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Abstract. Testing people without symptoms for SARS-CoV-2 followed by isolation of those 

who test positive could mitigate the covid-19 epidemic pending arrival of an effective vaccine. 

Key questions for such programs are who should be tested, how often, and when should such 

testing stop. Answers to these questions depend on test and population characteristics. A cost-

effectiveness model that provides answers depending on user-adjustable parameter values is 

described. Key parameters are the value ascribed to preventing a death and the reproduction 

number (roughly, rate of spread) at the time surveillance testing is initiated. For current rates of 

spread, cost-effectiveness usually requires a value per life saved greater than $100,000 and 

depends critically on the extent and frequency of testing. 
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Introduction. With renewed emphasis on testing for SARS-CoV2 (1) and the emergence of 

cheaper testing modalities (2), design and evaluation of testing programs are of increased 

importance. Since the main purpose of testing is to identify cases so that they can be isolated to 

prevent further spread, a critical measure is the number of secondary cases averted per dollar 

spent on testing. This number will be higher, all else being equal, if testing is focused on those 

with higher rates of infection – such as those with symptoms, contacts of those with covid-19, 

people who have many contacts due to their work, or who live in areas with high incidence. 

Once “high-yield” groups are exhausted, testing could extend to people with no identifiable 

high prevalence characteristics. A recent paper assessed cost-effectiveness of testing those with 

symptoms versus testing whole populations once or monthly, concluding that monthly testing 

is cost-effective under some circumstances (3). How extensive should such surveillance testing 

be, and how often should it be done? A model is needed to answer these questions. A little 

thought shows that the answers depend on many variables, such as current disease prevalence, 

test sensitivity, delays (if any) in isolating those who test positive, test costs, values ascribed to 

saving lives, etc. This paper describes a model that allows users, including those without 

programming skills, to easily change parameter values and compare results for a range of 

values. The model first calculates how much a given surveillance testing program would reduce 

the number of secondary cases per primary case, and then uses a “Susceptible-Infected-

Removed” (SIR) epidemiological model (4) to estimate how many cases would be averted by 

testing over a period of time. Based on (user-modifiable) values ascribed to averting 

hospitalizations and deaths, the model calculates cost-effectiveness from a societal point of 

view, and determines the fraction of the population that should be tested and the frequency of 
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testing to maximize cost-effectiveness. It also estimates the time at which surveillance testing 

ceases to be cost-effective, and the fraction of tests that are positive at this time, possibly 

useful as a proxy for cost-effectiveness. The model could be useful for those considering 

whether to implement surveillance testing, and in the design or evaluation of such programs. 

Assumptions. For simplicity, the model assumes that people with covid-19 are infectious for an 

average of 15 days and are equally infectious on each of these days. The duration of infectivity 

can be changed in the model. Consider a public health program that tests a fraction f of the 

population, chosen at random, every p days, with a test that has a sensitivity s (sensitivity =  

proportion of those with covid-19 who test positive). Further suppose that test results are 

available only after a potential delay so that those who test positive are isolated j days after 

testing, where j is an integer between 0 and 14. If j were 15 or greater, the test would not avert 

any cases so j>14 is not considered. Let R0 designate the average number of secondary cases 

per primary case in the absence of random testing. At the beginning of the pandemic, R0 was 

estimated to be ∼2.5, but with social distancing measures R0 has come down to ∼1.0-1.5 in the 

US (5). 

Number of secondary cases averted by surveillance testing. When surveillance testing is done 

once every 15 days or less often, the number of secondary cases prevented per primary case 

can be estimated as f*s*R0*(14-j)*(15-j)/(30p). A derivation is provided in the supplement. This 

estimate simplifies to ≈ f*s*R0/2 for j=0 and p=15 days. If only a fraction c of those tested 

comply with isolation, the number of secondary cases averted per primary case is reduced by a 

factor c. This estimate is based on multiplying the probability that testing is done on any 

particular day of an infected person’s infectious period, times the number of secondary cases 
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averted if testing were done on that day, and summing over all days that result in averting 

cases. 

If testing is done more frequently than once per infectious period, the calculation is more 

involved since it must consider the possibility that an infected person is not detected on the 

first several test dates during his/her infectious period, but then detected on a subsequent test. 

The number of cases averted from such late detections declines because there are fewer days 

left in an infectious period for isolation to have an impact. This calculation is described in more 

detail in the supplement. 

