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Epidemiologic Inputs 

CRAM was parameterised wherever possible with data from Alberta, including estimates for the total 

population by age group and risk of severe outcome, hospitalisation rate by age group, and LOS for 

hospitalised cases. Odds ratios for the risk of hospitalisation were estimated by risk group using logistic 

regression. Active cases in the model include both diagnosed and undiagnosed cases, fitted using 

seroprevalence data from 20 May 2020 provided by Alberta Health. Details on all model inputs are provided in 

Table 1. 

Data from the Google Community Mobility report [20] were used as key inputs for contact reductions in 

workplaces and other locations. A rapid expert elicitation exercise was conducted to obtain estimates for 

unknown model parameters. The initial rapid elicitation activity surveyed experts in Alberta on reductions in 

contacts for seniors aged 75 years and older, high-risk individuals, and reduction in contacts in home locations. 

A second rapid elicitation exercise determined likely return-to-school rates and in-school contact reductions by 

age group. We adapted elicitation methods and expert training materials from the SHELF (Sheffield ELicitation 

Framework) tool [21], the results of which are included in Appendix 2. 

Table 1. Epidemiologic Parameters 

Symbol Parameter 

name 

Baseline value Description and 

source 

� Transmission  Fitted. 

���� Number of 

individuals 

exposed at 

model 

initialisation 

10 cases, distributed between age groups 35–40 years to ≥75 years 

on model day 1. 

Assumed. 

�� , ��	��
 

 

Seasonal 

transmission 

adjustment 

A standard function from mathematical epidemiology [22] was 

modified, as given in Appendix C. 

season can take on values between 0 and 1 and is centred to reach 

its minimum value on the mid-date between the hottest day of the 

year in Edmonton and Calgary. 

In this report, ����� = 0.3, which solves to 0.4 at its minimum, 

meaning that transmission at the seasonal minimum is 40% of 

transmission at the seasonal maximum. 

Assumed. 

��� Susceptibility by 

age group 

0.489 if aged <10 years, 1 otherwise. Estimates taken 

from a modelling 

study [23]. 

���������,�,	,� Contact 

reduction in 

schools 

A 100% reduction in the contact rate is applied after 15 March, 

which is maintained for the duration of the modelling period in the 

baseline scenario. 

The following values were elicited from the expert panel for the fall 

return to school (median and 90% CI): 

Age group Contact reduction Proportion 

returning 

5–9 years 0.692 [0.358, 0.869] 0.760 [0.399, 0.933] 

10–14 years 0.573 [0.314, 0.846] 0.831 [0.399, 0.941] 

15–19 years 0.522 [0.278, 0.861] 0.860 [0.634, 0.994] 

Rapid expert 

elicitation 

exercise. 
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�����
�,� Contact 

reduction in 

homes at time t 

A 41% reduction in the contact rate is applied after 17 March. Rapid expert 

elicitation 

exercise.  

Home refers to 

all residential 

locations, so that 

reductions in 

visits to 

secondary 

households are 

reflected in 

these contact 

rates. 

�����	,�, 

�������	,� 

Contact 

reduction in 

workplaces and 

other locations 

at time t 

Reduction in the contact rate relative to normal (100), given in a 

weekly interval. Future weeks are expected to remain constant at 

the rate of the most recent week. Day 1 is 6 March, all dates prior 

have an assumed contact reduction of 100, indicating normal 

contact rates. 

Start day Other Workplace 

1 100 100 

8 86 80 

15 62 57 

22 54 51 

29 56 50 

36 55 45 

43 60 53 

50 62 53 

57 66 55 

64 68 58 

71 71 55 

78 75 64 

85 78 67 

92 78 68 

99 81 70 

106 84 71 

113 81 65 

120 84 69 

127 84 71 

134 84 70 

141 85 71 

148 83 64 

  

Based on 

reduction in time 

spent in 

workplaces, or 

combined time 

spent at retail, 

grocery, and 

transit locations 

from Google 

Community 

Mobility data 
[20].  

��������	,� Contact 

reduction for 

seniors 

A 61% reduction in the contact rate for seniors in all locations is 

applied after 20 March. Seniors defined in this model as those aged 

75 and above. 

Rapid expert 

elicitation 

exercise. 
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���	 Contact 

reduction for 

high-risk 

individuals  

A 64% reduction in the contact rate is applied to reflect physical 

distancing for high-risk individuals after 15 March. 

Rapid expert 

elicitation 

exercise.  

��,	,� Proportion of 

susceptible 

group by age 

and risk 

changing to new 

contact rates at 

time t 

User input day for scenario analysis, assumed 0 for baseline. 

Can be used for scenarios with different contact rates in a subset 

of the population. 

User/scenario 

input. 

��,	,� Proportion of 

susceptible 

group by age 

and risk 

immunised at 

time t 

User input day for scenario analysis. 

 

User/scenario 

input. 

��� Proportion of 

community 

infections 

isolated  

User input day for scenario analysis, 0.169 based on 

seroprevalence studies conducted in Alberta. Note that the 

Isolation compartment represents case isolation only. 

User/scenario 

input. 

������� Latent period Mean 3.3 days.  PHAC Modelling 

Evidence 

summary [24]. 

����������� Incubation 

period 

Mean 1.3 days. (Gamma shape 17.916, rate 3.908) 

 

Estimated by applying a gamma distribution to the median and 

maximum values identified in the PHAC report (4.5 and 6.5, as 50
th

 

and 95
th

 percentiles, respectively) and subtracting the latent 

period.  

PHAC Modelling 

Evidence 

summary [24]. 

����������� Infectious 

period 

Mean 20.3 days. (Gamma shape 11.608, rate 0.537) 

 

Estimated by applying a gamma distribution to the median and 

maximum values identified in the PHAC report (21.0 and 33.0, as 

50
th

 and 95
th

 percentiles, respectively) and subtracting the 

incubation period. 

PHAC Modelling 

Evidence 

summary [24]. 

����� Days in hospital Mean 8.08 days.  Alberta Health 

data. 

