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Abstract 

Importance: False negative SARS-CoV-2 tests can lead to spread of  infection in the inpatient setting to 

other patients and healthcare workers. However, the population of patients with COVID who are admitted 

with false negative testing is unstudied.  

Objective: To characterize and develop a model to predict true SARS-CoV-2 infection among patients 

who initially test negative for COVID by PCR. 

Design: Retrospective cohort study. 

Setting: Five hospitals within the Yale New Haven Health System between 3/10/2020 and 9/1/2020. 

Participants: Adult patients who received diagnostic testing for SARS-CoV-2 virus within the first 96 

hours of hospitalization. 

Exposure: We developed a logistic regression model from readily available electronic health record data 

to predict SARS-CoV-2 positivity in patients who were positive for COVID and those who were negative 

and never retested.  

Main Outcomes and Measures: This model was applied to patients testing negative for SARS-CoV-2 

who were retested within the first 96 hours of hospitalization. We evaluated the ability of the model to 

discriminate between patients who would subsequently retest negative and those who would subsequently 

retest positive.  

Results: We included 31,459 hospitalized adult patients; 2,666 of these patients tested positive for 

COVID and 3,511 initially tested negative for COVID and were retested. Of the patients who were 

retested, 61 (1.7%) had a subsequent positive COVID test. The model showed that higher age, vital sign 

abnormalities, and lower white blood cell count served as strong predictors for COVID positivity in these 

patients. The model had moderate performance to predict which patients would retest positive with a test 

set area under the receiver-operator characteristic (ROC) of 0.76 (95% CI 0.70 - 0.83). Using a cutpoint 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20241414doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20241414
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

for our risk prediction model at the 90th percentile for probability, we were able to capture 35/61 (57%) of 

the patients who would retest positive. This cutpoint amounts to a number-needed-to-retest range between 

15 and 77 patients. 

Conclusion and Relevance: We show that a pragmatic model can predict which patients should be 

retested for COVID. Further research is required to determine if this risk model can be applied 

prospectively in hospitalized patients to prevent the spread of SARS-CoV-2 infections. 
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Introduction 

Coronavirus disease-2019 (COVID-19), the illness caused by the SARS-CoV2 virus has had widespread 

global effects and has caused significant strain on both inpatient and outpatient healthcare institutions.1,2 

Reports during the early phase of the pandemic showed significant nosocomial transmission of disease.3-5 

Therefore, a major consideration for health systems is mitigating the spread of virus within the hospital 

setting to uninfected patients and to healthcare workers. Another unique challenge of COVID-19 has been 

management of protective personal equipment and maintaining adequate rooming and facilities for 

patients hospitalized with the illness.6 

Many hospitals have enacted strategies to test patients directly in the emergency room prior to admission 

to a hospital unit with the goal of appropriately rooming COVID-positive patients on COVID-specific 

wards and provide appropriate personal protective equipment to healthcare workers.7 One unstudied yet 

important population are patients who initially test negative for COVID and later retest positive for the 

virus.8 Though COVID tests used in hospital settings are very specific, approximately 30% of tests in 

COVID patients are false negative and significant temporal variability of viral shedding for 

oropharyngeal samples have been noted.9,10 Such patients may pose a significant risk especially in the 

hospital setting. These patients may be roomed with non-infected patients and thus may expose other 

patients, visitors, and healthcare workers to SARS-CoV-2. Moreover, nosocomial SARS-CoV-2 

infections in hospitalized patients are concerning as hospitalized patients are often older, 

immunocompromised, and have multiple comorbidities which are all risk factors for severe COVID.11 

In this retrospective study, we evaluate this group of patients who initially test COVID negative but 

subsequently retest positive to identify patient characteristics, vital signs, and laboratory tests that may 

predict a subsequent positive test for COVID. We develop a risk model for predicting a patient’s COVID 

‘positivity’ and apply it to the broader COVID-negative cohort to identify patients who will later have a 

positive test. We hypothesized that a model could be developed that would discriminate which patients 
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who initially test negative for COVID may indeed have the infection, identifying a population for targeted 

re-testing. 