Optimal test fraction and frequency given budget constraint. If there were no cap on 

spending, the greatest reduction in spread would occur if everyone were tested (f=1) as often 

as possible (e.g. daily, p=1). But if an organization has a budget for random testing, f=1 and p=1 

may exceed the budget; in this case what fraction f of the population should be tested, at what 

frequency (1/p), to provide the greatest reduction in spread? The optimum turns out to be 

testing once per infectious period or less often, with the fraction tested determined by how 

many tests the budget allows when testing is performed every p days. Mathematical details are 

provided in the Supplement. In other words, all combinations of f and p constrained by the 

budget, but with p greater than or equal to the infectious period, are equally efficient in 

reducing secondary cases. Testing more frequently than once per infectious period is less 

efficient because then some of the cases detected come from those tested more than once, 

resulting in more dollars being spent per case detected. 
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Guideline for when confirmatory polymerase chain reaction (pcr) tests should be done for 

those who test positive on screening tests. Antigen tests for SARS-CoV2 recently approved by 

the FDA promise to be less expensive than pcr but may suffer from high false positive rates (2). 

False positives from non-pcr screening tests could be dealt with by doing a confirmatory pcr 

test on all those whose screening test is positive. From a cost-effectiveness point of view, 

confirmatory pcr tests should be done when the cost of doing confirmatory tests is less than the 

cost of isolating those who falsely test positive. An argument in the supplement shows that this 

is equivalent to doing confirmatory tests when the false positive rate exceeds the ratio of the 

cost of a pcr test to the cost of isolation. The latter might be estimated as the average value of 

2 weeks of lost income or about $2000 in the US. If pcr tests cost $100, then it would be cost 

effective to use them to confirm positive screening tests when the false positive rate exceeds 5 

percent.  

User-friendly cost-benefit model that facilitates comparing effects a range of parameter 

values. A more complete cost-benefit analysis takes into account testing costs, societal costs 

from isolations, money saved from hospitalizations averted (6), and monetized value of lives 

saved (7). A detailed description of the model is provided in the supplement. While potentially 

controversial, a ‘value per life’ is used by government agencies in other contexts, such as 

deciding how much to spend on highway safety infrastructure (7). This value is sometimes 

referred to a as the value of a statistical life; here it is designated ‘spending cap per life saved’. 

Values of spending cap per life saved ranging from $100,000 to $1M are considered in the 

following.  
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This model yields values for optimal fraction tested and frequency of testing that sometimes 

differ from those that maximally reduce R0; for example, sometimes optimal testing frequency 

is more than once per infectious period. This is not surprising because “extra” dollars spent on 

reducing R0 early can reduce the extent of the epidemic over time.  

Figure 1 shows a plot from the cost-effectiveness model for cumulative net benefit in $ per 

capita over time, where time is measured in units of 15 days (1 infectious period). Benefit 

curves for different spending caps per life saved are shown in different colors. The diagonal and 

downward directed arrows at the top of the display permit the user to toggle among a range of 

values for the number of days isolation is delayed, rate of compliance with isolation, test 

frequency, test sensitivity, cost of screening test, R0 before surveillance testing is initiated, and 

fraction tested; the cumulative net benefit curve updates immediately when these values are 

changed. In general, the cumulative benefit rises over time, reaches a peak, and then falls as 

the epidemic subsides. During the rising phase, the incremental benefits from random testing 

exceed incremental costs. At the peak of cumulative net benefit, incremental costs just equal 

incremental benefits. At later times, disease prevalence is sufficiently low that surveillance 

testing is no longer cost effective. Thus, the time when cumulative net benefit peaks is an 

estimate of when surveillance testing ceases to be cost effective. At early times cumulative net 

benefit may be negative or show a small depression because benefits from reducing spread 

take time to accrue whereas testing costs are constant in time. For the parameter values 

indicated in the top portion of the figure, surveillance testing is marginally cost effective at a 

spending cap per life saved of $200,000 (blue curve). Higher values of R0 make surveillance 

testing cost-effective at lower values of spending cap per life saved. The value of spending cap 
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per life saved that makes the peak of cumulative net benefit just greater than zero is effectively 

the net cost per life saved from surveillance testing, a measure that could be compared to costs 

per life saved from other interventions. The net cost per life saved from surveillance testing 

should be evaluated at values of fraction tested and frequency of testing that maximize 

cumulative net benefit. 