���������� Days prior to 

isolation of 

cases 

5 Assumed. 

��

����� Days prior to 

immune 

response from 

immunisation 

14 Assumed. 

������  OR of hospital 

for high-risk 

individuals 

6.304 (95% CI [4.973, 7.991]). Alberta Health 

data. 

������� OR of death for 

high-risk 

individuals 

42.384 (95% CI [22.449, 80.018]). 

 

Alberta Health 

data.  

������ Fitting term for 

hospitalisation 

probability 

 Fitted. 
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���� Hospitalisation 

risk by age 

Hospitalisation risk by age estimated from cumulative counts 

converted to proportion by age and analysed in an exponential 

regression for model input.  

Fitted values: Max[ �6.346 � 0.3093"#, 0$ 

Alberta Health 

data. 

��,	 Probability of 

hospitalisation 

Function of %�&�, '(����, and the fitted value of &)����.  

����� Fitting term for 

LTC probability 

 Fitted. 

*�,	 Probability of 

LTC admission 

Function of &)���.  

+,	 Probability of 

death from 

community 

 Fitted. 

+-	 Probability of 

death from LTC 

Function of ., '(����� , /2.  

+1	 Probability of 

death from 

hospital 

Function of ., '(����� , /3.  

� Fitting term for 

deaths from 

LTC, hospital, 

and ICU 

 Fitted. 

2- LTC proportion 

dying 

116/474 Alberta Health 

data. 

21 Hospital 

proportion 

dying 

93/460 Alberta Health 

data. 

3�,	 Population by 

age and risk of 

poor outcome 

Total population is spilt by 5-year age groups up to age 75 years. 

The population is split into two risk groups, by risk of severe 

outcome related to COVID-19.  

High-risk is defined as individuals who have met an administrative 

data case definition for ischemic heart diseases (ICD-10 codes: I20–

I25), respiratory diseases including asthma (ICD-10 codes: J45, J46) 

and COPD (ICD-10 codes: J41–J44). 

A subset of the high-risk population aged ≥70 years is shifted to a 

17
th

 age group representing LTC residents, with the same contact 

rates as the high-risk ≥75 years age group, and additional LTC 

isolation policies applied. 

Alberta Health 

data. 

4�
5	45�, 

and 

4�
5	456�, 

Contact matrix School, home, workplace, other. 

Adjusted for different interventions and applied to the 7�,  and 

78�,  compartments, respectively. 

Canadian 

estimated 

contact matrices. 

Transformed to 

symmetric [19]. 

Note: CI: confidence interval; COPD: chronic obstructive pulmonary disease; ICD-10: International Statistical Classification 

of Diseases and Related Health Problems, 10
th

 revision; ICU: intensive care unit; LTC: long-term care; OR: odds ratio; SD: 

standard deviation 

 

 

 

Economic Evaluation 
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The study is conducted from a health system payer perspective. Outcomes are tabulated from February 5
th

, 

2020 to January 1
st
, 2021, spanning 332 days. Health system costs include hospitalisation, incremental LTC 

costs for infection prevention measures, and the cost of purchasing and administering a vaccine. Health utility 

losses include disutility from infection, hospitalisations and LTC infections (during stay and following 

discharge), and deaths. We assessed economic outcomes using the NMB framework [18]. We apply the health 

opportunity costs estimated for Canada [25], using the value of $30,000 per QALY that is recommended for all 

Canadian provinces. All costs are converted to 2020 Canadian dollars, and discounted at an annual rate of 

1.5%, according to CADTH guidelines [26]. 

As no health utility estimates are currently available for COVID-19 disease, we identified utility impacts of 

similar conditions. We estimated disutility for community COVID-19 infections from an EQ-5D survey of 

individuals with lab confirmed influenza B infections, stratified by age group [27]. Because hospitalised COVID-

19 cases are often diagnosed with pneumonia, we used disutility estimates for viral pneumonia inpatients [28] 

to estimate in-facility treatment losses, as well as utility losses for the year following facility discharge. We 

estimated utility losses from premature death using the life table approach developed by Briggs et al. [29], 

adjusting for baseline utility, increased relative mortality rates, and discounted. All disutility values are 

converted to QALYs. Costs related to community infections are not included. We estimated incremental direct 

costs associated with COVID-19 hospitalisation and ICU admission treatment based on published Alberta per-

diem costs, as well as the incremental cost of infection prevention and control for LTC cases. Cost and disutility 

estimates are presented as incremental values in Table 2. These incremental costs and disutility values are 

applied to the relevant compartments, and the resulting NBM is estimated for each scenario. 

Fitting 

We fit five parameters: virus transmissibility, the probability of hospitalisation, infections in LTC, and the 

probability of death from either facility or community infections. Using a deterministic version of the model 

defined with mean values of each input parameter we fit observed surveillance data for daily hospital census 

counts, as well as cumulative daily death and LTC counts from 6 April to 13 August. Given the interdependence 

in the fitting parameters, we used simultaneous fitting methods by optimizing model fit over a Latin hypercube 

generated from plausible values for each parameter. Optimal parameter values are identified when the sum of 

the normalised difference in model and observed outcomes are minimised.  

Outputs 

The CRAM sampled from the probability distributions of model inputs, as either 10% of results from the model 

fitting, or as estimated from the parameter source (Tables 1 & 2), to account for outcome uncertainty over 200 

iterations, and then generated model outputs from the sampled values. Outputs include cumulative estimates 

for the mean number of active cases, total infections, and hospitalisations, with credibility intervals to present 

results from all simulations.  

The economic outputs include expected NMB, a summary statistic calculated as (benefit * cost-effectiveness 

threshold)-cost, so that comparisons without the use of ratios can be made [18]. For each of the vaccine 

scenarios, incremental net benefit (iNB) is estimated relative to the baseline with no vaccine.   

 

 

Table 2. Economic Parameters 
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Parameter Name Baseline Value Source and Description 

Disutility, 

Hospitalisation, ICU 

admission, LTC case 

During infectious period, QALY loss 

0.58. 

  

Assume uniform distribution +/- 25%. 

QALY loss from viral pneumonia, as estimated by [28]. 