 

Methods 

Patients and Setting 

We included adult patients hospitalized at one of five hospitals within the Yale New Haven Health 

System (YNHHS) between 3/10/2020 and 9/1/2020 who received nasopharyngeal PCR testing for SARS-

CoV-2 virus during the time period of their hospitalization. YNHHS includes 6 hospitals across 

Connecticut and Rhode Island and includes a variety of settings, including academic/community, 

urban/sub-urban, and teaching/non-teaching. 

The first 96 hours of a patient’s hospitalization served as the observation period with the aim of limiting 

the analyses to patients who likely initially had COVID on presentation rather than patients who 

developed nosocomial COVID during their hospitalization. Patients who did not have any COVID tests 

during the observation period were excluded from analysis. 

This study operated under a waiver of informed consent and was approved by the Yale Human 

Investigation Committee (HIC # 2000027733). 

 

Variables and Outcomes 

We collected longitudinal data from the electronic health record including demographics, comorbidities, 

procedures, medications, laboratory results, and vital signs. All data were extracted from the data 

warehouse of our electronic health record vendor Epic (Verona, WI). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20241414doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20241414
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Patient variables were chosen pragmatically for those that would be simpler to embed into a clinical 

decision support platform either directly onto the EHR or as a web service. These variables were chosen 

as they contained very low (<10%) missingness for hospitalized patients within the first 24 hours of 

hospitalization. Variables included in the model included demographics (age, sex, race), comorbidities 

(congestive heart failure, chronic pulmonary disease, diabetes, obesity, history of arrhythmia, 

hypertension, alcohol use disorder, metastatic cancer, stroke, transient ischemic attack, HIV, and the 

Elixhauser comorbidity index), laboratory values (sodium, potassium, chloride, bicarbonate, blood urea 

nitrogen, creatinine, glucose, hemoglobin, platelet count, white blood cell count and lymphocyte 

percentage) and vital signs (temperature, systolic blood pressure, diastolic blood pressure, respiratory rate, 

and oxygen saturation). Comorbidities were defined as per the Elixhauser comorbidity index based on 

codes from the International Classification of Diseases-10.12  The first measurement for these variables 

were used in analyses. 

 

Statistical Methods 

We used descriptive statistics to compare the populations of patients who initially tested positive, those 

who initially tested negative and later tested positive, and those who initially tested negative and remained 

negative throughout the hospitalization. Chi-square testing was used to compare categorical variables and 

the Kruskall-Wallis test was used for continuous covariates. 

 

We trained a logistic regression model to predict COVID-positivity in patients with an initial positive 

COVID test (+/0) and those with an initial negative COVID test who were never retested (-/0). We then 

tested the performance of this model amongst individuals with initial negative COVID test who were 

retested and negative (-/-) and retested and positive (-/+) within the first 96 hours of their hospitalization. 

This allowed evaluation of model performance among individuals that could clearly be classified as ‘false 
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negative’ or ‘true negative’ at the time of initial testing. Variable importance in the logistic regression 

model were determined by the magnitude of the absolute value of the z-score. 

Area under the operator receiver curve (AUROC) as well as the precision-recall curve (PRC) are reported 

regarding performance of the model on the validation set. Quantiles of probabilities from the logistic 

model were developed from the training set and then applied to test set probabilities to determine cut 

points for the prediction. We report quantile of probability which was chosen clinically to optimize the 

sensitivity of patients who would be appropriately identified as indeed having COVID while minimizing 

the ‘number needed to test’. 

All analyses were performed using R (Version 4.0.0, Vienna, Austria).13 We defined statistical 

significance at P<0.05. 

This study utilized the Strengthening the Reporting of Observation Studies in Epidemiology (STROBE) 

guidelines. 

 

Results 

There were a total of 40,030 patients hospitalized at the five Yale-New Haven Health system hospitals 

between 3/10/2020 and 9/1/2020. Of these, 31,459 adult patients had a COVID test during the first 96 

hours of hospitalization and were included in analyses (Figure 1). Of these patients, there were 2,666 

patients who tested positive for COVID and 25,382 patients who tested negative and were never retested. 

This group of 28,048 patients served as the training population for modeling. The validation set was 

composed of 3,511 patients who initially tested negative for COVID and were retested, of which 61 

(1.7%) retested positive. 

We compared patients who were initially COVID-positive to those who were falsely negative on for their 

initial test (Table 1). These two populations were similar in terms of demographics, baseline vital signs, 
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comorbidities, as well as initial laboratory values. On admission, COVID-negative patients were noted to 

have a higher Elixhauser comorbidity score, more diabetes, slightly elevated creatinine, and slightly lower 

hemoglobin. Characteristic of all patients are presented in Supplemental Table 1. 