Figure 2 is a table of the values of fraction tested f and period of testing p that maximize 

cumulative net benefit, and the time when net benefit is maximal, for screening tests costing 

$10, $30 or $100, with other parameters shown at the top. When surveillance testing is 

marginally cost-effective, choosing optimal values for extent of testing and frequency of testing 

is crucial for overall cost-effectiveness.  

Figure 3 is a plot of new infections (per tenth of an infectious period) per capita over time with, 

versus without, surveillance testing.  In this illustration, infections decrease monotonically over 

time given surveillance testing (blue curve) because the starting value of R0 (1.1) was chosen to 

be only slightly above 1 and testing immediately reduced it to below 1.  

Table 1 shows the fraction of tests that are positive (“critical fractions”) at the time when the 

model suggests surveillance testing just ceases to be cost-effective, for illustrative values of 

isolation delay, compliance rate, and screening test cost. In all cases, frequency of testing and 

fraction of population tested were chosen to maximize cost-effectiveness. Of note, sometimes 

the critical fractions are considerably lower than thresholds suggested for test positivity in 

clinical testing (8). 
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The model was implemented in Analytica 101 software, which can be downloaded for free (9). 

The model is free on request from the author and runs using the Analytica 101 software, 

allowing users to compare results from a range of parameter values. Figure e1 in the 

supplement shows the graphical interface where users can change parameter values, or ranges 

of parameter values, and select outputs for display. 

Model limitations. The model does not allow for changing the fraction tested or frequency of 

testing during a testing program; in theory, this could increase cost-effectiveness. Nor does the 

model account for possible changes in R0 during a testing program due to behavioral changes 

or public health measures other than surveillance testing. As a practical matter, this flexibility 

could be achieved by considering model results up to a time t, and then running the model for 

an additional period starting with revised estimates of R0 and initial parameters appropriate to 

time t. This could be important if, for example, vaccination during a surveillance testing 

program led to rapid reduction in the fraction of the population that is susceptible. The model 

is conservative in that it does not consider indirect economic benefits from curtailing the 

epidemic, such as reductions in jobs lost. 

Conclusions. A model is presented that allows rapid assessment of the impact of surveillance 

testing on epidemic dynamics and optimization of program variables such as extent and 

frequency of testing. An important feature of the model is that it gives users flexibility in 

choosing values for parameters that involve value judgement or political consideration (such as 

value per life saved), or may change over time during the epidemic (such as number of 

secondary cases per primary case). 
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Figure 1. Cumulative net benefit (in $ per capita) of surveillance testing over time, for four values of 

spending cap per life saved ($1M, $500,000, $200,000, $100,000). Time is in units of infectious periods 

(∼2 weeks). Given parameter values shown at the top, surveillance testing is just cost-effective at a 

spending cap per life saved of $200,000. Running the program, the user can choose among a range of 

parameter values using the diagonal or downward-directed arrows at the top. Current effective R is R0 

in the absence of surveillance testing. Other parameters that can be set by the user are shown in 

Supplement Figure e1. 
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Figure 2. Table of values for fraction of population tested and test period that maximize cumulative net 

benefit, for screening test costs (rows) of $10, $30, and $100. The time when cumulative net benefit is 

maximal is given in the fourth column (in units of infectious periods, ∼2 weeks). Time =0 is returned 

when testing is not cost-effective, as indicated here when screening tests cost $100. Parameters whose 

values can be changed by the user using the diagonal or downward-directed arrows are shown in the 

upper portion of the figure. Other parameters that can be set by the user are shown in Supplement 

Figure e1. 
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Figure 3. Disease incidence over time (in units of number of new cases per tenth of an infectious period 

per capita) with, versus without, surveillance testing. “u” on the y axis denotes cases per million people. 

Parameters whose values can be changed by the user using the diagonal or downward-directed arrows 

are shown in the upper portion of the figure. Other parameters that can be set by the user are shown in 

Supplement Figure e1. 
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Table 1. Critical positive test fraction. Fraction of screening tests that are positive when surveillance 

testing just ceases to be cost-effective is shown in fourth column for illustrative values of isolation delay, 

compliance rate and screening test cost. In all cases, spending cap per life saved was $500K, R0 was 

1.25, test sensitivity was 0.75, and test frequency and fraction of population tested were chosen to 

maximize cost-effectiveness. 

Isolation delay Compliance rate Screening test cost Critical positive test 

fraction 

3 days 0.75 $10 0.003 

3 days 0.75 $30 0.025 

1 day 0.5 $10 0.004 
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