QALY loss at admission multiplied by duration in the 

infectious compartment. SE or other measures can not 

be calculated because data is not available for paired 

t-test.  

Disutility, community 

case 

QALD loss, uniform distribution (min-

max) by age group: 0-15 (0.58-3.27), 

16-65 (00-10.83), 65+ (1.84-7.17). 

  

Influenza B estimate from [27]. Multiplied by duration 

in the infectious compartment and adjusted to QALY. 

  

Disutility, facility 

discharge 

  

Beta distribution, mean 0.10, SE 

0.0158 

QALY loss from viral pneumonia, as estimated by [28]. 

  

Disutility, death Age Mean Range 

0-9 68.96 (61.45-76.47) 

10-19 59.02 (51.51-66.54) 

20-29 50.11 (43.28-56.95) 

30-39 41.64 (35.98-47.3) 

40-49 33.27 (28.49-38.04) 

50-59 25.40 (21.83-28.98) 

60-69 18.22 (15.88-20.56) 

70-79 11.64 (10.17-13.11) 

80-90 6.46 (5.64-7.27) 

90-100 3.14 (2.74-3.53) 
 

[29], modified with Canadian population norms and 

standard deviations. Values represent net present 

value of total QALYs lost. 

  

Incremental cost, 

Hospitalisation and 

ICU admission 

Gamma distribution, 

Shape 2234.18, rate 1.72. 

  

Per diem median $1381.64, 90
th

 

percentile $1781.53. 

  

Alberta Health Interactive Health Data Application, 

CMG+ 2018 Grouper 133, Infectious/Parasitic Disease 

of Respiratory System [30]. Inflation adjusted from 

2018 to 2019 using Canada All-Item inflation, CANSIM 

Table 18-10-0005-01 [31]. 

  

Incremental cost, LTC 

case 

  

Gamma distribution, per diem median 

$216.92, 90
th

 percentile $801.57. 

Cost from [32] converted to CAD using average 2015 

exchange rate, inflation adjusted from 2015 to 2019 

using CANSIM Table 18-10-0005-01 and fit to a gamma 

distribution. 

  

Vaccine cost per dose, 

including cold chain 

and administration 

  

$40 Assumed. 

Note: LTC: long term care; QALY: quality-adjusted life year, QALD: quality-adjusted life day  

 

Scenarios 
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In the baseline scenario (‘No Vaccine Baseline’), no vaccine is available, and all contact matrixes and time 

variant inputs are held constant at the last observed value from model fitting. Specifically, we maintained 

contact reductions at the values determined through the expert elicitation for ‘home’ locations, as well as for 

seniors and high-risk individuals, and a fall return to school. Moreover, we kept the most recent observation of 

reduction in time spent in workplaces and ‘other’ locations from the Google Community Mobility reports 

consistent over the model run. In all scenarios, the vaccine is ‘sterilizing’, meaning that the vaccine protects 

individuals from infection. 

Vaccine scenarios represent different vaccine allocation strategies, as well as various vaccine characteristics 

(i.e., effectiveness, coverage), as described in Table 3. Vaccine scenarios are characterised by the maximum 

number of doses that can be delivered per day, the start date of the vaccine program, the definition of the 

priority group, the interval (if any) between access for the priority group and the general population, the 

effectiveness of the vaccine, and vaccine coverage as a proportion of the total population. 

Table 3. Scenarios 

Scenario Vaccine Priority Group Vaccine Effectiveness Population dose 

Coverage 

No Vaccine Baseline N/A N/A N/A 

Vaccine Baseline Age and Risk Based 80% 40%  

Vaccine Coverage Comparison Age and Risk Based 80% 20% 

40% 

70% 

Vaccine Effectiveness Comparison Age and Risk Based 40% 

60% 

80% 

60% above 60 years 

old, 80% otherwise  

 

40% 

Vaccine Priority Group Comparison None 

Age Based 

Risk Based 

Age and Risk Based 

 

60% 40%  

Worst-Case Age and Risk Based 40% 20% 

Note: Maximum doses per day is assumed to be 80,000, with access starting on October 15, 2020 for the priority group, 

and 30 days later for everyone else.  

If the number of individuals eligible for immunisation exceeded the maximum number of doses that could be 

delivered on a given day, the maximum number of doses were pro-rated across each eligible age and risk 

group daily. This means that a group representing 5% of the eligible population would receive 5% of the total 

number of doses available on a given day. Each of the scenarios begins on October 15, 2020, before the 

anticipated distribution of a vaccine in Canada.  

To examine the impact of variations in vaccine effectiveness, we included a scenario where effectiveness 

varies by age, so that the vaccine is 60% effective over the age of 60, and 80% effective otherwise. In all other 

scenarios, effectiveness is constant across age groups. The scenario with 80% effectiveness approximates 
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preliminary results from three phase three trials which have reported efficacy ranging from approximately 70 

to 90% [33].   

In each of the scenarios, we assumed that the vaccine cost per dose inclusive of delivery is $40, and there was 

a 30-day interval between access for different priority groups, starting on October 15, 2020. Extrapolating 

from the maximum estimate of vaccines per day in Alberta from [34], we assumed that up to 80,000 

individuals can be immunised daily. Each of the comparison scenarios contains the ‘Vaccine Baseline’ scenario 

with age and risk-based prioritisation, 80% effectiveness, and 40% coverage, as a common reference point 

across scenarios. Scenarios that prioritise based on age give first access to those aged 55 and over, while 

programs that prioritise high-risk individuals prioritise all high-risk individuals irrespective of age. 

We also defined a worst-case scenario with low vaccine effectiveness (40%) and coverage (20%). Under this 

worst-case scenario we modelled additional public health measures, including a 50% reduction in contacts for 

seniors, and complete school closures (each policy implemented on November 1, 2020). These simulations 

allow model outcomes to compare vaccine policies in combination with other mitigation strategies.  