A multivariable logistic regression to predict initial COVID positivity was performed with the full 

equation of the model with covariates supplied in in Supplemental Figure 1A and B. The most 

important variables in the logistic regression, as measured by the absolute value of their z-score, to predict 

increased risk of COVID positivity were higher age, black race, lower initial oxygen saturation, higher 

initial temperature, and lower white blood cell count. 

The model was then applied to predict which patients would retest as COVID positive in the validation 

cohort. The AUROC of the model to predict this outcome was 0.76 (95% CI 0.70 - 0.83) with AUROC 

curve displayed in Figure 2. The precision-recall curve is provided in Supplemental Figure 2. 

The probability scores from the logistic regression model for the several patient groups of patients who 

were initially COVID negative and not retested (-/0), COVID negative and retested negative (-/-), COVID 

negative and retested positive (-/+), and COVID positive and not retested (+/0) are displayed in Figure 3. 

Patients categorized as false negatives on initial testing had higher probabilities per the model than the 

persistently COVID negative cohort. Probability of testing positive (mean, 95% CI) for COVID among 

the COVID (-/0), COVID (-/-), COVID (-/+) and COVID (+/0) was 0.077 (0.075, 0.078), 0.10 (0.09, 

0.11), 0.28 (0.21, 0.35) and 0.34 (0.33, 0.36) respectively. 

Based on the precision-recall curve, a cutpoint of >90th percentile for the probability per the logistic 

model was used as the predictor for whether a patient who initially tested negative for COVID would 

retest positive. At this cutpoint, the model predicts that 536 patients in the validation cohort are COVID 

positive; 35/536 were indeed COVID positive on retest (6.5%) or one of every 15 patients; notably this 

would capture 57% of the total false negative patients. If this model threshold is applied over all initially 

COVID negative patients, 35/2,680 (1.3%) would be captured, equating to one true positive per 77 tests. 
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Discussion 

In this study, we assessed the performance of a model for predicting which patients who are initially 

deemed COVID-negative may retest positive. Our model used variables which are routinely measured for 

hospitalized patients and displayed good performance to discriminate which patients, when retested, 

would retest positive. Several variables appeared important for predicting which patients may need to be 

retested for COVID; increased age, lower oxygen saturation, higher temperature, and lower white blood 

cell count were associated with COVID positivity. These predictive variables are concordant with 

previous models of COVID positivity.14,15  

We chose a cutpoint of model risk prediction that maximized the sensitivity of patients correctly 

identified while minimizing the number of patients who would need to be tested. At the 90th percentile of 

model risk score, we determined a ‘number needed to test’ ranging from best to worst case scenario of 15 

to 77 patients, respectively. The worst case assumes the unlikely scenario where zero of the patients who 

initially tested negative and never retested (-/0) truly had COVID; thus, the true number needed to test is 

very likely lower than this upper bound. 

Our study has several strengths. First, our model was built and tested on a very large patient dataset with 

data from 6 hospitals capturing a broad diversity of patients and clinical settings. Second, we used readily 

available data elements from the EHR which promotes ease of integration of such a model, rather than 

more complicated modeling approaches which may require non-EHR solutions such as cloud computing 

to apply. Our model does not require measurement of biomarkers, cytokines, or other specialized clinical 

measurements. Third, our model had robust performance despite being trained over a very broad 

population of hospitalized adults with COVID tests and was validated in a fundamentally different 

population than that in which it was derived. We argue that the model is thus broadly generalizable. 
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Our study should be viewed in light of several weaknesses. First, our risk model demonstrated moderate 

performance, thus we do acknowledge that many patients would need to be retested to find a single 

COVID positive patient. Second, our model was built from and applied to patients who had vital signs, a 

basic metabolic panel, and a complete blood count measured on admission; thus the model would not be 

generalizable to patients who may not have vital signs or laboratory values obtained (e.g psychiatric 

patients or routine obstetric patients). Third, our study is retrospective in nature and we are unable to 

conclude the efficacy of the implementation of this model for retesting. Another limitation is that our 

model was evaluated on patients who were tested twice for COVID; there were many patients who were 

COVID negative on presentation and never retested, therefore we are unable to provide a clear number-

needed-to-test as some of these patients may have been false negatives. 

