholic acid. 291 

Supplementary Materials:  Table S1:  Metabolites identified n=115, metMz-mass over charge ratio, metRt-292 
retention time, compound name, and compound ID listed;  Figure S1: a) Metabolic actions of 115 metabolites 293 
identified;  b) Ontological sources of 115 metabolites identified, taken from Human Metabolite Data Base 294 
(HMDB) (https://hmdb.ca/metabolites/);  Figure S2: Clustering result shown as heatmaps at baseline (A), 72 295 
hours (B), and 8 days (C);  Figure S3:  Correlation of clinical creatinine to untargeted metabolite value(s).    296 
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