Results 

We used the CRAM to produce outputs for each vaccine scenario. The mean and 90% credibility intervals for 

epidemiologic and health economics outcomes are presented in the tables and figures below. In the no vaccine 

scenario, total cases were shown to remain relatively low in September 2020, but to increase rapidly through 

November 2020 to January 2021. In the Vaccine Baseline scenario, active cases are reduced by 29.2%, Table 4 

and in Figure 2. The impact of population vaccine coverage on outcomes demonstrates improved outcomes 

with greater population vaccine coverage, as expected (Table 4, Figure 2). When coverage is 70%, there is 

sufficient herd immunity to suppress the pandemic. The impact of vaccine effectiveness on outcomes behaved 

in the expected manner, where NMB increases alongside effectiveness (Table 4, Figure 2). With 40% 

effectiveness, the availability of a vaccine reduces cumulative cases by 17.1%, while with 60% effectiveness, 

cumulative cases decrease by 23.7%.   

Vaccine prioritisation strategies demonstrated dynamic results. Prioritizing both high risk and individuals over 

the age of 55 had the smallest impact on cumulative cases and produced the second lowest value for iNB. 

Equal prioritisation to all age and risk groups minimised cumulative cases and had the second greatest iNB 

value. Risk prioritisation had the highest iNB value. This demonstrates the need for decision makers to pre-

determine which outcomes to target when determining vaccine allocation strategies. 

The results of the worst-case scenarios demonstrate several important relationships. First, the relative ranking 

of each prioritisation scenario varied depending on the outcome of interest. For example, in both worst-case 

scenarios with seniors reducing contacts, and school closures, age-based prioritisation had the lowest iNB, but 

risk-based prioritisation performed had the highest number of cumulative cases (Figure 3, Table 5). 

Second, the impact of prioritisation strategies varies greatly depending on concurrent public health 

interventions – for example, school closures and senior contact reductions have similar impacts on iNB when 

there is no prioritisation given to any age or risk group (Table 5, iNB 147 vs. 120 million, respectively), but 

when older and high risk groups are given priority, the benefit of school closures is much larger than reducing 

contacts for seniors (Table 5, iNB 122 vs. 79 million, respectively). 

Third, we found that the relative ranking of the prioritisation scenarios based on iNB changed dynamically 

between the baseline scenario (50% coverage, 80% effectiveness, Table 4) and worst-case scenarios (20% 

coverage, 40% effectiveness, Table 5). In the worst-case scenarios, giving equal priority to all age and risk 

groups maximised iNB (iNB 147, and 121, for the school closure, and senior contact reduction scenarios 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20240986doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20240986


14 

 

respectively). Conversely, prioritizing high-risk individuals had the best iNB outcome in the baseline scenario 

(iNB 316 million). Age-based prioritisation, and age and risk-based prioritisation resulted in the lowest and 

second lowest iNB respectively in both the baseline and worst-case scenarios. 
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Coverage, Effectiveness, and Prioritisation Scenario Results 

Table 4: Scenario Results 

Scenario 

Cumulative Cases  

Mean (SD) 

 

Cumulative Hospitalisations 

Mean (SD) 

NMB, Millions 

Mean (SD) 

iNB*, Millions  

Mean (SD) 

 

Reference Scenarios 

No Vaccine 249,048.58 (54,172.81)    4,800.92 (1106.8)    -1,025.72 (483.39) N/A 

Vaccine Baseline
†

 176,314.71 (27,396.61)    2,740.22 (274.35)    -728.67 (433.75) 297.04 (50.20) 

Coverage Scenarios     

Coverage 20% 205,361.22 (37,490.49)    3,529.32 (566.79)    -836.49 (452.82)    189.22 (30.90) 

Coverage 40%
†

 176,314.71 (27,396.61)    2,740.22 (274.35)    -728.67 (433.75)    297.04 (50.20) 

Coverage 70% 105,918.85 (48,96.808)    2,131.25 (66.170)    -688.64 (421.53)    337.08 (63.14) 

 

Effectiveness Scenarios 

Effectiveness 40% 206,513.76 (37,950.19)    3,545.06 (573.79)    -856.80 (453.91)    168.92 (29.82) 

Effectiveness 60% 190,129.21 (32,135.95)    3,097.63 (401.96)    -788.36 (443.46)    237.35 (40.39) 

Effectiveness 60% age 60 

and above, 80% otherwise 184,284.61 (30,055.56)    2,979.30 (356.44)    -764.04 (441.09)    261.68 (42.84) 

Effectiveness 80%
†

 176,314.71 (27,396.61)    2,740.22 (274.35)    -728.67 (433.75)    297.04 (50.20) 

 

Prioritisation Scenarios 

None 107,326.29   (5,878.80)    2,398.65 (156.93)    -717.94 (431.69)    307.78 (53.21) 

Age 145,508.16 (18,053.95)    2,612.94 (236.95)    -744.62 (431.26)    281.10 (52.90) 

Risk  156,969.28 (20,239.08)    2,725.69 (242.07)    -709.74 (434.56)    315.97 (49.61) 

Age and Risk
†

 176,314.71 (27,396.61)    2,740.22 (274.35)    -728.67 (433.75)    297.04 (50.20) 

Note: SD = Standard Deviation, NMB = Net Monetary Benefit, iNB = Incremental Net Benefit, N/A = Not Applicable. Prioritisation Scenarios are defined as follows: None = equal 

priority given to all age and risk groups, Age = priority given to those aged 55 and over, Risk = priority given to high risk individuals, Age and Risk = prioritisation for who are high 

risk or older than 55. Maximum doses per day is assumed to be 80,000, with access starting on October 15, 2020 for the priority group, and 30 days later for everyone else. *For 

all scenarios, iNB is estimated relative to the scenario with no vaccine. 
†

Represent the same vaccine baseline scenario, with 40% coverage, 80% effectiveness, and age and risk 

prioritisation. 
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Figure 2. Scenario Results - Active Cases and Incremental Net Benefit 

Coverage Scenarios Effectiveness Scenarios  Prioritisation Scenarios 

   

   

Note:     For scenario definitions, see main text. 
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Worst-Case Scenarios: Concurrent Public Health Responses 

Table 5. Worst-Case Scenario Prioritisation Policy Results 

Concurrent public 

health interventions 
Prioritisation Cumulative Cases  

Mean (SD) 