To our knowledge, this is the first study to investigate the population of false negative patients with 

COVID in the hospitalized setting. We suggest that by building and embedding a model using variables 

commonly available in the EHR, hospitals could flag patients for targeted retesting, potentially reducing 

nosocomial spread of COVID-19.. Testing between 15 and 77 patients to find a single COVID negative 

patient who is truly positive should be considered in light of several logistic concerns. On one hand, this 

is a large amount of testing which may bring about issues of false positive COVID tests and significant 

expenditure of resources. Conversely, if a health system has ample COVID testing capabilities or 

capabilities to consider pooled COVID testing, this approach may be reasonable. We also argue that the 

effects of missed COVID positive patients may be profound at an institution with potential infection of 

other patients within a ward or infection of healthcare workers and other hospital staff who may believe 

the patient is ‘ruled out’ for COVID. Further investigation is warranted to determine the cost effectiveness 

of an algorithm-guided retesting approach. 

 

Conclusions 
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Our study is the first description of and model development for patients who are initially tested negative 

for COVID on hospitalization but are later retested and found to be COVID positive. We show that a 

pragmatic model can be constructed to predict which patients should be retested for COVID and found a 

reasonable number-needed-to-test between 15 and 77 hospitalized patients. Further research is needed to 

determine the cost-effectiveness of implementing a retesting approach as well as its efficacy in clinical 

practice. 
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Figure Titles and Legends 

Figure 1. Cohort Diagram 
 
COVID +/0: tested positive for COVID on admission and was not retested within 4 days 
COVID -/0: tested negative for COVID on admission and was not retested within 4 days 
COVID -/+: tested positive for COVID on admission and upon retesting (within 4 days) tested positive 
for COVID 
COVID -/-: tested negative for COVID on admission and upon retesting (within 4 days) tested negative 
for COVID 

 

 

Figure 2. Receiver operator curve to detect COVID test positivity among those who had a negative 
COVID test on admission and were retested   

 

 

Figure 3. Prediction model probabilities of testing positive for COVID among subpopulations 

COVID +/0: tested positive for COVID on admission and was not retested within 4 days 
COVID -/0: tested negative for COVID on admission and was not retested within 4 days 
COVID -/+: tested positive for COVID on admission and upon retesting (within 4 days) tested positive 
for COVID 
COVID -/-: tested negative for COVID on admission and upon retesting (within 4 days) tested negative 
for COVID 
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Table 1. Characteristics of patients with COVID positive test on admission vs. those who tested negative on admission and had a 
subsequent COVID positive test 
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 COVID (+/0)  COVID (-/+)  

 N = 2,666 N = 61 p-value1 

Demographics 

  Age, median (IQR), years 66.01 (52.03, 79.99) 65.85 (53.85, 77.34) >0.9 

Female, No/Total No (%) 1,332 / 2,666 (50) 26 / 61 (43) 0.3 

Race, No/Total No (%)   0.5 

Non-White 1,407 / 2,666 (53%) 29 / 61 (48%)  

White 1,259 / 2,666 (47%) 32 / 61 (52%)  

Latino, No/Total No (%) 691 / 2,666 (26%) 14 / 61 (23%) 0.7 

Hospital, No/Total No (%)   0.4 

Yale New Haven Hospital 871 / 2,666 (33%) 22 / 61 (36%)  

St Raphael’s Campus 542 / 2,666 (20%) 13 / 61 (21%)  

Bridgeport Hospital 739 / 2,666 (28%) 19 / 61 (31%)  

Greenwich Hospital 421 / 2,666 (16%) 6 / 61 (9.8%)  

Lawrence and Memorial Hospital 76 / 2,666 (2.9%) 0 / 61 (0%)  

Westerly Hospital 17 / 2,666 (0.6%) 1 / 61 (1.6%)  

Baseline Characteristics, median (IQR) 

Systolic, mmHg 131.00 (117.00, 148.00) 125.00 (108.00, 147.00) 0.068 

Diastolic, mmHg 76.00 (65.00, 85.00) 75.00 (66.00, 82.00) 0.4 

Pulse, beats per minute 93.00 (80.00, 108.00) 90.00 (82.00, 112.00) 0.8 

Respiratory rate, breaths per minute  20.00 (18.00, 22.00) 20.00 (18.00, 22.00) >0.9 

spO2, % 96.00 (93.00, 98.00) 96.00 (94.00, 98.00) 0.3 

Temperature, Fahrenheit  98.74 (97.89, 100.38) 98.74 (97.84, 100.26) >0.9 

BMI, Kg/m2 28.37 (24.15, 33.82) 27.39 (24.06, 30.57) 0.2 

Comorbidities 

Elixhauser score, median (IQR) 5.00 (2.00, 9.00) 6.00 (3.00, 11.00) 0.039 

CHF, No/Total No(%) 644 / 2,666 (24%) 17 / 61 (28%) 0.6 

CPD, No/Total No(%) 882 / 2,666 (33%) 21 / 61 (34%) >0.9 

Diabetes, No/Total No(%) 1,069 / 2,666 (40%) 35 / 61 (57%) 0.001 

Obesity, No/Total No(%) 853 / 2,666 (32%) 23 / 61 (38%) 0.4 

Arrhythmia, No/Total No(%) 1,006 / 2,666 (38%) 26 / 61 (43%) 0.5 

HTN, No/Total No(%) 1,744 / 2,666 (65%) 42 / 61 (69%) 0.7 

Malignancy, No/Total No(%) 305 / 2,666 (11%) 7 / 61 (11%) >0.9 

Metastasis, No/Total No(%) 77 / 2,666 (2.9%) 3 / 61 (4.9%) 0.4 

Alcohol abuse, No/Total No(%) 271 / 2,666 (10%) 7 / 61 (11%) >0.9 

Drug abuse, No/Total No(%) 258 / 2,666 (9.7%) 6 / 61 (9.8%) >0.9 

Stroke, No/Total No(%) 155 / 2,666 (5.8%) 7 / 61 (11%) 0.090 

TIA, No/Total No(%) 55 / 2,666 (2.1%) 2 / 61 (3.3%) 0.4 

  HIV, No/Total No(%) 40 / 2,666 (1.5%) 1 / 61 (1.6%) 0.6 

Laboratory Values, median (IQR) 

Sodium, mmol/L 137.00 (134.00, 140.00) 138.00 (136.00, 143.00) 0.8 
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1Statistical tests performed: Kruskal-Wallis test; chi-square test of independence; Fisher's Exact Test for Count Data 
with simulated p-value (based on 2000 replicates); Fisher's exact test 
 
Systolic: systolic blood pressure; Diastolic: diastolic blood pressure; Pulse: pulse rate (beats per minute); 
Respiratory rate;  spO2: oxygen saturation; Temperature; BMI: body mass index, CHF: congestive heart failure; 
CPD: chronic pulmonary disease; HTN: hypertension; TIA; transient ischemic attack; HIV; human 
immunodeficiency virus 
 
SI conversion factors: for BUN multiply by 0.357 (mmol/L); for creatinine multiply by 88.4 (micromol/L); for 
WBCC x103 mm3 is equivalent to liter 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Potassium, mmol/L 4.00 (3.70, 4.40) 4.10 (3.70, 4.30) 0.4 

Bicarbonate, mmol/L 24.40 (22.00, 27.00) 24.00 (22.00, 26.25) 0.2 

BUN, mg/dL 18.00 (12.00, 30.00) 20.00 (13.00, 34.00) 0.3 

Creatinine, mg/dL 1.00 (0.78, 1.47) 1.08 (0.81, 1.60) 0.014 

Chloride, mmol/L 100.00 (97.00, 104.00) 102.00 (98.00, 107.00) 0.4 

Glucose, mmol/L 122.00 (104.00, 162.00) 125.00 (109.00, 161.00) 0.2 

Hemoglobin, g/dL 12.90 (11.50, 14.30) 12.50 (10.50, 14.00) 0.004 

Platelet count, x109/L 204.00 (159.00, 263.00) 234.00 (190.00, 327.00) 0.003 

WBCC,  x103 mm3 6.80 (5.10, 9.40) 8.60 (5.80, 11.70) 0.3 

% Lymphocyte, % 15.10 (9.40, 22.10) 13.90 (10.20, 17.80) >0.9 

Anion Gap. mmol/L 14.00 (12.00, 16.00) 14.00 (12.00, 16.00) 0.3 
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