Cumulative Hospitalisations 

Mean (SD) 

NMB, Millions 

Mean (SD) 

iNB*, Millions  

Mean (SD) 

School Closure  None 166,495.86 (25,484.01)    3,473.25 (564.78)    -878.85 (458.63)    146.86 (25.69) 

Age 194,788.46 (35,115.05)    3,742.41 (666.09)    -915.22 (461.44)    110.50 (22.34) 

Risk  198,389.01 (35,880.49)    3,814.94 (672.77)    -898.82 (463.00)    126.90 (20.77) 

Age and Risk 192,932.31 (34,204.52)    3,739.95 (657.02)    -904.16 (462.27)    121.55 (21.59) 

Reduce senior 

contacts 50% 

 

None 184,031.27 (31,363.92)    3,683.29 (651.12)    -905.32 (461.50)    120.39 (22.58) 

Age 227,946.85 (46,166.87)    4,102.08 (811.38)    -960.36 (466.11)    65.364 (17.42) 

Risk  231,658.41 (46,913.09)    4,176.43 (816.36)    -940.04 (467.74)    85.68 (15.84) 

Age and Risk 
225,300.54 (44,939.66)    4,094.08 (799.20)    -946.78 (466.91)    78.93 (16.66) 

Note: SD = Standard Deviation, NMB = Net Monetary Benefit, iNB = Incremental Net Benefit. Prioritisation Scenarios are defined as follows: None = equal priority given to all age 

and risk groups, Age = priority given to those aged 55 and over, Risk = priority given to high risk individuals, Age and Risk = prioritisation for who are high risk or older than 55. 

Maximum doses per day is assumed to be 80,000, with access starting on October 15, 2020 for the priority group, and 30 days later for everyone else. *For all scenarios, iNB is 

estimated relative to the scenario with no vaccine. 

 

 

 

 

 

 

 

 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted D

ecem
ber 2, 2020. 

; 
https://doi.org/10.1101/2020.11.30.20240986

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2020.11.30.20240986


18 

 

Figure 3. Worst-Case Scenario Prioritisation Policy Results – Active Cases and Incremental Net Benefit 

School Closure  Reduce Senior Contacts by 50% 

  

  

Note:     For scenario definitions, see main text. 
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Discussion 

A SEIR model, CRAM, was developed to simulate the current COVID-19 pandemic in Alberta, Canada. The model 

was used to predict the impact of various vaccine strategies on total cases, hospitalisations, and deaths, as well as 

estimating NMB from a health system payer perspective. To our knowledge, this is the first study to demonstrate 

vaccine allocation over both age and risk groups, with consideration of concurrent public health interventions, and 

population behaviours, and is the first study presenting NMB and iNB outcomes.  

It is critical to consider the time-variant epidemiological conditions in which a vaccine stockpile is allocated, in 

addition to specific vaccine program characteristics such as effectiveness, coverage, population prioritisation, and 

date of availability. This need is highlighted through the results of the worst-case scenarios with different 

concurrent strategies – the cumulative cases and iNB values vary greatly depending upon which concurrent 

strategies are in place (Table 5 and Figure 3), and the main scenarios demonstrate the importance of vaccine 

program characteristics (such as effectiveness and coverage, Table 4 and Figure 2). 

A second imperative is to identify the target outcome to optimise, such as total mortality, morbidity, or NMB. This 

is clearly demonstrated in the model results, where optimal prioritisation strategies vary between baseline and 

worst-case scenarios, for total infections, hospitalisation, and NMB outcomes (Tables 4 and 5). For example, in 

both worst-case scenarios with seniors reducing contacts, and school closures, age-based prioritisation performed 

worst for iNB, but risk-based prioritisation performed worst for cumulative cases. 

Vaccine scenarios achieve better outcomes than those without vaccine, and iNB gains are very large. While this 

result indicates that the relative benefits of vaccine may justify a range of vaccine prices, our results do not 

indicate that vaccine price should be set such that iNB is zero between vaccine and non-vaccine scenarios. Our 

study applies a health system perspective and incurs immunisation costs, whereas a societal perspective is 

expected to strictly increase NMB in immunisation scenarios relative to a health system perspective as broader 

social, economic, and health impacts are considered. Furthermore, the model is run for a short time frame such 

that the full benefits of immunisation are not fully realised, and important dynamics such as waning immunity are 

unknown and not considered in this analysis. 

Some results are unexpected warrant further explanation. The impact of a lower vaccine effectiveness in those 

aged 55 and over was relatively lower than expected (Table 4). This is likely due to the expectation that physical 

distancing is maintained at a higher level for seniors throughout the fall. In practice, it may be the case that public 

health guidance or population attitudes shift such that seniors have increasing contact rates relative to the model 

fitting period. This would impact the relative benefits of prioritizing older individuals, and therefore lower 

effectiveness for older age groups would have a greater impact if guidance or behaviours changed. 

A second unexpected result is the performance of the strategy where all age and risk groups are given equal 

priority (Tables 4 and 5). While age and risk groups that are older or high risk have a greater risk of hospitalisation 

or death from COVID, these outcomes interact dynamically with greater transmission, driven by higher rates of 

contact, in young and low risk age groups. This dynamic may also be due to relatively high coverage in the 

scenarios evaluated, but herd effects may not be as strong with coverage lower than 40%, as evaluated in our 

baseline scenarios. Decision makers must consider the degree to which it is equitable for those at lowest risk of 

poor outcomes to have equal access to a vaccine, which is a current point of debate [8-14]. Under these 

considerations, equal prioritisation for all age and risk groups may represent a possible scenario which is not 

acceptable to decision makers, and therefore should not be considered alongside the others. Finally, if the high-
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efficacy preliminary trial results hold for future vaccines [33], the results of scenarios with 80% effectiveness, as in 

the baseline scenario may be the most relevant.  

Vaccine allocation is likely to be most contentious when the total number of doses is limited, and effectiveness is 

low. The worst-case scenario simulations indicate that a vaccine prioritisation policy where all age and risk groups 

are given equal initial access to vaccine maximises NMB (Table 5). When other public health policies and human 

behaviours change, for example through school closures, reduced contact rates for seniors or high-risk individuals, 

or in workplaces, NMB increases, but the optimal vaccine prioritisation policy does not shift. The degree to which 

this finding holds will depend on the interventions in place at the time of vaccine allocation, so these scenarios 

should be re-evaluated to capture policy and behaviour dynamics at the time of allocation.  

Comparisons to Other Studies 

While we are not aware of any other studies examining vaccine allocation within a health economic perspective, a 

handful of preprint studies have used analytic methods to test outcomes under different vaccine allocation 

scenarios [13, 15-17]. The results from the CRAM align with the other studies: the age-prioritised scenario 

minimises hospitalisations, while the unrestricted scenario minimises total infections (Table 4). Like [17], who 

project that coverage between 40-59% of the population will be required for suppression in Canada, the CRAM 

demonstrates that infections are significantly reduced with coverage of 70%, when age and risk prioritisation is 

implemented.  

Several elements of CRAM compare favourably to the other studies. With the exception of Chen et al. [13], other 

studies do not consider concurrent or future public health policies/ and or behavioural factors. This appears to be a 

large oversight given that any allocation decision must not only consider the epidemiology at the time of 

allocation, but also which other interventions might be used to amplify the impact of targeted vaccine strategies.  

CRAM allows allocation to both age and risk groups, which are not evaluated together in many other studies [13, 

15-17]. It is likely that governments would wish to consider allocation to high risk individuals rather than broad age 

groups, and high-risk individuals are likely to take greater infection prevention measures, so these dynamics are 

important to incorporate. Furthermore, most studies are calibrated to published R0 figures. Because the CRAM is 

fit to surveillance data, model predictions for a broader range of outcomes (infections, hospitalisations, deaths) are 

provided with greater accuracy. Finally, model inputs to the CRAM were informed wherever possible with 

jurisdictional data, and expert opinion was used rather than using assumed values, as in the studies discussed. 

There are also elements where other approaches are strong relative to CRAM. Two studies [12, 15] consider 

vaccines which are both ‘leaky’ (reducing the probability a susceptible individual is infected)  and ‘all-or-none’ (as 

in the CRAM). Meehan et al. [17] evaluate vaccines which either prevent infection, or prevent disease. Bubar et al. 

[15] compare scenarios where serological testing is included in vaccine scenarios, or not. While inclusion and 

evaluation of these elements is beyond the scope of this paper, it is reasonable to assume that the relative 

dynamics demonstrated by other authors (for example relative outcomes under leaky or all-or-none vaccine 

assumptions) will hold for the results of the CRAM. 

Strengths 

Our approach has several strengths relative to other modelling studies. The direct interpretation of the NMB from 

a health system payer perspective provides important insights. Generally, all measures that can reduce the spread 
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of COVID-19 have a large social value, due to the very high economic losses it causes. [35] A general expectation is 

that economic and social outcomes will be relatively worse under more restrictive public health responses (such as 

business and school closures), while direct health outcomes will improve. The inclusion of broader health 

outcomes is undetermined because outcomes like excess mortality and morbidity, due to health system avoidance 

or deferral of services will have dynamic impacts on NMB under various public health responses. Interventions 

such as vaccine are expected to increase NMB from a societal perspective, limited only by the cost of vaccine 

procurement and delivery. By estimating the INB from a payer perspective for each strategy, the minimum NMB of 

economic and social impacts to indicate a different policy direction are made explicit. 

The structure of CRAM was developed to align with available Alberta surveillance data, namely the number of 

hospitalisations and cumulative infections on key dates indicated by seroprevalence studies. While case 

classification in each healthcare setting provides unique challenges and remains subject to ascertainment and 

reporting biases, these measurements can be estimated with the greatest amount of certainty, and therefore both 

the fitting and compartmental structure of CRAM are developed around these data, mitigating these issues to the 

greatest extent possible. Laboratory-confirmed cases and asymptomatic infections are not included within the 

model structure due to data quality. Laboratory testing protocols have changed rapidly since March 2020 [36],  and 

therefore incorporating the number of laboratory-confirmed cases into the model structure would have been 

inappropriate. 

An important feature of CRAM structure is that it allows users to evaluate a broad and flexible range of concurrent 

interventions. Our results demonstrate that optimal vaccine allocation changes depending on the public health 

measures (like school closures) or behavioural changes (contact reductions for seniors) as well as vaccine program 

features. By creating a structure that captures relative changes in behaviours and policies by age and risk group 

and by location over time, our model is designed to capture dynamic population changes to the greatest degree 

possible. 

Limitations 

A key challenge for all COVID-19 modelling and simulation studies has been data quality. The challenge is two-fold: 

model inputs and parameters (such as the duration of infection and transmissibility by age group) are uncertain 

and estimated from small observational studies. In addition, jurisdictional observational data are subject to bias. 

The high degree of uncertainty in many of the model elements necessitates constant review and reappraisal of the 

model structure and inputs. Constant evolution of the evidence also highlights the importance of the stochastic 

approach used by this study. By sampling from the distributions of several parameters, the stochastic results 

quantify the resulting uncertainty in model outputs. 

Seasonal dynamics related to COVID-19 remain controversial. Several studies have found empirical and modelling 

evidence to support changes in virus transmission consistent with seasonal behaviour, and these seasonal changes 

in transmission can be driven by both behavioural and environmental factors. A review on the stability of 

coronaviruses including COVID-19 under various environmental and climatic conditions [37] found early evidence 

of virus sensitivity to temperature, light, and humidity in laboratory studies [38-42]. Many studies analysing the 

natural history of the virus imply the presence of seasonal dynamics [43-50], while others found a limited effect 

[51, 52]. Natural history studies are challenged with data quality issues, confounding, and a very short period of 

observation [53]. There is overall agreement that the transmission of COVID-19 is likely to demonstrate some 

seasonal behaviour, but that dynamics are complex due to the high susceptibility of the global population and that 

effective pandemic control cannot rely on seasonal dynamics. As demonstrated by the findings of a rapid literature 

review [54], the evidence around relative differences in susceptibility and transmission by age is highly uncertain, 
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in particular for children. None of the studies identified through the rapid review included parameters suitable for 

inputting into CRAM. A modelling study estimating relative susceptibility by age group was instead used as a 

source for these inputs [23]. Like any of the inputs, if evidence were to emerge that the dynamics of susceptibility 

by age are different from those used to fit our model, there would be implications for the validity of these results.  

Due to the widespread impacts of COVID-19 on population health, economy, and social outcomes, a societal 

perspective is likely to be the most appropriate perspective for economic evaluations of COVID-19 response 

policies. The estimates from a health system payer perspective generated in this study do not capture the full 

health, social, and economic impacts of the COVID-19 pandemic and response. Accurate estimates of the 

additional societal impacts are unlikely to become available in the near future. In this context, our analysis 

provides an important baseline estimate of the cost-effectiveness of vaccines which future evaluation can build 

upon. As additional research estimates the broader economic impact of different public health policies (for 

example, business or school closures) these may be layered on to estimates from the CRAM, the flexible structure 

of which allows the estimation NMB for a broad range of strategies. 

Community infection comprises multiple disease states, which are not separated due to data quality. There is no 

reliable estimate of the number of infected individuals in the community for Alberta, as current testing protocols 

and changes to testing eligibility undermine the estimation of the number of infected individuals over time. 

Similarly, evidence on the proportion of infected cases which are asymptomatic is rapidly evolving [55]. Due to the 

absence of these inputs, community cases are not differentiated by the presence of symptoms. Related to this is 

the exclusion of costs related to community infections, which could be included in future work. We did not 

consider non-sterilizing vaccines, which would require use of an asymptomatic compartment. Finally, CRAM 

structure does not allow for the isolation of close contacts, limiting the range of isolation and quarantine scenarios 

that can be evaluated. 

Policy Implications 

The results of this paper have three key policy implications: (i) that optimal vaccine allocation will depend on the 

public health policies, and human behaviours in place at the time of allocation; (ii) the outcomes of vaccine 

allocation policies can be greatly supported with interventions targeting contact reduction in critical sub-

populations; and (iii) the identification of the optimal strategy depends on which outcomes are prioritised. 

In allocating vaccine access, decision makers must not only consider the interventions and behaviours in place at 

the time of allocation, but also those which could be in place in the future. Optimal allocation will depend on 

public health policy and human behaviour, and therefore decision makers must understand that allocation 

decisions are made within a dynamic environment. The value of vaccination may be improved by adjustments to 

complementary public health policies. 

Decision makers should define the range of public health policies that can be implemented alongside vaccine 

allocation within an ethical framework. For example, in our model NMB will be maximised if seniors continue to 

reduce their contacts through the fall, and vaccines were allocated without prioritizing older and high-risk 

population groups. This would mean that the people with the greatest risk of disease and poor outcomes, would 

also bear the highest burden of additional social isolation. Because of this, the suite of public health policy options 

should be determined prior to dynamic policy optimisation, to ensure that the optimal strategy is achieved within 

a framework reflective of social values and equity [8]. 
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Decision makers must evaluate a broad range of outcome measures to prioritise and provide robust justification 

for their choice. This paper uses NMB because it captures the relative disutility for epidemiologic outcomes (total 

cases, hospitalisations, and deaths), as well as health system resource implications due to illness. In this way, 

multiple factors such as age and outcome severity are built into the measure. NMB will also allow for simple and 

direct inclusion of societal outcomes, if and when they become available.  

Future Research 

Ongoing research and observational data should continue to be incorporated into the model, through re-fitting 

data, and adjusting model structure where evidence indicates important new relationships and dynamics. The 

results of this paper indicate that outcomes are highly responsive to behavioural factors such as changes in contact 

rates. This indicates that while the results of this paper provide important insights into the general allocation 

problem, model reanalysis with the most up to date available information is critical to optimal strategy 

identification. 

While the results presented in this study pertain to a model calibrated to Alberta, Canada, the key findings are 

relevant to many other jurisdictions. The approach demonstrates how the net benefit approach, implemented 

through mathematical modelling, can support a principled and defensible vaccine allocation within a dynamic 

policy environment.  
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Appendix 1 Model Details 

Equations 

The full set of equations used to describe CRAM is provided in this appendix.  Each compartment is divided into 17 

age groups and two risk groups. The 34 sub-compartments are indexed by a,r, where a is the age group and r is the 

risk group. The population size of each group is given by ��,� and a compartment sub-indexed by ��,· represents 

the sum of both risk groups for one age group.   
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Some parameters are functions, as in the following. 

���� � ���	
�����	, 0  
where � is the age group and �, � are fitted parameters from an exponential regression. 

��,� � 

���	�
�� �
�����������

�	�����������
	�
�� ������������		

  

where � is the risk group index. 

�� � �
���� � ��� ��� � 2
365 � �� � 0.19# � $1 % �
����& 

Where � is the numeric constant Pi, � is the date, and �
���� controls the amplitude of the seasonal effect, larger 

numbers will increase the difference in transmission maximum and minimum values. The shift of 0.19 centres the 

minimum on July 30
th

, the centre date between the hottest days of the year in Edmonton and Calgary.  

The contact matrix is decomposed into four locations: home, workplace, school, and other, where other comprises 

all remaining possible locations. Total contacts are given as the sum of contacts for each age to age (a,k) entry in 

each of the matrices. Decomposing the total contact matrix by location allows for adjustments in contact rates at 

locations to align with policy interventions. For example, school closure is reflected by adjusting the school contact 

matrix (�'���(�,�,�) by a scalar value, for the duration of dates during which the school is closed:  

�'���(�,�,� � )�������� � �'���(�,�,   
where )�������� � 0 while schools are closed, and )�������� � 1 otherwise (that is, 0 *  )�������� * 1). 

Similarly, for interventions which would reduce contact rates in schools, )��������,�  may be applied to specific age 

groups, adjusting the school contact matrix at various points in time according to age group. 

Reductions )������, )������, and )������� are applied to the remaining contact matrices, which are then summed 

to generate the total matrix, '����'��,�, at each time step. Reduction in contacts for seniors age 75+ are applied 

directly to the total contact matrix, as a scalar multiplied through the rows and columns where a or k equals 16. 

Reduction in contacts for high-risk individuals are applied to the total contact matrix, only for those individuals 

whose r equals 2. For example: 

+ � ∑ )������ � ��������,�

 �,·
	-./�,· � -��,· � -01�,· � -2�,· � -1�,·�!

�"� � /�,�  

where )������ � 1 for non-high-risk individuals. 

Assumptions 

The CRAM makes the following assumptions: 

• Only susceptible individuals who have not been exposed to COVID-19 are immunised. In practice, this may 

require serology testing prior to vaccine.  

• The vaccine behaves as an all-or nothing vaccine, where the vaccine protects a proportion of those 

immunised corresponding to vaccine effectiveness. 
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• Daily contact rates are based on age group in CRAM. This limits the types of contacts represented in the 

model; for example, the model cannot represent cohorts of students (that is, students seeing the same 

limited group of students/staff each day).  

• There are no additional school contacts between individuals older than 20 years in our model (for 

example, between school staff). Therefore, when contacts were increased with in-person schooling, 

increases in contact rates only applied to contacts between students and other students, and contacts 

between students and adults.  

• All public health interventions were modelled by reducing the contacts of specific age or risk groups. This 

necessitates assumptions about contact reductions associated with each public health intervention (for 

example, how masks reduce contacts between school-aged children). Therefore, CRAM cannot test which 

public health interventions are most likely to reduce contacts; rather, it estimates the impact that 

reducing contacts through public health interventions may have on overall disease outcomes. 

• Provincial level modelling is broadly informative at a local level. Where local case counts increase, this 

may indicate that additional actions need to be taken, including possible changes to schooling 

arrangements, but local factors relative to the provincial dynamics presented in these results should be 

taken into context. 

• All strategies in place at the start of the period, other than vaccine and other clearly stated changes will 

remain in place for the duration of the model period. Therefore, the results reflect what might happen in 

a scenario where no mitigating actions are taken. Any interventions implemented at a local or regional 

level in response to an outbreak would result in a different number of expected infections and 

hospitalisations. 
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Appendix 2 Expert Elicitation 

To generate estimates for parameters for which there was no information source, a rapid expert elicitation 

exercise was developed. The elicitation drew from the SHELF tool and adapted the questionnaire to be given 

through a web-based survey. Expert opinions were pooled to derive the median and 90% CI estimates for each 

value of interest. 

An initial set of questions was disseminated to public health experts, identified in partnership with Alberta Health. 

Experts were provided with a short online training module, and responses were restricted to a 11-point Likert scale 

between 0 and 10. The median, and upper and lower tertiles were elicited, and beta distributions were fit to 

estimate response values. 

A second elicitation was disseminated to public health and education experts, using two return to school scenarios 

defined by the Alberta Government. Experts were provided with a webinar training, and then the questionnaire 

was disseminated online, with responses restricted to an 11-point Likert scale as before. The median, 5
th

 and 95
th

 

quantiles were elicited, and beta distributions were fit to estimate response values. 

Note that following the expert elicitation, Alberta Health mandated mask use in schools. An additional reduction in 

contact rates using a uniform distribution ranging from 20-80% relative to the elicited values was applied to the 

school contact matrix. This value was based on a rapid review which found evidence of mask effectiveness at 

reducing spread, but uncertainty in the degree of effectiveness [56]. 

TABLE E.1: Elicitation question and responses 

Quantity 
Pooled response values, median 

[90% CI] 
Elicited values and linear pool 

Factor by which 

Albertans have 

reduced their 

contacts at home, 

given current public 

health orders and 

guidance 

0.586 [0.070, 0.995] 
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Quantity 
Pooled response values, median 

[90% CI] 
Elicited values and linear pool 

Factor by which 

Albertans aged ≥75 

years have reduced 

their contacts in all 

locations, given 

current public health 

orders and guidance 

0.387 [0.137, 0.945] 

 

Factor by which 

Albertans with a high 

risk of severe 

outcomes have 

reduced their 

contacts in all 

locations, given 

current public health 

orders and guidance 

0.326 [0.065, 0.922] 

 

Scenario 1 

Contact reduction  
 

Age 

group 
Contact reduction 

5–9 

years 

0.692 [0.358, 0.869] 

10–14 

years 

0.573 [0.314, 0.846] 

15–19 

years 

0.522 [0.278, 0.861] 

 

Age group: 5–9 years 

 

Age group: 10–14 years 
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Quantity 
Pooled response values, median 

[90% CI] 
Elicited values and linear pool 

 

Age group: 15–19 years 

 

Proportion returning  
 

Age 

group 
Proportion returning 

5–9 

years 

0.760 [0.399, 0.933] 

10–14 

years 

0.831 [0.399, 0.941] 

15–19 

years 

0.860 [0.634, 0.994] 

 

Age group: 5–9 years 

 

Age group: 10–14 years 
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Quantity 
Pooled response values, median 

[90% CI] 
Elicited values and linear pool 

 

Age group: 15–19 years 

 

Scenario 2 

Contact reduction  
 

Age 

group 
Contact reduction 

5–9 

years 

0.406 [0.174, 0.634] 

10–14 

years 

0.358 [0.142, 0.664] 

15–19 

years 

0.333 [0.199, 0.611] 

 

Age group: 5–9 years 

 

Age group: 10–14 years 
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Quantity 
Pooled response values, median 

[90% CI] 
Elicited values and linear pool 

 

Age group: 15–19 years 

 

Proportion returning 
 

Age 

group 
Proportion returning 

5–9 

years 

0.800 [0.590, 0.992] 

10–14 

years 

0.812 [0.511, 0.987] 

15–19 

years 

0.877 [0.691, 0.991] 

 

Age group: 5–9 years 

 

Age group: 10–14 years 
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Quantity 
Pooled response values, median 

[90% CI] 
Elicited values and linear pool 

 

Age group: 15–19 years 

 

CI: confidence interval 
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